首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The African grass Hyparrhenia rufa has established itself successfully in South American savannas (Llanos) and displaced dominant native grasses such as Trachypogon plumosus from the wetter and more fertile habitats. Several ecophysiological traits have been related to the higher competitive capacity of H. rufa. To further analyze the behavior of both species, their growth, biomass allocation, physiological and architectural responses to defoliation and water stress were compared under controlled conditions. Although total, aerial and underground biomass decreased under defoliation in both grasses, increases in clipped-leaf biomass and area compensated for defoliation in H. rufa but not in T. plumosus. This difference was due mainly to a higher proportion of assimilates being directed to leaf and tiller production and a higher leaf growth rate in the African grass as compared to T. plumosus, which showed incrased senescence under frequent defoliation. In both species, water stress ameliorated the effects of defoliation. The ability to compensate for defoliated biomass in H. rufa is possibly related to its long coevolution with large herbivores in its original African habitat and is apparently one of the causes of its success in Neotropical savannas.  相似文献   

2.
African grasses, introduced into Neotropical savannas to improve forage quality, have spread successfully and displaced native plants. To understand their competitive relationships, we compared biomass production and allocation, plant architecture and phenology, net photosynthesis (Pn), water relations, and nutrient content under fire and simulated herbivory between two C4 grasses, the native Trachypogon plumosus and the introduced Hyparrhenia rufa from a seasonal savanna in Venezuela. All variables were strongly influenced by the rainfall regime. Hyparrhenia produced bigger plants (in mass and size) with a large proportion of mass (>75%) allocated to leaves and culms. Its biomass production was more affected by fire than by defoliation. In contrast, Trachypogon was more affected by defoliation than by fire which promoted a flush of leaf growth even in the dry season. Fire caused up to 85% mortality in Hyparrhenia but none in Trachypogon where it increased inflorescence production. However, fire promoted abundant seed germination and fast seedling growth in Hyparrhenia, enabling it to colonize new areas. During the growing season Trachypogon had higher Pn and lower leaf water potential (Ψ) than Hyparrhenia but differences among treatments were not significant for either grass. Pn of Trachypogon ceased at a lower Ψ (−3.0 MPa) than in Hyparrhenia (−2.0 MPa), indicating its higher tolerance to water stress. During the dry season, Trachypogon leaves remained alive and retained low Pn. Leaf nutrient content was higher during the rainy season in both species. Differences in Pn could not explain the higher seasonal biomass production of Hyparrhenia. However, its water stress evasion strategy, larger biomass allocated to leaves, abundant germination and fast seedling growth appeared to be responsible for the success of Hyparrhenia as an invader of Neotropical savannas. Received: 17 August 1998 / Accepted: 3 March 1999  相似文献   

3.
In Venezuela, the alien grasses Melinis minutiflora Beauv. and Hyparrhenia rufa (Nees.) Stapf tend to displace the native savanna plant community dominated by Trachypogon plumosus (Humb. and Bonpl.) Nees. This occurs in either relatively wetter and fertile highland savannas or in drier and less fertile lowland savannas. Although the native and aliens are perennial C4 grasses, higher net assimilation leaf biomass per plant and germination rate of the latter are some causes for their higher growth rates and for their competitive success. The objective of this study is to compare seasonal tissue energy, N, P and K concentrations and the calculated construction costs (CC) between the native grass and either one of the alien grasses from lowland and highland savannas. We predict that, in order to out-compete native plants, alien grasses should be more efficient in resource use as evidenced by lower tissue energy and nutrient concentrations and CC.Tissue energy and nutrient concentration were measured throughout the year and compared between M. minutiflora and the co-occurring local population of T. plumosus in a highland savanna and between H. rufa and its neighbor local population of T. plumosus in a lowland savanna. CC was calculated from energy, N and ash concentrations considering ammonium as the sole N source. Differences between co-occurring species, T. plumosus populations, seasons, and organs were analyzed with ANOVA.Highland and lowland grasses differed in concentration and allocation of energy and nutrients whereas the differences between alien and native grasses were specific for each pair considered. Highland grasses had higher energy, N, P and CC than lowland grasses. These variables were always lowest in the culms. In the more stressed lowland site, tissue energy and nutrient concentrations decreased significantly during the dry season except in the roots of both grasses which had the highest energy and nutrients concentrations during the drought. This seasonal response was more marked in the local lowland population of T. plumosus in which maximum CC alternated seasonally between leaves and roots. Energy and nutrient concentrations and CC were the lowest in H. rufa. In the lowland savannas, the higher efficiency of resource use in the invader grass contributes to its higher competitive success through increased growth rate. In the highlands, overall tissue energy concentration and CC, but not N nor P concentration, were lower in the fast growing M. minutiflora but seasonal differences were lacking. The higher leaf CC in T. plumosus can be attributed to the higher proportion of sclerenchyma tissue which is more expensive to construct. Considering CC, both fast growing alien grasses are more efficient in resource use than the co-occurring native grass. However, the role of CC explaining the competitive success of the former, through higher growth rates, is more evident in the more stressful environment of the lowland savanna.  相似文献   

