首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transfer RNase colicin D and ionophoric colicin B appropriate the outer membrane iron siderophore receptor FepA and share a common translocation requirement for the TonB pathway to cross the outer membrane. Despite the almost identical sequences of the N-terminal domains required for the translocation of colicins D and B, two spontaneous tonB mutations (Arg158Ser and Pro161Leu) completely abolished colicin D toxicity but did not affect either the sensitivity to other colicins or the FepA-dependent siderophore uptake capacity. The sensitivity to colicin D of both tonB mutants was fully restored by specific suppressor mutations in the TonB box of colicin D, at Ser18(Thr) and Met19(Ile), respectively. This demonstrates that the interaction of colicin D with TonB is critically dependent on certain residues close to position 160 in TonB and on the side chains of certain residues in the TonB box of colicin D. The effect of introducing the TonB boxes from other TonB-dependent receptors and colicins into colicins D and B was studied. The results of these and other changes in the two TonB boxes show that the role of residues at positions 18 and 19 in colicin D is strongly modulated by other nearby and/or distant residues and that the overall function of colicin D is much more dependent on the interaction with TonB involving the TonB box than is the function of colicin B.  相似文献   

2.
Braun V  Patzer SI  Hantke K 《Biochimie》2002,84(5-6):365-380
Ton-dependent colicins and microcins are actively taken up into sensitive cells at the expense of energy which is provided by the proton motive force of the cytoplasmic membrane. The Ton system consisting of the proteins TonB, ExbB and ExbD is required for colicin and microcin import. Colicins as well as the outer membrane transport proteins contain proximal to the N-terminus a short sequence, called TonB box, which interacts with TonB and in which point mutants impair uptake. No TonB box is found in microcins. Colicins are composed of functional modules which during evolution have been interchanged resulting in new colicins. The modules define sites of interaction with the outer membrane transport genes, TonB, the immunity proteins, and the activity regions. Six TonB-dependent microcins with different primary structures are processed and exported by highly homologous proteins. Three of these microcins are modified in an unknown way and they have in common specificity for catecholate siderophore receptors.  相似文献   

3.
Abstract The current model of TonB-dependent colicin transport through the outer membrane of Escherichia coli proposes initial binding to receptor proteins, vectorial release from the receptors and uptake into the periplasm from where the colicins, according to their action, insert into the cytoplasmic membrane or enter the cytoplasm. The uptake is energy-dependent and the TonB protein interacts with the receptors as well as with the colicins. In this paper we have studied the uptake of colicins B and Ia, both pore-forming colicins, into various tonB point mutants. Colicin Ia resistance of the tonB mutant (G186D, R204H) was consistent with a defective Cir receptor-TonB interaction while colicin Ia resistance of E. coli expressing TonB of Serratia marcescens , or TonB of E. coli carrying a C-terminal fragment of the S. marcescens TonB, seemed to be caused by an impaired colicin Ia-TonB interaction. In contrast, E. coli tonB (G174R, V178I) was sensitive to colicin Ia and resistant to colicin B unless TonB, ExbB and ExbD were overproduced which resulted in colicin B sensitivity. The differential effects of tonB mutations indicate differences in the interaction of TonB with receptors and colicins.  相似文献   

4.
E Fischer  K Günter    V Braun 《Journal of bacteriology》1989,171(9):5127-5134
The exb locus in Escherichia coli consists of two genes, termed exbB and exbD. Exb functions are related to TonB function in that most TonB-dependent processes are enhanced by Exb. Like tonB mutants, exb mutants were resistant to colicin M and albomycin but, in contrast to tonB mutants, showed only reduced sensitivity to colicins B and D. Overexpressed tonB on the multicopy vector pACYC177 largely restored the sensitivity of exb mutants to colicins B, D, and M but only marginally increased sensitivity to albomycin. Suppression of the btuB451 mutation in the structural gene for the vitamin B12 outer membrane receptor protein by a mutation in tonB occurred only in an exb+ strain. Degradation of the unstable overproduced TonB protein was prevented by overproduced ExbB protein. The ExbB protein also stabilized the ExbD protein. Pulse-chase experiments with radiolabeled ferrichrome revealed release of ferrichrome from exbB, tonB, and fhuC mutants, showing that ferrichrome had not crossed the cytoplasmic membrane. It is concluded that the ExbB and ExbD proteins contribute to the activity of TonB and, like TonB, are involved in receptor-dependent transport processes across the outer membrane.  相似文献   

