首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The African grass Hyparrhenia rufa has established itself successfully in South American savannas (Llanos) and displaced dominant native grasses such as Trachypogon plumosus from the wetter and more fertile habitats. Several ecophysiological traits have been related to the higher competitive capacity of H. rufa. To further analyze the behavior of both species, their growth, biomass allocation, physiological and architectural responses to defoliation and water stress were compared under controlled conditions. Although total, aerial and underground biomass decreased under defoliation in both grasses, increases in clipped-leaf biomass and area compensated for defoliation in H. rufa but not in T. plumosus. This difference was due mainly to a higher proportion of assimilates being directed to leaf and tiller production and a higher leaf growth rate in the African grass as compared to T. plumosus, which showed incrased senescence under frequent defoliation. In both species, water stress ameliorated the effects of defoliation. The ability to compensate for defoliated biomass in H. rufa is possibly related to its long coevolution with large herbivores in its original African habitat and is apparently one of the causes of its success in Neotropical savannas.  相似文献   

2.
In Venezuela, the alien grasses Melinis minutiflora Beauv. and Hyparrhenia rufa (Nees.) Stapf tend to displace the native savanna plant community dominated by Trachypogon plumosus (Humb. and Bonpl.) Nees. This occurs in either relatively wetter and fertile highland savannas or in drier and less fertile lowland savannas. Although the native and aliens are perennial C4 grasses, higher net assimilation leaf biomass per plant and germination rate of the latter are some causes for their higher growth rates and for their competitive success. The objective of this study is to compare seasonal tissue energy, N, P and K concentrations and the calculated construction costs (CC) between the native grass and either one of the alien grasses from lowland and highland savannas. We predict that, in order to out-compete native plants, alien grasses should be more efficient in resource use as evidenced by lower tissue energy and nutrient concentrations and CC.Tissue energy and nutrient concentration were measured throughout the year and compared between M. minutiflora and the co-occurring local population of T. plumosus in a highland savanna and between H. rufa and its neighbor local population of T. plumosus in a lowland savanna. CC was calculated from energy, N and ash concentrations considering ammonium as the sole N source. Differences between co-occurring species, T. plumosus populations, seasons, and organs were analyzed with ANOVA.Highland and lowland grasses differed in concentration and allocation of energy and nutrients whereas the differences between alien and native grasses were specific for each pair considered. Highland grasses had higher energy, N, P and CC than lowland grasses. These variables were always lowest in the culms. In the more stressed lowland site, tissue energy and nutrient concentrations decreased significantly during the dry season except in the roots of both grasses which had the highest energy and nutrients concentrations during the drought. This seasonal response was more marked in the local lowland population of T. plumosus in which maximum CC alternated seasonally between leaves and roots. Energy and nutrient concentrations and CC were the lowest in H. rufa. In the lowland savannas, the higher efficiency of resource use in the invader grass contributes to its higher competitive success through increased growth rate. In the highlands, overall tissue energy concentration and CC, but not N nor P concentration, were lower in the fast growing M. minutiflora but seasonal differences were lacking. The higher leaf CC in T. plumosus can be attributed to the higher proportion of sclerenchyma tissue which is more expensive to construct. Considering CC, both fast growing alien grasses are more efficient in resource use than the co-occurring native grass. However, the role of CC explaining the competitive success of the former, through higher growth rates, is more evident in the more stressful environment of the lowland savanna.  相似文献   

3.
Summary Introduced African grasses are invading the grasslands of the Venezuelan savannas and displacing the native grasses. This work, which is part of a program to understand the reasons for the success of the African grasses, specifically investigates whether introduced and native grasses differ in some photosynthetic characteristics.The responses to photon flux density, leaf temperature, leaf-air vapour pressure difference and leaf water potential of leaf photosynthetic rate of two introduced African C4 grasses (Hyparrhenia rufa and Melinis minutiflora) and of a lowland and a highland population of a native Venezuelan grass (Trachypogon plumosus) grown under controlled conditions were compared. These responses in all three species were typical of tropical C4 pasture grasses. The introduced grasses had higher maximum leaf conductance, net photosynthetic rates, and optimum temperature (H. rufa only) for photosynthesis than T. plumosus. However, T. plumosus was able to continue photosynthesis to lower leaf water potentials than the two introduced grasses, and the efficiency which it utilized water, light and mineral nutrients to fix carbon were similar to those of the introduced grasses.The higher rates of leaf photosynthesis of the introduced grasses contributed to, but only partially explained, the higher growth rates compared to T. plumosus. The higher growth rates and nutrient concentration of the introduced grasses are consistent with their ability to establish rapidly, compete successfully for resources, and displace T. plumosus from moist, fertile sites. Conversely, the slower growth rate, lower nutrient concentrations, and superior water relations characteristics are consistent with the capacity of T. plumosus to resist invasion by introduced grasses in poorer sites.  相似文献   

