首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic osmolytes are used in animal and plant cells to adapt to hyper- and hypoosmolar stress. We used our RBC-membrane model to investigate the effects of the osmolytes betaine, sorbitol and myo-inositol on Na(+)/K(+)-ATPase, Ca(2+)-ATPase and calmodulin-stimulated Ca(2+)-ATPase (CaM). Our results show that betaine inhibited ATPases by more than 61%: Na(+)/K(+)-ATPase (75 +/- 5.9 vs 27 +/- 2.2), Ca(2+)-ATPase (236 +/- 18.9 vs 62 +/- 4.9), and CaM (450 +/- 18 vs 174 +/- 6.9) (microM pi/min/mg protein, control (0 microM betaine) vs 100 micromol/L betaine). Sorbitol (100 micromol/L) inhibited the Ca(2+)-ATPases by 41% (126 +/- 7.6 vs 74 +/- 4.4) and CaM by 42% (253 +/- 17.7 vs 147 +/- 10.3). Inositol (100 micromol/L) inhibited Na(+)/K(+)-ATPase strongest (37 +/- 1.9 vs 20 +/- 1.0; 47% inhibition) while it showed a lesser effect on the Ca(2+)-ATPases (136 +/- 6.8 vs 102 +/- 5.1; 25% inhibition). All osmolytes inhibited RBC membrane ATPases at concentrations above 50 micromol/L, which corresponds to high normal physiologic range for organic osmolytes in serum. Furthermore, the presence of osmolytes (250 micromol/L) decreased hypoosmotic stress induced hemolysis by 42%. Together these data indicate an important regulatory role of organic osmolytes on human RBC membrane ATPases and a protective function of osmolytes in RBCs against hypoosmotic stress.  相似文献   

2.
(Z)-5-Methyl-2-[2-(1-naphthyl)ethenyl]-4-piperidinopyridine, AU-1421, interacted at 0 degree C with the K(+)-sensitive phosphoenzymes of three transport ATPases, Ca(2+)-, H+/K(+)- and Na+/K(+)-ATPase. In the case of Ca(2+)-ATPase, AU-1421 at about 80 microM stimulated 6-fold the rate of splitting of the phosphoenzyme, on which K+ simply functions as an accelerator from one side of the membrane. Probably AU-1421 also simply interacts with the K(+)-binding site of the phosphoenzyme that is easily accessible from the aqueous phase. In the cases of H(+)/K(+)- and Na(+)/K(+)-ATPases, AU-1421 stabilized the phosphoenzymes which accept K+ as the translocating ion. The rate constants of dephosphorylation for H(+)/K(+)-ATPase and Na(+)/K(+)-ATPase were decreased to half by AU-1421 at about 5 and 10 microM, respectively. Presumably after binding of AU-1421 to a K(+)-recognition site of the phosphoenzyme, local motion of the peptide region near the binding site that serves to move the bound ion into the ion-transport pathway (occlusion center) might be inhibited. Thus AU-1421 may be able to distinguish two modes of K+ action on the K(+)-sensitive phosphoenzymes.  相似文献   

3.
Two low molecular mass proteins (13 kDa which inhibits Na+,K(+)-ATPase and 12 kDa which modulates Ca2+, Mg(2+)- and Ca(2+)-ATPases), purified from rat brain cytosol form complexes with chlorpromazine (CPZ) on incubation. The conformational characteristics of the proteins and their complex have been studied by comparing the fluorescence and CD spectra. The tryptophan fluorescence data show that the inhibitor-CPZ complex does not quench the fluorescence of NA+,K(+)-ATPase significantly. CD spectra indicate that the structure of the inhibitor is changed on formation of the complex. The inhibitor-CPZ complex significantly changes the conformation of Na+,K(+)-ATPase. The regulator protein-CPZ complex does not have any appreciable effect on Ca2+, Mg(2+)- and Ca(2+)-ATPase activities. The Trp-fluorescence of Ca2+,Mg(2+)- and Ca(2+)-ATPase are not significantly affected in presence of the complex. CD spectra indicate that the structure of the regulator is abruptly affected on formation of the complex. The conformations of Ca2+,Mg(2+)- and Ca(2+)-ATPases are found to be altered in presence of the complex.  相似文献   