5.
The DNA sequence of the colicin M activity gene cma was determined. A polypeptide consisting of 271 amino acids was deduced from the nucleotide sequence. The amino acid sequence agreed with the peptide sequences determined from the isolated colicin. The molecular weight of active colicin M was 29,453. The primary translation product was not processed. In the domain required for uptake into cells, colicin M contained the pentapeptide Glu-Thr-Leu-Thr-Val. A similar sequence was found in all colicins which are taken up by a TonB-dependent mechanism and in outer membrane receptor proteins which are constituents of TonB-dependent transport systems. The structure of colicin M in the carboxy-terminal activity domain had no resemblance to the pore-forming colicins or colicins with endonuclease activity. Instead, the activity domain contained a sequence which exhibited homology to the sequence around the serine residue in the active site of penicillin-binding proteins of Escherichia coli. The colicin M activity gene was regulated from an SOS box upstream of the adjacent colicin B activity gene on the natural plasmid pColBM-Cl139.  相似文献   

6.
Evidence for a TonB-dependent energy transduction complex in Escherichia coli   总被引:27,自引:8,他引:19  
Escherichia coli TonB protein is required for the active transport of vitamin B12 and Fe(III)-siderophore complexes across the outer membrane, infection by bacteriophages T1 and phi 80, and sensitivity to B-group colicins. TonB appears to function as an energy transducer in these processes, coupling cytoplasmic membrane electrochemical potential to receptors in the outer membrane. Previous reports have demonstrated that chromosomally encoded TonB is functionally unstable in the absence of protein synthesis (half-life approximately 15-30 minutes) and have shown that plasmid-encoded, overexpressed TonB is chemically unstable (half-life approximately 5 minutes). In contrast, this study has shown that chromosomally encoded TonB was chemically stable for greater than 90 minutes while maintaining its functional instability. These data suggest that proteolytic degradation of TonB protein is not the basis of its functional instability. Auxiliary proteins such as ExbB also play a role in TonB-dependent energy transduction. In this study, we have shown that the chemical half-life of chromosomally encoded TonB in an exbB::Tn10 mutant was reduced at least 18-fold, suggesting that TonB is a part of a cytoplasmic membrane complex that includes, at the minimum, ExbB.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The nucleotide sequence of a 2.4 kb Dral-EcoRV fragment of pColD-CA23 DNA was determined. The segment of DNA contained the colicin D structural gene (cda) and the colicin D immunity gene (cdi). From the nucleotide sequence it was deduced that colicin D had a molecular weight of 74683D and that the immunity protein had a molecular weight of 10057D. The amino-terminal portion of colicin D was found to be 96% homologous with the same region of colicin B. Both colicins share the same cell-surface receptor, FepA, and require the TonB protein for uptake. A putative TonB box pentapeptide sequence was identified in the amino terminus of the colicin D protein sequence. Since colicin D inhibits protein synthesis, it was unexpected that no homology was found between the carboxy-terminal part of this colicin and that of the protein synthesis inhibiting colicin E3 and cloacin DF13. This could indicate that colicin D does not function in the same manner as the latter two bacteriocins. The observed homology with colicin B supports the domain structure concept of colicin organization. The structural organization of the colicin operon is discussed. The extensive amino-terminal homology between colicins D and B, and the strong carboxy-terminal homology between colicins B, A, and N suggest an evolutionary assembly of colicin genes from a few DNA fragments which encode the functional domains responsible for colicin activity and uptake.  相似文献   

