首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The high number of quaternary structures observed for lectins highlights the important role of these oligomeric assemblies during carbohydrate recognition events. Although a large diversity in the mode of association of lectin subunits is frequently observed, the oligomeric assemblies of plant lectins display small variations within a single family. The crystal structure of the mannose-binding jacalin-related lectin from Calystegia sepium (Calsepa) has been determined at 1.37-A resolution. Calsepa exhibits the same beta-prism fold as identified previously for other members of the family, but the shape and the hydrophobic character of its carbohydrate-binding site is unlike that of other members, consistent with surface plasmon resonance analysis showing a preference for methylated sugars. Calsepa reveals a novel dimeric assembly markedly dissimilar to those described earlier for Heltuba and jacalin but mimics the canonical 12-stranded beta-sandwich dimer found in legume lectins. The present structure exemplifies the adaptability of the beta-prism building block in the evolution of plant lectins and highlights the biological role of these quaternary structures for carbohydrate recognition.  相似文献   

2.
The seeds of jack fruit (Artocarpus integrifolia) contain two tetrameric lectins, jacalin and artocarpin. Jacalin was the first lectin found to exhibit the beta-prism I fold, which is characteristic of the Moraceae plant lectin family. Jacalin contains two polypeptide chains produced by a post-translational proteolysis which has been shown to be crucial for generating its specificity for galactose. Artocarpin is a single chain protein with considerable sequence similarity with jacalin. It, however, exhibits many properties different from those of jacalin. In particular, it is specific to mannose. The structures of two crystal forms, form I and form II, of the native lectin have been determined at 2.4 and 2.5 A resolution, respectively. The structure of the lectin complexed with methyl-alpha-mannose, has also been determined at 2.9 A resolution. The structure is similar to jacalin, although differences exist in details. The crystal structures and detailed modelling studies indicate that the following differences between the carbohydrate binding sites of artocarpin and jacalin are responsible for the difference in the specificities of the two lectins. Firstly, artocarpin does not contain, unlike jacalin, an N terminus generated by post-translational proteolysis. Secondly, there is no aromatic residue in the binding site of artocarpin whereas there are four in that of jacalin. A comparison with similar lectins of known structures or sequences, suggests that, in general, stacking interactions with aromatic residues are important for the binding of galactose while such interactions are usually absent in the carbohydrate binding sites of mannose-specific lectins with the beta-prism I fold.  相似文献   

3.
Mannose-specific lectins are widely distributed in higher plants and are believed to play a role in recognition of high-mannose type glycans of foreign micro-organisms or plant predators. Structural studies have demonstrated that the mannose-binding specificity of lectins is mediated by distinct structural scaffolds. The mannose/glucose-specific legume (e.g., Con A, pea lectin) exhibit the canonical twelve-stranded beta-sandwich structure. In contrast to legume lectins that interact with both mannose and glucose, the monocot mannose-binding lectins (e.g., the Galanthus nivalis agglutinin or GNA from bulbs) react exclusively with mannose and mannose-containing N-glycans. These lectins possess a beta-prism structure. More recently, an increasing number of mannose-specific lectins structurally related to jacalin (e.g., the lectins from the Jerusalem artichoke, banana or rice), which also exhibit a beta-prism organization, were characterized. Jacalin itself was re-defined as a polyspecific lectin which, in addition to galactose, also interacts with mannose and mannose-containing glycans. Finally the B-chain of the type II RIP of iris, which has the same beta-prism structure as all other members of the ricin-B family, interacts specifically with mannose and galactose. This structural diversity associated with the specific recognition of high-mannose type glycans highlights the importance of mannose-specific lectins as recognition molecules in higher plants.  相似文献   