4.
Bass gill microsomal preparations contain both a Na+, K+ and Mg2+-dependent ATPase, which is completely inhibited by 10(-3)M ouabain and 10(-2)M Ca2+, and also a ouabain insensitive ATP-ase activity in the presence of both Mg2+ and Na+. Under the optimal conditions of pH 6.5, 100 mM Na+, 20 mM K+, 5 mM ATP and 5 mM Mg2+, (Na+ + K+)-ATPase activity at 30 degrees C is 15.6 mumole Pi hr/mg protein. Bass gill (Na+ + K+)-ATPase is similar to other (Na+ + K+)-ATPases with respect to the sensitivity to ionic strength, Ca2+ and ouabain and to both Na+/K+ and Mg2+/ATP optimal ratios, while pH optimum is lower than poikilotherm data. The enzyme requires Na+, whereas K+ can be replaced efficiently by NH+4 and poorly by Li+. Both Km and Vm values decrease in the series NH+4 greater than K+ greater than Li+. The break of Arrhenius plot at 17.7 degrees C is close to the adaptation temperature. Activation energies are scarcely different from each other and both lower than those generally reported. The Km for Na+ poorly decreases as the assay temperature lowers. The comparison with literature data aims at distinguishing between distinctive and common features of bass gill (Na+ + K+)-ATPase.  相似文献   

5.
6.
Proposed models for the catalytic subunit of the E1E2-ATPases (ion pumps) predict that the first four transmembrane domains (M1 - M4) reside in the NH2 terminal one-third of the molecule, and the remainder (M5 - M10) in the COOH terminal one-third. The amino-acid sequences for the 5'-(p-fluorosulfonyl)-benzoyl-adenosine (FSBA) binding region residing just before M5 segment are very well conserved among distinct ion pumps. Taking advantage of these models, we have constructed a set of chicken chimeric ion pumps between the (Na++ K+)-ATPase alpha-subunit and the Ca(2+)-ATPase using the FSBA-binding site as an exchange junction, thereby preserving overall topological structure as E1E2 ATPases. From various functional assays on these chimeric ion pumps, including ouabain-inhibitable ATPase activity, Ca2+ binding, Ca2+ uptake, and subunit assembly based on immuno-coprecipitation, the following conclusions were obtained: (a) A (Na++ K+)-ATPase inhibitor, ouabain, binds to the regions before M4 in the alpha-subunit and exerts its inhibitory effect. (b) The regions after M5 of the (Na++ K+)-ATPase alpha-subunit bind the beta-subunit, even when these regions are incorporated into the corresponding domains in the Ca(2+)-ATPase. (c) The corresponding domains of the Ca(2+)-ATPase, the regions after M5, bind 45Ca even when it is incorporated into the corresponding position of the (Na++ K+)-ATPase alpha-subunit.  相似文献   

7.
To better comprehend physiological adaptation to dilute media and the molecular mechanisms underlying ammonia excretion in palaemonid shrimps, we characterized the (Na+,K+)-ATPase from Macrobrachium amazonicum gills, disclosing high- (K(0.5) = 4.2+/-0.2 micromol L(-1); V = 33.9+/-1.9 U mg(-1)) and low-affinity (K(0.5) = 0.144+/-0.010 mmol L(-1); V = 232.9+/-15.3 U mg(-1)) ATP hydrolyzing sites. Stimulation by Na+ (K(0.5) = 5.5+/-0.3 mmol L(-1); V = 275.1+/-15.1 U mg(-1)), Mg2+ (K(0.5) = 0.79+/-0.06 mmol L(-1); V = 261.9+/-18.3 U mg(-1)), K+ (K(M) = 0.88+/-0.04 mmol L(-1); V = 271.8+/-10.9 U mg(-1)) and NH4(+) (K(M) = 5.0+/-0.2 mmol L(-1); V = 385.9+/-15.8 U mg(-1)) obeys single saturation curves, activity being stimulated synergistically by NH4(+) and K+. There is a single K+ binding site, NH4(+) binding to a second, exclusive site, stimulating activity by 33%, modulating K+ affinity. (Na+,K+)-ATPase activity constitutes approximately 80% of total ATPase activity (K(Iouabain) = 147.5+/-8.9 micromol L(-1)); Na+-, K+-, Ca2+-, V- and F(o)F(1)-ATPases are also present. M. amazonicum microsomal fractions possess approximately 2-fold less (Na+,K+)-ATPase alpha-subunit than M. olfersi, consistent with a 2.6-fold lower specific activity. These differences in (Na+, K+)-ATPase stimulation by ATP and ions, and specific activities of other ATPases, suggest the presence of distinct biochemical adaptations to life in fresh water in these related species.  相似文献   