4.
The quantum yield for CO2 uptake was measured in C3 and C4 monocot species from several different grassland habitats. When the quantum yield was measured in the presence of 21% O2 and 340 cm3 m-3 CO2, values were very similar in C3 monocots, C3 dicots, and C4 monocots (0.045–0.056 mole CO2 · mole-1 quanta absorbed). In the presence of 2% O2 and 800 cm3 m-3 CO2, enhancements of the quantum yield values occurred for the C3 plants (both monocots and dicots), but not for C4 monocots. A dependence of the quantum yield on leaf temperature was observed in the C3 grass, Agropyron smithii, but not in the C4 grass, Bouteloua gracilis, in 21% O2 and 340 cm3 m-3 CO2. At leaf temperatures between 22–25°C the quantum yield values were approximately equal in the two species.  相似文献   

5.
Summary We tested the hypothesis that C4 grasses are inferior to C3 grasses as host plants for herbivorous insects by measuring the relative performance of larvae of a graminivorous lepidopteran, Paratrytone melane (Hesperiidae), fed C3 and C4 grasses. Relative growth rates and final weights were higher in larvae fed a C3 grass in Experiment I. However, in two additional experiments, relative growth rates and final weights were not significantly different in larvae fed C3 and C4 grasses. We examined two factors which are believed to cause C4 grasses to be of lower nutritional value than C3 grasses: foliar nutrient levels and nutrient digestibility. In general, foliar nutrient levels were higher in C3 grasses. In Experiment I, protein and soluble carbohydrates were digested from a C3 and a C4 grass with equivalent efficiencies. Therefore, differences in larval performance are best explained by higher nutrient levels in the C3 grass in this experiment. In Experiment II, soluble carbohydrates were digested with similar efficiencies from C3 and C4 grasses but protein was digested with greater efficiency from the C3 grasses. We conclude (1) that the bundle sheath anatomy of C4 grasses is not a barrier to soluble carbohydrate digestion and does not have a nutritionally significant effect on protein digestion and (2) that P. melane may consume C4 grasses at compensatory rates.  相似文献   

6.
Summary Two C3 grasses (Hordeum vulgare L., Avena sativa L.) and two C4 grasses (Panicum miliaceum L., Panicum crus-galli L.) were cultivated in standard soil in the open air in pure cultures and in various mixed cultures at low and high nitrogen fertilization levels. After three months the dry weight, length and nitrogen content of the aboveground and below-ground parts of the plants and the shoot/root ratios were determined. Hordeum vulgare was the most successful species irrespective of the nitrogen fertilization level, and also exhibited in most cases the highest nitrogen concentrations. Panicum miliaceum, on the other hand, was the species least able to compete. The production of biomass was reduced in cultures growing under nitrogen starvation conditions, this phenomenon being more pronounced with respect to the C4 than to the C3 species. The decrease in the production of biomass at low N conditions was most drastic with Panicum crus-galli, the species with the lowest nitrogen content and thus assumed to be best adapted to nitrogen starvation conditions. In cultures growing at low nitrogen fertilization levels the shoot/root ratios of all species.shifted in favour of an increasing root proportion. The extent of this shift, however, differed from species to species.  相似文献   