4.
The crystal structure of a Man/Glc-specific lectin from the seeds of the bloodwood tree (Pterocarpus angolensis), a leguminous plant from central Africa, has been determined in complex with mannose and five manno-oligosaccharides. The lectin contains a classical mannose-specificity loop, but its metal-binding loop resembles that of lectins of unrelated specificity from Ulex europaeus and Maackia amurensis. As a consequence, the interactions with mannose in the primary binding site are conserved, but details of carbohydrate-binding outside the primary binding site differ from those seen in the equivalent carbohydrate complexes of concanavalin A. These observations explain the differences in their respective fine specificity profiles for oligomannoses. While Man(alpha1-3)Man and Man(alpha1-3)[Man(alpha1-6)]Man bind to PAL in low-energy conformations identical with that of ConA, Man(alpha1-6)Man is required to adopt a different conformation. Man(alpha1-2)Man can bind only in a single binding mode, in sharp contrast to ConA, which creates a higher affinity for this disaccharide by allowing two binding modes.  相似文献   

5.
IL-2, a lectin with specificity for high mannose glycopeptides   总被引:6,自引:0,他引:6  
Utilizing a solid phase binding assay, we have demonstrated that rIL-2 binds with high affinity to the human urinary glycoprotein uromodulin. This binding is specifically inhibited by the saccharides diacetylchitobiose and Man(alpha 1-3)(Man(alpha 1-6]Man-O-methyl and by the high mannose glycopeptides Man5GlcNAc2-R and Man6GlcNAc2-R, but not by Man9GlcNAc2-R. rIL-2 also binds OVA, a glycoprotein which contains approximately 50% high mannose chains at a single glycosylation site, and to yeast mannan. This binding is inhibited by the same battery of saccharides which inhibit the binding to uromodulin. The conclusion that rIL-2 is a lectin is further supported by the observation that the sequence of IL-2 shares 27% homology with a 33-residue sequence of the carbohydrate-binding domain of human mannose-binding protein. The potential physiologic relevance of the carbohydrate binding activity is further elucidated by studies which show that 1) binding of soluble rIL-2 to immobilized uromodulin is enhanced at a pH of 4 to5 in the presence of divalent cations, and 2) neither uromodulin nor the high mannose glycopeptide Man5GlcNAc2Asn blocks the binding of rIL-2 to the IL-2R. Thus the carbohydrate-binding site of rIL-2 is distinct from the cell surface receptor-binding site, and might function preferentially in acidic microenvironments.  相似文献   

6.
The crystal structures of concanavalin A in complex with Man(alpha1-6)Man(alpha1-O)Me and Man(alpha1-3)Man(alpha1-O)Me were determined at resolutions of 2.0 and 2.8 A, respectively. In both structures, the O-1-linked mannose binds in the conserved monosaccharide-binding site. The O-3-linked mannose of Man(alpha1-3)Man(alpha1-O)Me binds in the hydrophobic subsite formed by Tyr-12, Tyr-100, and Leu-99. The shielding of a hydrophobic surface is consistent with the associated large heat capacity change. The O-6-linked mannose of Man(alpha1-6)Man(alpha1-O)Me binds in the same subsite formed by Tyr-12 and Asp-16 as the reducing mannose of the highly specific trimannose Man(alpha1-3)[Man(alpha1-6)]Man(alpha1-O)Me. However, it is much less tightly bound. Its O-2 hydroxyl makes no hydrogen bond with the conserved water 1. Water 1 is present in all the sugar-containing concanavalin A structures and increases the complementarity between the protein-binding surface and the sugar, but is not necessarily a hydrogen-bonding partner. A water analysis of the carbohydrate-binding site revealed a conserved water molecule replacing O-4 on the alpha1-3-linked arm of the trimannose. No such water is found for the reducing or O-6-linked mannose. Our data indicate that the central mannose of Man(alpha1-3)[Man(alpha1-6)]Man(alpha1-O)Me primarily functions as a hinge between the two outer subsites.  相似文献   