8.
To better comprehend the mechanisms of ionic regulation, we investigate the modulation by Na+, K+, NH4(+) and ATP of the (Na+, K+)-ATPase in a microsomal fraction from Callinectes ornatus gills. ATP hydrolysis obeyed Michaelis-Menten kinetics with KM=0.61+/-0.03 mmol L(-1) and maximal rate of V=116.3+/-5.4 U mg(-1). Stimulation by Na+ (V=110.6+/-6.1 U mg(-1); K0.5=6.3+/-0.2 mmol L(-1)), Mg2+ (V=111.0+/-4.7 U mg(-1); K0.5=0.53+/-0.03 mmol L(-1)), NH4(+) (V=173.3+/-6.9 U mg(-1); K0.5=5.4+/-0.2 mmol L(-1)) and K+ (V=116.0+/-4.9 U mg(-1); K0.5=1.5+/-0.1 mmol L(-1)) followed a single saturation curve, although revealing site-site interactions. In the absence of NH4(+), ouabain (K(I)=74.5+/-1.2 micromol L(-1)) and orthovanadate inhibited ATPase activity by up to 87%; the inhibition patterns suggest the presence of F0F1 and K+-ATPases but not Na+-, V- or Ca2+-ATPase as contaminants. (Na+, K+)-ATPase activity was synergistically modulated by K+ and NH4(+). At 10 mmol L(-1) K+, increasing NH4(+) concentrations stimulated maximum activity to V=185.9+/-7.4 U mg(-1). However, at saturating NH4(+) (50 mmol L(-1)), increasing K+ concentrations did not stimulate activity further. Our findings provide evidence that the C. ornatus gill (Na+, K+)-ATPase may be particularly well suited for extremely efficient active NH4(+) excretion. At elevated NH4(+) concentrations, the enzyme is fully active, regardless of hemolymph K+ concentration, and K+ cannot displace NH4(+) from its exclusive binding sites. Further, the binding of NH4(+) to its specific sites induces an increase in enzyme apparent affinity for K+, which may contribute to maintaining K+ transport, assuring that exposure to elevated ammonia concentrations does not lead to a decrease in intracellular potassium levels. This is the first report of modulation by ammonium ions of C. ornatus gill (Na+, K+)-ATPase, and should further our understanding of NH4(+) excretion in benthic crabs.  相似文献   

9.
10.
Several isoforms of organellar Ca(2+)-ATPases have been identified, each of which is expressed in a tissue-specific manner. In order to examine the functional properties of fast-twitch (SERCA 1a), cardiac/slow-twitch (SERCA 2a), and non-muscle (SERCA 3) isoforms of the Ca(2+)-ATPase, cDNAs of each type were expressed transiently in COS-1 cells. A study of the Ca2+ dependence of Ca2+ uptake showed that SERCA 1 and SERCA 2 have identical Ca2+ dependences (K0.5 = pCa 6.87 +/- 0.03 and pCa 6.87 +/- 0.02, respectively), but SERCA 3 has a lower Ca2+ dependence (K0.5 = pCa 6.32 +/- 0.03). A study of the ATP dependence of Ca2+ uptake showed that SERCA 1, 2, and 3 have almost identical ATP dependences. Average Hill coefficients derived from Ca2+ uptake curves ranged from 1.7 to 1.8 for the three isoforms. In order to identify which regions of the linear sequence determine this difference in Ca2+ dependence, chimeric Ca(2+)-ATPases between SERCA 2 and SERCA 3 were constructed. Chimeric Ca(2+)-ATPases containing the nucleotide binding/hinge domain of SERCA 2 had SERCA 2 type Ca2+ dependence, but both nucleotide binding/hinge and COOH-terminal transmembrane domains of SERCA 3 were required for SERCA 3 type Ca2+ dependence. Accordingly, structural interactions between the nucleotide binding/hinge and COOH-terminal transmembrane domains appear to determine isoform-specific Ca2+ dependences.  相似文献   