8.
Uptake of cobalamins by the transporter protein BtuB in the outer membrane of Escherichia coli requires the proton motive force and the transperiplasmic protein TonB. The Ton box sequence near the amino terminus of BtuB is conserved among all TonB-dependent transporters and is the only known site of mutations that confer a transport-defective phenotype which can be suppressed by certain substitutions at residue 160 in TonB. The crystallographic structures of the TonB-dependent transporter FhuA revealed that the region near the Ton box, which itself was not resolved, is exposed to the periplasmic space and undergoes an extensive shift in position upon binding of substrate. Site-directed disulfide bonding in intact cells has been used to show that the Ton box of BtuB and residues around position 160 of TonB approach each other in a highly oriented and specific manner to form BtuB-TonB heterodimers that are stimulated by the presence of transport substrate. Here, replacement of Ton box residues with proline or cysteine revealed that residue side chain recognition is not important for function, although replacement with proline at four of the seven Ton box positions impaired cobalamin transport. The defect in cobalamin utilization resulting from the L8P substitution was suppressed by cysteine substitutions in adjacent residues in BtuB or in TonB. This suppression did not restore active transport of cobalamins but may allow each transporter to function at most once. The uncoupled proline substitutions in BtuB markedly affected the pattern of disulfide bonding to TonB, both increasing the extent of cross-linking and shifting the pairs of residues that can be joined. Cross-linking of BtuB and TonB in the presence of the BtuB V10P substitution became independent of the presence of substrate, indicating an additional distortion of the exposure of the Ton box in the periplasmic space. TonB action thus requires a specific orientation for functional contact with the Ton box, and changes in the conformation of this region block transport by preventing substrate release and repeated transport cycles.  相似文献   

9.
Transport of molecules larger than 600 Da across the outer membrane involves TonB-dependent receptors and TonB-ExbB-ExbD of the inner membrane. The transport is energy consuming, and involves direct interactions between a short N-terminal sequence of receptor, called the TonB box, and TonB. We solved the structure of the ferric pyoverdine (Pvd-Fe) outer membrane receptor FpvA from Pseudomonas aeruginosa in its apo form. Structure analyses show that residues of the TonB box are in a beta strand which interacts through a mixed four-stranded beta sheet with the periplasmic signaling domain involved in interactions with an inner membrane sigma regulator. In this conformation, the TonB box cannot form a four-stranded beta sheet with TonB. The FhuA-TonB or BtuB-TonB structures show that the TonB-FpvA interactions require a conformational change which involves a beta strand lock-exchange mechanism. This mechanism is compatible with movements of the periplasmic domain deduced from crystallographic analyses of FpvA, FpvA-Pvd, and FpvA-Pvd-Fe.  相似文献   

10.
Recent reports demonstrated that the energy-dependent step of vitamin B12 uptake into cells of Escherichia coli rapidly declines after cessation either of the expression of the tonB gene or of general protein synthesis. It is shown here that inhibition of protein synthesis results in the decline, with similar kinetics, of all tonB-dependent processes, including sensitivity to colicins B and Ia, irreversible adsorption of phage phi80, and siderophore-mediated iron uptake. The role of ongoing TonB-dependent reactions on this lability of TonB function was investigated. Ferrichrome and the enterochelin precursor, 2,3-dihydroxybenzoate, caused both a moderate depression of B12 uptake activity in growing cells (reversed upon removal of the siderophore) and an acceleration of the loss of activity following inhibition of protein synthesis by addition of spectinomycin. Strains lacking the tonB-dependent siderophore uptake systems did not show these responses. The results suggest the consumption of tonB product during its action.  相似文献   