7.
8.
Competitive abilities of introduced and native grasses   总被引:4,自引:0,他引:4  
Bakker  Jonathan  Wilson  Scott 《Plant Ecology》2001,157(2):119-127
Differencesin competitive ability may explain the maintenance of existing plantpopulationsand the invasion of new areas by plant species. We used field experiments toexamine the competitive responses of Agropyron cristatum(L.) Gaertn., an introduced C3 grass, and Boutelouagracilis (HBK.) Lag., a native C4 grass, and thecompetitive effects of Agropyron-dominated vegetation andsuccessional prairie. We also tested whether the outcome of competitiveinteractions varied with water availability. In each vegetation type,transplants of each species were grown under two levels of competition(presenceor absence of neighboring vegetation) and three levels of water availability(high, medium, or low). Transplant survival, growth, and biomass allocationpatterns were measured. Water availability had no effect on the measuredvariables, suggesting that both species were limited by another resource.Growthrates were affected more by competition, while survival and root: shoot ratiowere affected more by transplant species identity. In the successional prairie,neighboring vegetation suppressed the growth of Agropyrontransplants less than that of Bouteloua transplants,suggesting that Agropyron has a stronger ability to resistcompetitive suppression in that vegetation type. The spread ofAgropyron into surrounding vegetation may relate to itsability to resist competitive suppression. In theAgropyron-dominated vegetation, neighboring vegetationsuppressed the growth of both species by the same extent. However, competitionaccounted for more variation in transplant growth inAgropyron-dominated vegetation than in successionalprairie, suggesting that Agropyron has strong competitiveeffects which hinder plant growth and prevent other species from establishinginAgropyron fields.  相似文献   

9.
Old World Bluestems (OWB), introduced from Europe and Asia in the 1920s, recently have begun to raise concerns in the Great Plains. Despite suggestion in the late 1950s that OWB were weedy and negatively impacted biological diversity, they were widely introduced throughout the Great Plains for agricultural purposes. Anecdotal evidence suggests that OWB exhibit invasive characteristics that promote competitive exclusion of native species. The objective of our study was to quantify the competitive abilities of two OWB species (Caucasian bluestem; Bothriochloa bladhii (Retz.) S.T. Blake (= Bothriochloa caucasica (Trin.) C.E. Hubb.) and yellow bluestem; Bothriochloa ischaemum (L.) Keng) with three native grass species (big bluestem (Andropogon gerardii Vitman), little bluestem (Schizachyrium scoparium (Michx.) Nash), and sideoats grama (Bouteloua curtipendula (Michx.) Torr.)). A greenhouse target-neighbor study was conducted to assess both interspecific and intraspecific competition. A total of 480 pots (4.4 l) filled with native soil was used with all pair-wise combinations of species and four density treatments (six replications). Vegetative tiller height, above- and belowground biomass were measured at the end of 16 weeks. Both of the OWB significantly inhibited at least one growth parameter of the three native grass species, while most of the native species did not inhibit growth of either OWB species. Growth of B. ischaemum was enhanced when grown in association with S. scoparium. Based upon the results of our study of OWB competitive superiority and previous research, many of the characteristics possessed by OWB are found to be in common with known invasive species. Hence, we propose that two OWB are competitively superior to three common native prairie species providing them with the ability to invade and threaten the native grasslands of the Central and Southern Great Plains.  相似文献   

10.
Summary The growth and photosynethetic responses to atmospheric CO2 enrichment of 4 species of C4 grasses grown at two levels of irradiance were studied. We sought to determine whether CO2 enrichment would yield proportionally greater growth enhancement in the C4 grasses when they were grown at low irradiance than when grown at high irradiance. The species studied were Echinochloa crusgalli, Digitaria sanguinalis, Eleusine indica, and Setaria faberi. Plants were grown in controlled environment chambers at 350, 675 and 1,000 l 1-1 CO2 and 1,000 or 150 mol m-2 s-1 photosynthetic photon flux density (PPFD). An increase in CO2 concentration and PPFD significantly affected net photosynthesis and total biomass production of all plants. Plants grown at low PPFD had significantly lower rates of photosynthesis, produced less biomass, and had reduced responses to increases in CO2. Plants grown in CO2-enriched atmosphere had lower photosynthetic capacity relative to the low CO2 grown plants when exposed to lower CO2 concentration at the time of measurement, but had greater rate of photosynthesis when exposed to increasing PPFD. The light level under which the plants were growing did not influence the CO2 compensation point for photosynthesis.  相似文献   

11.