11.
Cloning and sequencing of the gene encoding a P-type Na(+)-ATPase of a facultatively anaerobic alkaliphile, Exiguobacterium aurantiacum, were conducted. The structural gene was composed of 2628 nucleotides. The deduced amino acid sequence (876 amino acid residues; Mr, 96,664) suggested that the enzyme possesses 10 membrane-spanning regions. When the amino acid sequences of the four putative membrane regions, M4, M5, M6 and M8, of BL77/1 ATPase were aligned with those of fungal Na(+)-ATPase, Na(+)/K(+)-ATPase, H(+)-ATPases and sarcoplasmic reticulum Ca(2+)-ATPase, it exhibited the highest homology with Ca(2+)-ATPase except M5 region. By the transformation of Escherichia coli with the expression vector (pQE30) containing the ATPase gene, the enzyme was functionally expressed in E. coli membranes.  相似文献   

12.
P-type ATPases (E1E2-ATPases) are primary active transporters which form phospho-intermediates during their catalytic cycle. They are classified into P1 to P4 based on the primary structure and potential transmembrane segments. Although the classic P-type ATPases are cation transporters, two new members have recently been found; one is a flippase catalyzing the flip-flop movement of aminophospholipids, but the substrate and function of the other one remain unknown. It would be interesting to determine whether the cations and aminophospholipids are transported by similar or different mechanisms. P-type ATPases are believed to have been derived from a common ancestor, and their genes are found to be distributed in various chromosomal loci. However, gene duplication events can be traced from the tandem arrangement of genes and their linkage map. Na+/K+- and H+/K+-ATPases have not only closely related a subunits but also similar beta subunits. Renal Na+/K+-ATPase has an additional subunit gamma. Similar small polypeptides (phospholemman, Mat-8 and CHIF), which induce Cl- and K+ currents, have been found. The idea of their functional and structural coupling with P-type ATPases, especially with H+/K+-ATPase, is intriguing. Each P-type ATPase must have specific domains or sequences for its intracellular trafficking (sorting, retention and recycling). Identification of such regions and studies on the molecules playing role in their recognition may facilitate the unveiling of various cellular processes regulated by P-type ATPases.  相似文献   

13.
New data are presented on the organization of H+-pumps in plasma membranes of cells of bacteria fungi, plants and animals. It is shown that H+-ATPase of bacteria differs in principle from H+-ATPases of plasma membranes of other organisms. The transport H+, K+-ATPase functioning in cells of mucous membrane of the animal stomach as an electroneutral H+-pump is similar by its properties to Na+, K+-ATPase of plasma membranes of animal cells. H+-ATPase of plasma membranes in cells of fungi and higher plants which functions as an electrogenic H+-pump differs essentially from H+-ATPases of F0 X F1-type. Distribution of H+-ATPases in cells of different organisms and their evolution are under discussion.  相似文献   

14.
Cardiac cells in culture (from rat and chick heart) have a membrane Na+/H+ exchange system that is inhibited by amiloride (K0.5 = 5 microM) and by its more potent N-5-disubstituted derivatives dimethylamiloride (K0.5 = 300 nM) and ethylisopropylamiloride (K0.5 = 30 nM). The properties of the cardiac Na+/H+ exchange system are similar to those found for the Na+/H+ exchanger in other cellular types. The Na+/H+ exchange system is a major pathway for Na+ uptake by cardiac cells. Ouabain which inhibits the (Na+,K+)-ATPase, a major pathway for Na+ efflux, is known to provoke Na+ accumulation and to stimulate 45Ca2+ entry via the Na+/Ca2+ exchange mechanism, thereby producing an inotropic effect. N-5-Disubstituted amiloride derivatives, by blocking Na+ entry into cardiac cells, antagonize both ouabain-induced intracellular Na+ accumulation and the ouabain-induced acceleration of 45Ca2+ uptake.  相似文献   