7.
The structures of MornigaM and the MornigaM-mannose complex have been determined at 1.8 A and 2.0 A resolution, respectively. Both structures adopt the typical beta-prism motif found in other jacalin-related lectins and their tetrameric assembly closely resembles that of jacalin. The carbohydrate-binding cavity of MornigaM readily binds mannose. No major structural rearrangements can be observed in MornigaM upon binding of mannose. These results allow corroboration of the structure-function relationships within the small group of Moraceae lectins.  相似文献   

8.
The crystal structure of Pterocarpus angolensis lectin is determined in its ligand-free state, in complex with the fucosylated biantennary complex type decasaccharide NA2F, and in complex with a series of smaller oligosaccharide constituents of NA2F. These results together with thermodynamic binding data indicate that the complete oligosaccharide binding site of the lectin consists of five subsites allowing the specific recognition of the pentasaccharide GlcNAc beta(1-2)Man alpha(1-3)[GlcNAc beta(1-2)Man alpha(1-6)]Man. The mannose on the 1-6 arm occupies the monosaccharide binding site while the GlcNAc residue on this arm occupies a subsite that is almost identical to that of concanavalin A (con A). The core mannose and the GlcNAc beta(1-2)Man moiety on the 1-3 arm on the other hand occupy a series of subsites distinct from those of con A.  相似文献   

9.
The crystal structure of the seed lectin from the tropical legume Bowringia milbraedii was determined in complex with the disaccharide ligand Man(alpha1-2)Man. In solution, the protein exhibits a dynamic dimer-tetramer equilibrium, consistent with the concanavalin A-type tetramer observed in the crystal. Contacts between the tetramers are mediated almost exclusively through the carbohydrate ligand, resulting in a crystal lattice virtually identical to that of the concanavalin-A:Man(alpha1-2)Man complex, even though both proteins have less than 50% sequence identity. The disaccharide binds exclusively in a "downstream" binding mode, with the non-reducing mannose occupying the monosaccharide-binding site. The reducing mannose is bound in a predominantly polar subsite involving Tyr131, Gln218, and Tyr219.  相似文献   

10.
Codakine is an abundant 14-kDa mannose-binding C-type lectin isolated from the gills of the sea bivalve Codakia orbicularis. Binding studies using inhibition of hemagglutination indicated specificity for mannose and fucose monosaccharides. Further experiments using a glycan array demonstrated, however, a very fine specificity for N-linked biantennary complex-type glycans. An unusually high affinity was measured by titration microcalorimetry performed with a biantennary Asn-linked nonasaccharide. The crystal structure of the native lectin at 1.3A resolution revealed a new type of disulfide-bridged homodimer. Each monomer displays three intramolecular disulfide bridges and contains only one calcium ion located in the canonical binding site that is occupied by a glycerol molecule. The structure of the complex between Asn-linked nonasaccharide and codakine has been solved at 1.7A resolution. All residues could be located in the electron density map, except for the capping beta1-4-linked galactosides. The alpha1-6-linked mannose binds to calcium by coordinating the O3 and O4 hydroxyl groups. The GlcNAc moiety of the alpha1,6 arm engages in several hydrogen bonds with the protein, whereas the GlcNAc on the other antenna is stacked against Trp(108), forming an extended binding site. This is the first structural report for a bivalve lectin.  相似文献   

11.
The beta-prism II fold lectins of known structure, all from monocots, invariably have three carbohydrate-binding sites in each subunit/domain. Until recently, beta-prism I fold lectins of known structure were all from dicots and they exhibited one carbohydrate-binding site per subunit/domain. However, the recently determined structure of the beta-prism fold I lectin from banana, a monocot, has two very similar carbohydrate-binding sites. This prompted a detailed analysis of all the sequences appropriate for two-lectin folds and which carry one or more relevant carbohydrate-binding motifs. The very recent observation of a beta-prism I fold lectin, griffthsin, with three binding sites in each domain further confirmed the need for such an analysis. The analysis demonstrates substantial diversity in the number of binding sites unrelated to the taxonomical position of the plant source. However, the number of binding sites and the symmetry within the sequence exhibit reasonable correlation. The distribution of the two families of beta-prism fold lectins among plants and the number of binding sites in them, appear to suggest that both of them arose through successive gene duplication, fusion and divergent evolution of the same primitive carbohydrate-binding motif involving a Greek key. Analysis with sequences in individual Greek keys as independent units lends further support to this conclusion.It would seem that the preponderance of three carbohydrate-binding sites per domain in monocot lectins, particularly those with the beta-prism II fold, is related to the role of plant lectins in defence.  相似文献   