Background and Aims

The success of C4 plants lies in their ability to attain greater efficiencies of light, water and nitrogen use under high temperature, providing an advantage in arid, hot environments. However, C4 grasses are not necessarily less sensitive to drought than C3 grasses and are proposed to respond with greater metabolic limitations, while the C3 response is predominantly stomatal. The aims of this study were to compare the drought and recovery responses of co-occurring C3 and C4 NADP-ME grasses from the subfamily Panicoideae and to determine stomatal and metabolic contributions to the observed response.

Methods

Six species of locally co-occurring grasses, C3 species Alloteropsis semialata subsp. eckloniana, Panicum aequinerve and Panicum ecklonii, and C4 (NADP-ME) species Heteropogon contortus, Themeda triandra and Tristachya leucothrix, were established in pots then subjected to a controlled drought followed by re-watering. Water potentials, leaf gas exchange and the response of photosynthetic rate to internal CO2 concentrations were determined on selected occasions during the drought and re-watering treatments and compared between species and photosynthetic types.

Key Results

Leaves of C4 species of grasses maintained their photosynthetic advantage until water deficits became severe, but lost their water-use advantage even under conditions of mild drought. Declining C4 photosynthesis with water deficit was mainly a consequence of metabolic limitations to CO2 assimilation, whereas, in the C3 species, stomatal limitations had a prevailing role in the drought-induced decrease in photosynthesis. The drought-sensitive metabolism of the C4 plants could explain the observed slower recovery of photosynthesis on re-watering, in comparison with C3 plants which recovered a greater proportion of photosynthesis through increased stomatal conductance.

Conclusions

Within the Panicoid grasses, C4 (NADP-ME) species are metabolically more sensitive to drought than C3 species and recover more slowly from drought.  相似文献   

12.
In a seasonally dry tropical region the water use efficiency (WUE) of three grasses (C3 winter annualPolypogon monspeliensis, C4 perennialDichanthium annulatum and C4 warm seasonal annualEchinochloa colonum) was evaluated during summer and winter under nine experimental conditions (3 soil moisture×3 herbage removal). Generally leaf water status and transpiration rate decreased with soil moisture stress and increased with clipping intensity. During winter the transpiration rate of Dichanthium was much lower than that of Polypogon and its own rate in summer. Both soil moisture stress and clipping intensity increased the WUE in all instances. Despite differences in photosynthetic type, growing season and life form, these grasses exhibited broadly similar positive relationships, across nine treatments for WUE: soil moisture stress, and water consumption: production. The range of WUE (g. mm–1) calculated on TNP through the nine treatments was: summer—Dichanthium 2.9–10.0, Echinochloa 2.0–6.7; winter—Dichanthium 4.3–36.3, Polypogon 1.9–12.0.  相似文献   