11.
The TonB protein plays a key role in the energy-coupled transport of iron siderophores, of vitamin B12, and of colicins of the B-group across the outer membrane of Escherichia coli. In order to obtain more data about which of its particular amino acid sequences are necessary for TonB function, we have cloned and sequenced the tonB gene of Serratia marcescens. The nucleotide sequence predicts an amino acid sequence of 247 residues (Mr 27,389), which is unusually proline-rich and contains the tandem sequences (Glu-Pro)5 and (Lys-Pro)5. In contrast to the TonB proteins of E. coli and Salmonella typhimurium, translation of the S. marcescens TonB protein starts at the first methionine residue of the open reading frame, which is the only amino acid removed during TonB maturation and export. Only the N-terminal sequence is hydrophobic, suggesting its involvement in anchoring the TonB protein to the cytoplasmic membrane. The S. marcescens tonB gene complemented an E. coli tonB mutant with regard to uptake of iron siderophores, and sensitivity to phages T1 and phi 80, and to colicins B and M. However, an E. coli tonB mutant transformed with the S. marcescens tonB gene remained resistant to colicins Ia and Ib, to colicin B derivatives carrying the amino acid replacements Val/Ala and Val/Gly at position 20 in the TonB box, and they exhibited a tenfold lower activity with colicin D. In addition, the S. marcescens TonB protein did not restore T1 sensitivity of an E. coli exbB tolQ double mutant, as has been found for the overexpressed E. coli TonB protein, indicating a lower activity of the S. marcescens TonB protein. Although the S. marcescens TonB protein was less prone to proteolytic degradation, it was stabilized in E. coli by the ExbBD proteins. In E. coli, TonB activity of S. marcescens depended either on the ExbBD or the TolQR activities.  相似文献   

12.
In gram-negative organisms, high-affinity transport of iron substrates requires energy transduction to specific outer membrane receptors by the TonB-ExbB-ExbD complex. Vibrio cholerae encodes two TonB proteins, one of which, TonB1, recognizes only a subset of V. cholerae TonB-dependent receptors and does not facilitate transport through Escherichia coli receptors. To investigate the receptor specificity exhibited by V. cholerae TonB1, chimeras were created between V. cholerae TonB1 and E. coli TonB. The activities of the chimeric TonB proteins in iron utilization assays demonstrated that the C-terminal one-third of either TonB confers the receptor specificities associated with the full-length TonB. Single-amino-acid substitutions near the C terminus of V. cholerae TonB1 were identified that allowed TonB1 to recognize E. coli receptors and at least one V. cholerae TonB2-dependent receptor. This indicates that the very C-terminal end of V. cholerae TonB1 determines receptor specificity. The regions of the TonB-dependent receptors involved in specificity for a particular TonB protein were investigated in experiments involving domain switching between V. cholerae and E. coli receptors exhibiting different TonB specificities. Switching the conserved TonB box heptapeptides at the N termini of these receptors did not alter their TonB specificities. However, replacing the amino acid immediately preceding the TonB box in E. coli receptors with an aromatic residue allowed these receptors to use V. cholerae TonB1. Further, site-directed mutagenesis of the TonB box -1 residue in a V. cholerae TonB2-dependent receptor demonstrated that a large hydrophobic amino acid in this position promotes recognition of V. cholerae TonB1. These data suggest that the TonB box -1 position controls productive interactions with V. cholerae TonB1.  相似文献   

13.
Uptake of cobalamins and iron chelates in Escherichia coli K-12 is dependent on specific outer membrane transport proteins and the energy-coupling function provided by the TonB protein. The btuB product is the outer membrane receptor for cobalamins, bacteriophage BF23, and the E colicins. A short sequence near the amino terminus of mature BtuB, previously called the TonB box, is conserved in all tonB-dependent receptors and colicins and is the site of the btuB451 mutation (Leu-8----Pro), which prevents energy-coupled cobalamin uptake. This phenotype is partially suppressed by certain mutations in tonB. To examine the role of individual amino acids in the TonB box of BtuB, more than 30 amino acid substitutions in residues 6 to 13 were generated by doped oligonucleotide-directed mutagenesis. Many of the mutations affecting each amino acid did not impair transport activity, although some substitutions reduced cobalamin uptake and the Leu-8----Pro and Val-10----Gly alleles were completely inactive. To test whether the btuB451 mutation affects only cobalamin transport, a hybrid gene was constructed which encodes the signal sequence and first 39 residues of BtuB fused to the bulk of the ferrienterobactin receptor FepA (residues 26 to 723). This hybrid protein conferred all FepA functions but no BtuB functions. The presence of the btuB451 mutation in this fusion gene eliminated all of its tonB-coupled reactions, showing that the TonB box of FepA could be replaced by that from BtuB. These results suggest that the TonB-box region of BtuB is involved in active transport in a manner dependent not on the identity of specific side chains but on the local secondary structure.  相似文献   