12.
The three-dimensional structure of a 244-residue, multivalent, fetuin-binding lectin, SCAfet, isolated from bluebell (Scilla campanulata) bulbs, has been solved at 3.3 A resolution by molecular replacement using the coordinates of the 119-residue, mannose-binding lectin, SCAman, also from bluebell bulbs. Unlike most monocot mannose-binding lectins, such as Galanthus nivalis agglutinin from snowdrop bulbs, which fold into a single domain, SCAfet contains two domains with approximately 55% sequence identity, joined by a linker peptide. Both domains are made up of a 12-stranded beta-prism II fold, with three putative carbohydrate-binding sites, one on each subdomain. SCAfet binds to the complex saccharides of various animal glycoproteins but not to simple sugars.  相似文献   

13.
Jacalin, a tetrameric lectin, is one of the two lectins present in jackfruit (Artocarpus integrifolia) seeds. Its crystal structure revealed, for the first time, the occurrence of the beta-prism I fold in lectins. The structure led to the elucidation of the crucial role of a new N terminus generated by post-translational proteolysis for the lectin's specificity for galactose. Subsequent X-ray studies on other carbohydrate complexes showed that the extended binding site of jacalin consisted of, in addition to the primary binding site, a hydrophobic secondary site A composed of aromatic residues and a secondary site B involved mainly in water-bridges. A recent investigation involving surface plasmon resonance and the X-ray analysis of a methyl-alpha-mannose complex, had led to a suggestion of promiscuity in the lectin's sugar specificity. To explore this suggestion further, detailed isothermal titration calorimetric studies on the interaction of galactose (Gal), mannose (Man), glucose (Glc), Me-alpha-Gal, Me-alpha-Man, Me-alpha-Glc and other mono- and oligosaccharides of biological relevance and crystallographic studies on the jacalin-Me-alpha-Glc complex and a new form of the jacalin-Me-alpha-Man complex, have been carried out. The binding affinity of Me-alpha-Man is 20 times weaker than that of Me-alpha-Gal. The corresponding number is 27, when the binding affinities of Gal and Me-alpha-Gal, and those of Man and Me-alpha-Man are compared. Glucose (Glc) shows no measurable binding, while the binding affinity of Me-alpha-Glc is slightly less than that of Me-alpha-Man. The available crystal structures of jacalin-sugar complexes provide a convincing explanation for the energetics of binding in terms of interactions at the primary binding site and secondary site A. The other sugars used in calorimetric studies show no detectable binding to jacalin. These results and other available evidence suggest that jacalin is specific to O-glycans and its affinity to N-glycans is extremely weak or non-existent and therefore of limited value in processes involving biological recognition.  相似文献   

14.
The crystal structure of a β-prism II (BP2) fold lectin from Remusatia vivipara, a plant of traditional medicinal value, has been determined at a resolution of 2.4??. This lectin (RVL, Remusatia vivipara lectin) is a dimer with each protomer having two distinct BP2 domains without a linker between them. It belongs to the "monocot mannose-binding" lectin family, which consists of proteins of high sequence and structural similarity. Though the overall tertiary structure is similar to that of lectins from snowdrop bulbs and garlic, crucial differences in the mannose-binding regions and oligomerization were observed. Unlike most of the other structurally known proteins in this family, only one of the three carbohydrate recognition sites (CRSs) per BP2 domain is found to be conserved. RVL does not recognize simple mannose moieties. RVL binds to only N-linked complex glycans like those present on the gp120 envelope glycoprotein of HIV and mannosylated blood proteins like fetuin, but not to simple mannose moieties. The molecular basis for these features and their possible functional implications to understand the different levels of carbohydrate affinities in this structural family have been investigated through structure analysis, modeling and binding studies. Apart from being the first structure of a lectin to be reported from the Araceae/Arum family, this protein also displays a novel mode of oligomerization among BP2 lectins.  相似文献   