13.
Leaf photosynthetic characteristics, distribution patterns of nitrogen content per unit leaf area (nL) and leaf area production per unit nLwere measured in natural stands of a C4 grass (Hyparrhenia rufa) from the seasonal savannas and of a C4grass (Paspalum fasciculatum) and two C3grasses (Leersia hexandra and Hymenachne amplexicaulis) from the flooded savannas in central Venezuela. Daily rates of canopy photosynthesis (PcD) as well as the optimal leaf area production per unit nLat which PcDfor a given total amount of nitrogen in the canopy (i.e., canopy-PNUE) is maximized were also calculated. The C3and C4species from the flooded savannas had similar light saturated rates of photosynthesis per unit nL(i.e. leaf-PNUE) and similar canopy-PNUEs which was in strong contrast with previous studies. Especially H. rufa but also L. hexandra and H. amplexicaulis had leaf- and canopy-PNUEs which were considerably higher than the values calculated for most other species with the same photosynthetic pathway (i.e., C3or C4). In contrast to previous studies, differences in the light gradient in the canopy between stands only partially explained differences in N distribution. Measured leaf area indices were greater and the average nL values were consequently smaller than the calculated optima. There was, however, a very strong linear correlation between the optimal and actual average nLindicating that even though the model overestimated average nL, it did predict the differences in leaf area production per unit nitrogen – the inverse average nL– very well. This result strongly indicates that leaf area production per unit of leaf nitrogen increases with leaf-PNUE and decreases with the extinction coefficient for light. Grass species from seasonal savannas have extremely high leaf-PNUEs and thus optimally produce large amounts of leaf area per unit nL. This helps explain how stands of these species may have high leaf area indices and achieve high photosynthetic productivity despite the very low nutrient availability at which they grow.  相似文献   

14.
The C(4) photosynthetic pathway involves the assimilation of CO(2) by phosphoenolpyruvate carboxylase (PEPC) and the subsequent decarboxylation of C(4) acids. The enzymes of the CO(2) concentrating mechanism could be affected under water deficit and limit C(4) photosynthesis. Three different C(4) grasses were submitted to gradually induced drought stress conditions: Paspalum dilatatum (NADP-malic enzyme, NADP-ME), Cynodon dactylon (NAD-malic enzyme, NAD-ME) and Zoysia japonica (PEP carboxykinase, PEPCK). Moderate leaf dehydration affected the activity and regulation of PEPC in a similar manner in the three grasses but had species-specific effects on the C(4) acid decarboxylases, NADP-ME, NAD-ME and PEPCK, although changes in the C(4) enzyme activities were small. In all three species, the PEPC phosphorylation state, judged by the inhibitory effect of L: -malate on PEPC activity, increased with water deficit and could promote increased assimilation of CO(2) by the enzyme under stress conditions. Appreciable activity of PEPCK was observed in all three species suggesting that this enzyme may act as a supplementary decarboxylase to NADP-ME and NAD-ME in addition to its role in other metabolic pathways.  相似文献   

15.
The potential for C4 photosynthesis was investigated in five C3-C4 intermediate species, one C3 species, and one C4 species in the genus Flaveria, using 14CO2 pulse-12CO2 chase techniques and quantum-yield measurements. All five intermediate species were capable of incorporating 14CO2 into the C4 acids malate and aspartate, following an 8-s pulse. The proportion of 14C label in these C4 products ranged from 50–55% to 20–26% in the C3-C4 intermediates F. floridana Johnston and F. linearis Lag. respectively. All of the intermediate species incorporated as much, or more, 14CO2 into aspartate as into malate. Generally, about 5–15% of the initial label in these species appeared as other organic acids. There was variation in the capacity for C4 photosynthesis among the intermediate species based on the apparent rate of conversion of 14C label from the C4 cycle to the C3 cycle. In intermediate species such as F. pubescens Rydb., F. ramosissima Klatt., and F. floridana we observed a substantial decrease in label of C4-cycle products and an increase in percentage label in C3-cycle products during chase periods with 12CO2, although the rate of change was slower than in the C4 species, F. palmeri. In these C3-C4 intermediates both sucrose and fumarate were predominant products after a 20-min chase period. In the C3-C4 intermediates, F. anomala Robinson and f. linearis we observed no significant decrease in the label of C4-cycle products during a 3-min chase period and a slow turnover during a 20-min chase, indicating a lower level of functional integration between the C4 and C3 cycles in these species, relative to the other intermediates. Although F. cronquistii Powell was previously identified as a C3 species, 7–18% of the initial label was in malate+aspartate. However, only 40–50% of this label was in the C-4 position, indicating C4-acid formation as secondary products of photosynthesis in F. cronquistii. In 21% O2, the absorbed quantum yields for CO2 uptake (in mol CO2·[mol quanta]-1) averaged 0.053 in F. cronquistii (C3), 0.051 in F. trinervia (Spreng.) Mohr (C4), 0.052 in F. ramosissima (C3-C4), 0.051 in F. anomala (C3-C4), 0.050 in F. linearis (C3-C4), 0.046 in F. floridana (C3-C4), and 0.044 in F. pubescens (C3-C4). In 2% O2 an enhancement of the quantum yield was observed in all of the C3-C4 intermediate species, ranging from 21% in F. ramosissima to 43% in F. pubescens. In all intermediates the quantum yields in 2% O2 were intermediate in value to the C3 and C4 species, indicating a co-function of the C3 and C4 cycles in CO2 assimilation. The low quantum-yield values for F. pubescens and F. floridana in 21% O2 presumably reflect an ineffcient transfer of carbon from the C4 to the C3 cycle. The response of the quantum yield to four increasing O2 concentrations (2–35%) showed lower levels of O2 inhibition in the C3-C4 intermediate F. ramosissima, relative to the C3 species. This indicates that the co-function of the C3 and C4 cycles in this intermediate species leads to an increased CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase and a concomitant decrease in the competitive inhibition by O2.Abbreviations PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - RuBP ribulose-1,5-bisphosphate  相似文献   