15.
The only known cellular action of AlF4- is to stimulate the G-proteins. The aim of the present work is to demonstrate that AlF4- also inhibits 'P'-type cation-transport ATPases. NaF plus AlCl3 completely and reversibly inhibits the activity of the purified (Na+ + K+)-ATPase (Na+- and K+-activated ATPase) and of the purified plasmalemmal (Ca2+ + Mg2+)-ATPase (Ca2+-stimulated and Mg2+-dependent ATPase). It partially inhibits the activity of the sarcoplasmic-reticulum (Ca2+ + Mg2+)-ATPase, whereas it does not affect the mitochondrial H+-transporting ATPase. The inhibitory substances are neither F- nor Al3+ but rather fluoroaluminate complexes. Because AlF4- still inhibits the ATPase in the presence of guanosine 5'-[beta-thio]diphosphate, and because guanosine 5'-[beta gamma-imido]triphosphate does not inhibit the ATPase, it is unlikely that the inhibition could be due to the activation of an unknown G-protein. The time course of inhibition and the concentrations of NaF and AlCl3 required for this inhibition differ for the different ATPases. AlF4- inhibits the (Na+ + K+)-ATPase and the plasmalemmal (Ca2+ + Mg2+)-ATPase noncompetitively with respect to ATP and to their respective cationic substrates, Na+ and Ca2+. AlF4- probably binds to the phosphate-binding site of the ATPase, as the Ki for inhibition of the (Na+ + K+)-ATPase and of the plasmalemmal (Ca2+ + Mg2+)-ATPase is shifted in the presence of respectively 5 and 50 mM-Pi to higher concentrations of NaF. Moreover, AlF4- inhibits the K+-activated p-nitrophenylphosphatase of the (Na+ + K+)-ATPase competitively with respect to p-nitrophenyl phosphate. This AlF4- -induced inhibition of 'P'-type cation-transport ATPases warns us against explaining all the effects of AlF4- on intact cells by an activation of G-proteins.  相似文献   

16.
Myocardial Na+,K+-ATPase was studied in patients with aortic valve disease, and myocardial Na+,K+- and Ca2+-ATPase were assessed in spontaneously hypertensive rats (SHR) and hereditary cardiomyopathic hamsters using methods ensuring high enzyme recovery. Na+,K+-ATPase was quantified by [3H]ouabain binding to intact myocardial biopsies from patients with aortic valve disease. Aortic stenosis, regurgitation and a combination hereof were compared with normal human heart and were associated with reductions of left ventricular [3H]ouabain binding site concentration (pmol/g wet weight) of 56, 46 and 60%, respectively (p < 0.01). Na+,K+ and Ca2+-ATPases were quantified by K+- and Ca2+-dependent p-nitrophenyl phosphatase (pNPPase) activity determinations in crude myocardial homogenates from SHR and hereditary cardiomyopathic hamsters. When SHR were compared to age-matched Wistar Kyoto (WKY) rats an increase in heart-body weight ratio of 75% (p < 0.001) was associated with reductions of K+- and Ca2+-dependent pNPPase activities (mol/min/g wet weight) of 42 (p < 0.01) and 27% (p < 0.05), respectively. When hereditary cardiomyopathic hamsters were compared to age-matched Syrian hamsters an increase in heart-body weight ratio of 69% (p < 0.001) was found to be associated with reductions in K+- and Ca2+-dependent pNPPase activities of 50 (p < 0.001) and 26% (p = 0.05), respectively. The reductions in Na+,K+- and Ca2+-ATPases were selective in relation to overall protein content and were not merely the outcome of increased myocardial mass relative to Na+,K+- and Ca2+-pumps. In conclusion, myocardial hypertrophy is in patients associated with reduced Na+,K+-ATPase concentration and in rodents with reduced Na+,K+- and Ca2+-ATPase concentrations. This may be of importance for development of heart f in hypertrophic heart disease.  相似文献   