15.
The crystal structures of the apo and mannose-bound Parkia platycephala seed lectin represent the first structure of a Mimosoideae lectin and a novel circular arrangement of beta-prism domains, and highlight the adaptability of the beta-prism fold as a building block in the evolution of plant lectins. The P.platycephala lectin is a dimer both in solution and in the crystals. Mannose binding to each of the three homologous carbohydrate-recognition domains of the lectin occurs through different modes, and restrains the flexibility of surface-exposed loops and residues involved in carbohydrate recognition. The planar array of carbohydrate-binding sites on the rim of the toroid-shaped structure of the P.platycephala lectin dimer immediately suggests a mechanism to promote multivalent interactions leading to cross-linking of carbohydrate ligands as part of the host strategy against phytopredators and pathogens. The cyclic structure of the P.platycephala lectin points to the convergent evolution of a structural principle for the construction of lectins involved in host defense or in attacking other organisms.  相似文献   

16.
Lectins are carbohydrate-binding proteins widely used in biochemical, immunochemical, and histochemical studies. Bauhinia purpurea lectin (BPA) is a leguminous lectin with an affinity for galactose and lactose. Nine amino acids, DTWPNTEWS, corresponding to the amino acid sequence from aspartic acid-135 to serine-143 in the primary structure of BPA were replaced with the corresponding amino acid residues from the mannose-binding Lens culinaris lectin (LCA), and the chimeric lectin obtained was expressed in Escherichia coli cells. The carbohydrate-binding specificity of the recombinant chimeric lectin was investigated in detail by comparing the elution profiles of various glycopeptides and oligosaccharides with defined carbohydate structures from immobilized lectin columns. Glycopeptides carrying three constitutive carbohydrate sequences of Galbeta1-3GalNAc-Ser/Thr and a complex-type biantennary glycopeptide, which show a high affinity for BPA or LCA, were shown to have no affinity for the chimeric lectin. In contrast, hybrid-type and high mannose-type glycopeptides with a Manalpha1-6(Manalpha1-3)Manalpha1-6Man sequence were found to have a moderate affinity for the chimeric lectin. This result demonstrates that a novel type of lectin with a unique carbohydrate-binding specificity can be constructed from BPA by substituting several amino acid residues in its metal-binding region with other amino acid residues. Additional lectin(s) with distinctly different carbohydrate-binding specificities will provide a powerful tool for many studies.  相似文献   

17.
The complete amino acid sequence of the lectin KM+ from Artocarpus integrifolia (jackfruit), which contains 149 residues/mol, is reported and compared to those of other members of the Moraceae family, particularly that of jacalin, also from jackfruit, with which it shares 52% sequence identity. KM+ presents an acetyl-blocked N-terminus and is not posttranslationally modified by proteolytic cleavage as is the case for jacalin. Rather, it possesses a short, glycine-rich linker that unites the regions homologous to the alpha- and beta-chains of jacalin. The results of homology modeling implicate the linker sequence in sterically impeding rotation of the side chain of Asp141 within the binding site pocket. As a consequence, the aspartic acid is locked into a conformation adequate only for the recognition of equatorial hydroxyl groups on the C4 epimeric center (alpha-D-mannose, alpha-D-glucose, and their derivatives). In contrast, the internal cleavage of the jacalin chain permits free rotation of the homologous aspartic acid, rendering it capable of accepting hydrogen bonds from both possible hydroxyl configurations on C4. We suggest that, together with direct recognition of epimeric hydroxyls and the steric exclusion of disfavored ligands, conformational restriction of the lectin should be considered to be a new mechanism by which selectivity may be built into carbohydrate binding sites. Jacalin and KM+ adopt the beta-prism fold already observed in two unrelated protein families. Despite presenting little or no sequence similarity, an analysis of the beta-prism reveals a canonical feature repeatedly present in all such structures, which is based on six largely hydrophobic residues within a beta-hairpin containing two classic-type beta-bulges. We suggest the term beta-prism motif to describe this feature.  相似文献   