16.
Species in the Laxa and Grandia groups of the genus Panicum are adapted to low, wet areas of tropical and subtropical America. Panicum milioides is a species with C3 photosynthesis and low apparent photorespiration and has been classified as a C3/C4 intermediate. Other species in the Laxa group are C3 with normal photorespiration. Panicum prionitis is a C4 species in the Grandia group. Since P. milioides has some leaf characteristics intermediate to C3 and C4 species, its photosynthetic response to irradiance and temperature was compared to the closely related C3 species, P. laxum and P. boliviense and to P. prionitis. The response of apparent photosynthesis to irradiance and temperature was similar to that of P. laxum and P. boliviense, with saturation at a photosynthetic photo flux density of about 1 mmol m-2 s-1 at 30°C and temperature optimum near 30°C. In contrast, P. prionitis showed no light saturation up to 2 mmol m-2 s-1 and an optimum temperature near 40°C. P. milioides exhibited low CO2 loss into CO2-free air in the light and this loss was nearly insensitive to temperature. Loss of CO2 in the light in the C3 species, P. laxum and P. boliviense, was several-fold higher than in P. milioides and increased 2- to 5-fold with increases in temperature from 10 to 40°C. The level of dark respiration and its response to temperature were similar in all four Panicum species examined. It is concluded that the low apparent photorespiration in P. milioides does not influence its response of apparent photosynthesis to irradiance and temperature in comparison to closely related C3 Panicum species.Abbreviations AP apparent photosynthesis - I CO2 compensation point - gl leaf conductance; gm, mesophyll conductance - PPFD photosynthetic photon flux density - PR apparent photorespiration rate - RuBPC sibulose bisphosphate carboxylase  相似文献   

17.
J. C. Vogel  A. Fuls  A. Danin 《Oecologia》1986,70(2):258-265
Summary The relation between photosynthetic pathway and habitat of the grass species recorded in the desert regions of Sinai, Negev, and Judea was investigated. The climatic conditions and micro-environments in the study area vary considerably, and the distribution of the various species is found to conform to specific patterns which reveal the adaptive advantages of the different photosynthetic pathways. There is also a distinct correlation between the phytogeographic origin of the grass species and the photosynthetic pathways that they utilize.The survey shows that the majority of the grass species in the region are of the C3 type and all except one of these species belong to the Holarctic domain. This is in accordance with the fact that the region forms part of the Mediterranean winter rainfall regime and that C3 species have an adaptive advantage where minimum temperatures are low during the winter growing season.The occurence of C4 species increases with decreasing rainfall and they dominate in those districts where temperatures are high throughout the year. These C4 grasses are of both Holarctic and Palaeotropic origin according to the classification adopted here, but they are essentially all elements of the Saharo-Arabian, Irano-Turanian, Sudanian, or Tropical phytogeographic regions and are not typical of the Mediterranean or Euro-Siberian floras. The plants with multi-regional distributions that occur in Mediterranean communities may well be intrusive.Analysis of the three subtypes of the C4 species suggests that the malate-forming NADP-me grasses grow where water stress is not a dominating factor, while the aspartateforming NAD-me grasses are more successful under xeric conditions. The PEP-ck species are not abundant and form an intermediate group between the NADP-me and NAD-me subtypes.  相似文献   