14.
15.
The ability of Escherichia coli to kill other E. coli using protein antibiotics known as colicins has been known for many years, but the mechanisms involved poorly understood. Recent progress has been rapid, however, particularly concerning events on either side of the outer membrane (OM). Structures of colicins bound to OM receptors have been determined and we have detailed mechanistic information on how colicins subvert the periplasmic complexes of TolQRAB/Pal or TonB/ExbB/ExbD to trigger cell entry. In this issue of Molecular Microbiology, Jakes and Finkelstein answer a long‐standing problem concerning the uptake mechanism of the pore‐forming colicin ColIa: How does the TonB box of the colicin cross the OM following high‐affinity binding of ColIa to its primary receptor, the siderophore transporter Cir? Through a series of chimeric protein constructions tested for their activity against a range of mutants and in cell death protection assays, the authors come up with the surprising observation that following binding of ColIa to Cir it recruits another Cir protein as its OM translocator. Not only does this settle various conundrums in the literature, but the translocation mechanism that stems from their study will likely be applicable to many TonB‐dependent colicins.  相似文献   

16.
The ability of gram-negative bacterial cells to transport cobalamin and iron-siderophore complexes and their susceptibility to killing by some bacteriophages and colicins are characteristics routinely used to assay mutations of proteins in the TonB-dependent energy transduction system. These assays vary greatly in sensitivity and are subject to perturbation by overexpression of TonB and, perhaps, other proteins that contribute to the process. Thus, the choice of assay and the means by which a potential mutant is expressed can greatly influence the interpretation and recognition of a given mutant. In the present study, we expressed TonB at several different quantified levels in cells that were then subjected to a panel of assays. Our results suggest that it is reasonable to regard the assays as having windows of sensitivity. Thus, while no single assay satisfactorily spans the potential range of TonB activity, it is evident that certain assays are better suited for resolving small deviations from wild-type levels of activity, with others most useful when activity levels are very low. It is apparent from the results that the application of all possible assays to the characterization of new mutants will yield the most meaningful results.  相似文献   

17.
Summary The tonB gene is required for energy-dependent transport processes across the outer membrane of gram-negative bacteria. Using the antibiotics albomycin and ferrimycin, a tonB mutant of Yersinia enterocolitica was isolated. Comparison of the tonB mutant with the parent strain revealed that in Y. enterocolitica the uptake of ferrioxamine, ferrichrome, pesticin and heme is TonB-dependent. The tonB gene from Y. enterocolitica was sequenced and found to be similar to those of other Enterobacteria. The Y. enterocolitica tonB gene complemented a Y. enterocolitica tonB mutant. In contrast, some Tong functions of an Escherichia coli tonB mutant were not restored by the tonB gene of Y. enterocolitica. The observed differences in the ability to complement E. coli Tong functions correlated with the degree to which the Tong boxes of the receptors and colicins differed from the TonB box consensus sequence. Furthermore, the N-terminal membrane anchor of the TonB proteins and the TolA protein are likely to form an -helix with an identical sequence motif (SHLS) located at one face of the a-helix, suggesting this region to be involved in the functional cross-talk between the TonB-ExbBD-and TolABQR-dependent transport systems across the outer membrane.  相似文献   