18.
The crystal structure of a complex of methyl-alpha-D-mannoside with banana lectin from Musa paradisiaca reveals two primary binding sites in the lectin, unlike in other lectins with beta-prism I fold which essentially consists of three Greek key motifs. It has been suggested that the fold evolved through successive gene duplication and fusion of an ancestral Greek key motif. In other lectins, all from dicots, the primary binding site exists on one of the three motifs in the three-fold symmetric molecule. Banana is a monocot, and the three motifs have not diverged enough to obliterate sequence similarity among them. Two Greek key motifs in it carry one primary binding site each. A common secondary binding site exists on the third Greek key. Modelling shows that both the primary sites can support 1-2, 1-3, and 1-6 linked mannosides with the second residue interacting in each case primarily with the secondary binding site. Modelling also readily leads to a bound branched mannopentose with the nonreducing ends of the two branches anchored at the two primary binding sites, providing a structural explanation for the lectin's specificity for branched alpha-mannans. A comparison of the dimeric banana lectin with other beta-prism I fold lectins, provides interesting insights into the variability in their quaternary structure.  相似文献   

19.
The molecular structure and carbohydrate-binding activity of the lectin from bulbs of spring crocus (Crocus vernus) has been determined unambiguously using a combination of protein analysis and cDNA cloning. Molecular cloning revealed that the lectin called C. vernus agglutinin (CVA) is encoded by a precursor consisting of two tandemly arrayed lectin domains with a reasonable sequence similarity to the monocot mannose-binding lectins. Post-translational cleavage of the precursor yields two equally sized polypeptides. Mature CVA consists of two pairs of polypeptides and hence is a heterotetrameric protein. Surface plasmon resonance studies of the interaction of the crocus lectin with high mannose-type glycans showed that the lectin interacts specifically with exposed alpha-1,3-dimannosyl motifs. Molecular modelling studies confirmed further the close relationships in overall fold and three-dimensional structure of the mannose-binding sites of the crocus lectin and other monocot mannose-binding lectins. However, docking experiments indicate that only one of the six putative mannose-binding sites of the CVA protomer is active. These results can explain the weak carbohydrate-binding activity and low specific agglutination activity of the lectin. As the cloning and characterization of the spring crocus lectin demonstrate that the monocot mannose-binding lectins occur also within the family Iridaceae a refined model of the molecular evolution of this lectin family is proposed.  相似文献   

20.
Plant lectins, especially those purified from species of the Leguminosae family, represent the best-studied group of carbohydrate-binding proteins. Lectins purified from seeds of the Diocleinae subtribe exhibit a high degree of sequence identity notwithstanding that they show very distinct biological activities. Two main factors have been related to this feature: variance in key residues influencing the carbohydrate-binding site geometry and differences in the pH-dependent oligomeric state profile. In this work, we have isolated a lectin from Canavalia boliviana (Cbol) and solved its x-ray crystal structure in the unbound form and in complex with the carbohydrates Man(α1-3)Man(α1-O)Me, Man(α1-4)Man(α1-O)Me and 5-bromo-4-chloro-3-indolyl-α-D-mannose. We evaluated its oligomerization profile at different pH values using Small Angle X-ray Scattering and compared it to that of Concanavalin A. Based on predicted pKa-shifts of amino acids in the subunit interfaces we devised a model for the dimer-tetramer equilibrium phenomena of these proteins. Additionally, we demonstrated Cbol anti-inflammatory properties and further characterized them using in vivo and in vitro models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号