18.
The ability of plants to rapidly replace photosynthetic tissues following defoliation represents a resistance strategy referred to as herbivory tolerance. Rapid reprioritization of carbon allocation to regrowing shoots at the expense of roots following defoliation is a widely documented tolerance mechanism. An experiment was conducted in a controlled environment to test the hypothesis that herbivory-sensitive perennial grasses display less flexibility in reprioritizing carbon allocation in response to defoliation than do grasses possessing greater herbivory tolerance. An equivalent proportion of shoot biomass (60% dry weight) was removed from two C4 perennial grasses recognized as herbivory-sensitive, Andropogon gerardii and Schizachyrium scoparium, and two C4 perennial grasses recognized as herbivory-tolerant, Aristida purpurea and Bouteloua rigidiseta. Both defoliated and undefoliated plants were exposed to 13CO2 for 30 min, five plants per species were harvested at 6, 72 and 168 h following labeling, and biomass was analyzed by isotope ratio mass spectrometry. The tallgrass, A. geraiddii, exhibited inflexible allocation priorities while the shortgrass, B. rigidiseta, exhibited flexible allocation priorities in response to defoliation which corresponded with their initial designations as herbivory-sensitive and herbivory-tolerant species, respectively. A. gerardii had the greatest percentage and concentration of 13C within roots and lowest percentage of 13C within regrowth of the four species evaluated. In contrast, B. rigidiseta had a greater percentage of 13C within regrowth than did A. gerardii, the greatest percentage of 13C within new leaves of defoliated plants, and the lowest concentration of 13C within roots follwing defoliation. Although both midgrasses, S. scoparium and A. purpurea, demonstrated flexible allocation priorities in response to defoliation, they were counter to those stated in the initial hypothesis. The concentration of 13C within new leaves of S. scoparium increased in response to a single defoliation while the percentage and concentration of 13C within roots was reduced. A. purpurea was the only species in which the percentate of 13C within new leaves decreased while the percentage of 13C within roots increased following defoliation. The most plausible alternative hypothesis to explain the inconsistency between the demonstrated responsiveness of allocation priorities to defoliation and the recognized herbivory resistance of S. scoparium and A. purpurea is that the relative ability of these species to avoid herbivory may make an equal or greater contribution to their overall herbivory resistance than does herbivory tolerance. Selective herbivory may contribute to S. scoparium's designation as a herbivorysensitive species even though it possesses flexible allocation priorities in response to defoliation. Alternatively, the recognized herbivory resistance of A. purpurea may be a consequence of infrequent and/or lenient herbivory associated with the expression of avoidance mechanisms, rather than the expression of tolerance mechanisms. A greater understanding of the relative contribution of tolerance and avoidance strategies of herbivory resistance are required to accurately interpret how herbivory influences plant function, competitive interactions, and species abundance in grazed communities.  相似文献   

19.
The activities of the carboxylating enzymes ribulose-1,5-biphosphate (RuBP) carboxylase and phosphoenolpyruvate (PEP) carboxylase in leaves of three-week old Zea mays plants grown under phytotron conditions were found to vary according to leaf position. In the lower leaves the activity of PEP carboxylase was lower than that of RuBP carboxylase, while the upper leaves exhibited high levels of PEP carboxylase. Carbon dioxide compensation points and net photosynthetic rates also differed in the lower and upper leaves. Differences in the fine structure of the lowermost and uppermost leaves are shown. The existence of both the C3 and C4 photosynthetic pathways in the same plant, in this and other species, is discussed.Abbreviations PEP phosphoenolpyruvate - RuBP ribulose-1,5-biphosphate  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号