18.
Genetics of the iron dicitrate transport system of Escherichia coli.   总被引:43,自引:23,他引:20       下载免费PDF全文
Escherichia coli B and K-12 express a citrate-dependent iron(III) transport system for which three structural genes and their arrangement and products have been determined. The fecA gene of E. coli B consists of 2,322 nucleotides and encodes a polypeptide containing a signal sequence of 33 amino acids. The cleavage site was determined by amino acid sequence analysis of the unprocessed protein and the mature protein. For the processed form a length of 741 amino acids was calculated. The mature FecA protein in the outer membrane contains at the N terminus the "TonB box," a pentapeptide, which has hitherto been found in all receptors and colicins which functionally require the TonB protein. In addition, the dyad repeat sequence GAAAATAATTCTTATTTCG is proposed to serve as the binding site of the Fur iron repressor protein. The fecB gene was mapped downstream of fecA and encodes a protein with an apparent molecular weight of 30,000. It was synthesized as a precursor, and the mature form was found in the periplasm. The fecD gene follows fecB and was related to a membrane-bound protein with an apparent molecular weight of 28,000. In Mu d1 insertion mutants upstream of fecA, the fec genes were not inducible by iron limitation and citrate, indicating a regulatory region, termed fecI, which controls fec gene expression.  相似文献   

19.
Colicin B (55 kDa) is a cytotoxic protein that recognizes the outer membrane transporter, FepA, as a receptor and, after gaining access to the cytoplasmic membranes of sensitive Escherichia coli cells, forms a pore that depletes the electrochemical potential of the membrane and ultimately results in cell death. To begin to understand the series of dynamic conformational changes that must occur as colicin B translocates from outer membrane to cytoplasmic membrane, we report here the crystal structure of colicin B at 2.5 A resolution. The crystal belongs to the space group C2221 with unit cell dimensions a = 132.162 A, b = 138.167 A, c = 106.16 A. The overall structure of colicin B is dumbbell shaped. Unlike colicin Ia, the only other TonB-dependent colicin crystallized to date, colicin B does not have clearly structurally delineated receptor-binding and translocation domains. Instead, the unique N-terminal lobe of the dumbbell contains both domains and consists of a large (290 residues), mostly beta-stranded structure with two short alpha-helices. This is followed by a single long ( approximately 74 A) helix that connects the N-terminal domain to the C-terminal pore-forming domain, which is composed of 10 alpha-helices arranged in a bundle-type structure, similar to the pore-forming domains of other colicins. The TonB box sequence at the N-terminus folds back to interact with the N-terminal lobe of the dumbbell and leaves the flanking sequences highly disordered. Comparison of sequences among many colicins has allowed the identification of a putative receptor-binding domain.  相似文献   

20.
TonB-gated transporters have beta-barrels containing an amino-terminal globular domain that occludes the interior of the barrel. Mutations in the globular domain prevent transport of ligands across the outer membrane. Surprisingly, FepA with deletions of the globular domain (amino acids 3 to 150 and 17 to 150) was previously reported to retain significant sensitivity to colicins B and D and to use ferric enterochelin, all in a TonB-dependent fashion. To further understand TonB interaction with the beta-barrel, in the present study, proteins with deletions of amino acids 1 to 152, 7 to 152, 20 to 152, and 17 to 150 in fepA were constructed and expressed in a deltafepA strain. In contrast to previous studies of fepA globular domain deletions, constructs in this study did not retain sensitivity to colicin B and conferred only marginal sensitivity to colicin D. Consistent with these observations, they failed to bind colicin B and detectably cross-link to TonB in vivo. To address this discrepancy, constructs were tested in other strains, one of which (RWB18-60) did support activity of the FepA globular domain deletion proteins constructed in this study. The characteristics of that strain, as well as the strain in which the deltaFhuA globular domain mutants were seen to be active, suggests the hypothesis that interprotein complementation by two individually nonfunctional proteins restores TonB-dependent activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号