17.
Prolactin has recently been shown to directly stimulate 2 components of the active duodenal calcium transport in female rats, i.e., solvent drag-induced and transcellular-active calcium transport. Since the basolateral Na(+)/K(+)- and Ca(2+)-ATPases, respectively, play important roles in these 2 transport mechanisms, the present study aimed to examine the direct actions of prolactin on the activities of both transporters in sexually mature female Wistar rats. The results showed that 200, 400, and 800 ng/mL prolactin produced a significant increase in the total ATPase activity of duodenal crude homogenate in a dose-dependent manner within 60 min (i.e., from a control value of 1.53 +/- 0.13 to 2.29 +/- 0.21 (p < 0.05), 2.68 +/- 0.19 (p < 0.01), and 3.92 +/- 0.33 (p < 0.001) micromol Pi x (mg protein)(-1) x min(-1), respectively). Activity of Na+/K+-ATPase was increased by 800 ng/mL prolactin from 0.17 +/- 0.03 to 1.18 +/- 0.29 micromol Pi x (mg protein)(-1) x min(-1) (p < 0.01). Prolactin at doses of 400 and 600 ng/mL also significantly increased the activities of Ca(2+)-ATPase in crude homogenate from a control value of 0.84 +/- 0.03 to 1.75 +/- 0.29 (p < 0.05), and 2.30 +/- 0.37 (p < 0.001) micromol Pi x (mg protein)(-1) x min(-1). When the crude homogenate was purified for the basolateral membrane, the Na(+)/K(+)-ATPase activities were elevated 10-fold. In the purified homogenate, 800 ng/mL prolactin increased Na(+)/K(+)-ATPase activity from 1.79 +/- 0.38 to 2.63 +/- 0.44 micromol Pi x (mg protein)(-1) x min(-1) (p < 0.05), and Ca(2+)-ATPase activity from 0.08 +/- 0.14 to 2.03 +/- 0.23 micromol Pi x (mg protein)(-1) x min-1 (p < 0.001). Because the apical calcium entry was the first important step for the transcellular active calcium transport, the brush border calcium uptake was also investigated in this study. We found that, 8 min after being directly exposed to 800 ng/mL prolactin, the brush border calcium uptake into the duodenal epithelial cells was increased from 0.31 +/- 0.02 to 0.80 +/- 0.28 nmol x (mg protein)(-1) (p < 0.05). It was concluded that prolactin directly and rapidly enhanced the brush border calcium uptake as well as the activities of the basolateral Na(+)/K(+)- and Ca(2+)-ATPases in the duodenal epithelium of female rats. These findings explained the mechanisms by which prolactin stimulated duodenal active calcium absorption.  相似文献   

18.
Sidedness of synaptic plasma membrane vesicles isolated from brain synaptosomes has been assessed by two distinct experimental approaches: first, analysis of (Na+ + K+)-ATPase, Mg2+-ATPase, and (Ca2+ + Mg2+)-ATPase activities before and after permeabilization of vesicles; second, analysis of Ca2+ fluxes via the Na+/Ca2+ exchanger, before and after modification of an imposed Na+ gradient by penetrating or nonpenetrating Na+ channel-modifying drugs. 0.05% saponin, which completely permeabilizes the vesicles, increases digitoxigenin-sensitive (Na+ + K+)-ATPase, basal Mg2+-ATPase, and (Ca2+ + Mg2+)-ATPase activities by 51.0, 47.4, and 83.6%, respectively. Saponin increases only the Vmax of the latter activity, the Km for Ca2+ (0.13 microM; the same as that for Ca2+-pumping) being unaltered by saponin. An increment of 20.5% in the Vmax of (Ca2+ + Mg2+)-ATPase activity with 10 microM A23187, reveals that the enzyme activity in nonpermeabilized vesicles is limited by the formation of a Ca2+ gradient. Thus, the saponin-induced increment in (Ca2+ + Mg2+)-ATPase due only to exposure of occluded sites (as opposed to Ca2+ gradient dissipation) is actually 52%, which is similar to values for both other ATPases, and suggests that 32-35% of plasma membranes exist in an inverted orientation. Vesicle orientation was independently assessed by the differential actions of tetrodotoxin (a membrane impermeant blocker) and veratridine (a membrane permeant agonist) on Na+-channel opening measured indirectly by dissipation of an imposed Na+ gradient utilized to drive a large 45Ca2+ accumulation via the Na+/Ca2+ exchanger. Tetrodotoxin reverses 35-44% of veratridine-mediated Na+ gradient-dissipation, the relative membrane-permeability of the two channel modifiers, suggesting that 56-65% of sealed vesicles are inverted. The concurrence of these two independent measurements of vesicle orientation reinforces their validity.  相似文献   

19.
Since the mechanism underlying the insulin stimulation of (Na+,K+)-ATPase transport activity observed in multiple tissues has remained undetermined, we have examined (Na+,K+)-ATPase transport activity (ouabain-sensitive 86Rb+ uptake) and Na+/H+ exchange transport (amiloride-sensitive 22Na+ influx) in differentiated BC3H-1 cultured myocytes as a model of insulin action in muscle. The active uptake of 86Rb+ was sensitive to physiological insulin concentrations (1 nM), yielding a maximum increase of 60% without any change in 86Rb+ permeability. In order to determine the mechanism of insulin stimulation of (Na+,K+)-ATPase activity, we demonstrated that insulin also stimulates passive 22Na+ influx by Na+/H+ exchange transport (maximal 200% increase) and an 80% increase in intracellular Na+ concentration with an identical time course and dose-response curve as insulin-stimulated (Na+,K+)-ATPase transport activity. Incubation of the cells with high [Na+] (195 mM) significantly potentiated insulin stimulation of ouabain-inhibitable 86Rb+ uptake. The ionophore monensin, which also promotes passive Na+ entry into BC3H-1 cells, mimics the insulin stimulation of ouabain-inhibitable 86Rb+ uptake. In contrast, incubation with amiloride or low [Na+] (10 mM), both of which inhibit Na+/H+ exchange transport, abolished the insulin stimulation of (Na+,K+)-ATPase transport activity. Furthermore, each of these insulin-stimulated transport activities displayed a similar sensitivity to amiloride. These results indicate that insulin stimulates a large increase in Na+/H+ exchange transport and that the resulting Na+ influx increases the intracellular Na+ concentration, thus activating the internal Na+ transport sites of the (Na+,K+)-ATPase. This Na+ influx is, therefore, the mediator of the insulin-induced stimulation of membrane (Na+,K+)-ATPase transport activity classically observed in muscle.  相似文献   

20.
A Ca(2+)-ATPase was purified from plasma membranes (PM) isolated from Arabidopsis cultured cells by calmodulin (CaM)-affinity chromatography. Three tryptic fragments from the protein were microsequenced and the corresponding cDNA was amplified by polymerase chain reaction using primers designed from the microsequences of the tryptic fragments. At-ACA8 (Arabidopsis-autoinhibited Ca(2+)-ATPase, isoform 8, accession no. AJ249352) encodes a 1,074 amino acid protein with 10 putative transmembrane domains, which contains all of the characteristic motifs of Ca(2+)-transporting P-type Ca(2+)-ATPases. The identity of At-ACA8p as the PM Ca(2+)-ATPase was confirmed by immunodetection with an antiserum raised against a sequence (valine-17 through threonine-31) that is not found in other plant CaM-stimulated Ca(2+)-ATPases. Confocal fluorescence microscopy of protoplasts immunodecorated with the same antiserum confirmed the PM localization of At-ACA8. At-ACA8 is the first plant PM localized Ca(2+)-ATPase to be cloned and is clearly distinct from animal PM Ca(2+)-ATPases due to the localization of its CaM-binding domain. CaM overlay assays localized the CaM-binding domain of At-ACA8p to a region of the N terminus of the enzyme around tryptophan-47, in contrast to a C-terminal localization for its animal counterparts. Comparison between the sequence of At-ACA8p and those of endomembrane-localized type IIB Ca(2+)-ATPases of plants suggests that At-ACA8 is a representative of a new subfamily of plant type IIB Ca(2+)-ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号