4.
African grasses, introduced into Neotropical savannas to improve forage quality, have spread successfully and displaced native plants. To understand their competitive relationships, we compared biomass production and allocation, plant architecture and phenology, net photosynthesis (Pn), water relations, and nutrient content under fire and simulated herbivory between two C4 grasses, the native Trachypogon plumosus and the introduced Hyparrhenia rufa from a seasonal savanna in Venezuela. All variables were strongly influenced by the rainfall regime. Hyparrhenia produced bigger plants (in mass and size) with a large proportion of mass (>75%) allocated to leaves and culms. Its biomass production was more affected by fire than by defoliation. In contrast, Trachypogon was more affected by defoliation than by fire which promoted a flush of leaf growth even in the dry season. Fire caused up to 85% mortality in Hyparrhenia but none in Trachypogon where it increased inflorescence production. However, fire promoted abundant seed germination and fast seedling growth in Hyparrhenia, enabling it to colonize new areas. During the growing season Trachypogon had higher Pn and lower leaf water potential (Ψ) than Hyparrhenia but differences among treatments were not significant for either grass. Pn of Trachypogon ceased at a lower Ψ (−3.0 MPa) than in Hyparrhenia (−2.0 MPa), indicating its higher tolerance to water stress. During the dry season, Trachypogon leaves remained alive and retained low Pn. Leaf nutrient content was higher during the rainy season in both species. Differences in Pn could not explain the higher seasonal biomass production of Hyparrhenia. However, its water stress evasion strategy, larger biomass allocated to leaves, abundant germination and fast seedling growth appeared to be responsible for the success of Hyparrhenia as an invader of Neotropical savannas. Received: 17 August 1998 / Accepted: 3 March 1999  相似文献   

5.
Baruch Z  Jackson RB 《Oecologia》2005,145(4):522-532
The invasion of African grasses into Neotropical savannas has altered savanna composition, structure and function. The projected increase in atmospheric CO2 concentration has the potential to further alter the competitive relationship between native and invader grasses. The objective of this study was to quantify the responses of two populations of a widespread native C4 grass (Trachypogon plumosus) and two African C4 grass invaders (Hyparrhenia rufa and Melinis minutiflora) to high CO2 concentration interacting with two primary savanna stressors: drought and herbivory. Elevated CO2 increased the competitive potential of invader grasses in several ways. Germination and seedling size was promoted in introduced grasses. Under high CO2, the relative growth rate of young introduced grasses was twice that of native grass (0.58 g g−1 week−1 vs 0.25 g g−1 week−1). This initial growth advantage was maintained throughout the course of the study. Well-watered and unstressed African grasses also responded more to high CO2 than did the native grass (biomass increases of 21–47% compared with decreases of 13–51%). Observed higher water and nitrogen use efficiency of invader grasses may aid their establishment and competitive strength in unfertile sites, specially if the climate becomes drier. In addition, high CO2 promoted lower leaf N content more in the invader grasses. The more intensive land use, predicted to occur in this region, may interact with high CO2 to fincreasesavor the African grasses, as they generally recovered faster after simulated herbivory. The superiority of invader grasses under high CO2 suggests further in their competitive strength and a potential increased rate of displacement of the native savannas in the future by grasslands dominated by introduced African species.  相似文献   

6.
Communities subject to stress, including those with low invasibility, may be dominated by exotic generalist species. African grasses are aggressive invasive species in Neotropical savannas, where their response to abiotic stress remains unknown. We assessed the role of waterlogging and canopy closure on the presence, abundance and reproductive tillering of African and native grasses in a Neotropical savanna in southeastern Brazil. We obtained abundance and reproductive tillering data of exotic (Melinis minutiflora, Melinis repens and Urochloa decumbens) and common native grasses in 20 sites. We also determined the groundwater depth, soil surface water potential and canopy cover at these sites. The grass species generally had a low frequency and performed poorly where soil remained waterlogged throughout the year, except for two native species. Most native species were exclusive to either well‐drained savannas or better drained wet grasslands. However, two species (Loudetiopsis chrysothrix and Trachypogon spicatus) occurred in both vegetation types. Two exotic species (M. minutiflora and M. repens) were less common but demonstrated reasonable performance in wet grasslands, possibly due to their root system plasticity. Furthermore, U. decumbens had a lower occurrence, density and reproductive tillering at these sites, but was successful at sites where the groundwater level was slightly deeper. Although the favourable water regime in the savannas increases their invasibility in general, resistance to invasion by African grasses may be greater at microsites with high canopy closure, where these species showed lower performance and did not affect the abundance of co‐occurring native grasses. In summary, the Brazilian savanna becomes more susceptible to the spread of African grasses when disturbances decrease canopy closure or lower rainfall associated with climate change reduces the average groundwater depth and consequently releases invasive species from soil waterlogging in grasslands.  相似文献   

7.
Summary Leaf blades of 42 grasses (Poaceae) have been examined ultrastructurally for the occurrence of a suberized lamella in walls of parenchymatous bundle sheaths and PCR (= Kranz) sheaths in both large and small vascular bundles. The sample includes species from a range of major grass taxa, and represents all photosynthetic types found in the grasses. Three grasses with unusual C4 leaf anatomy were also included:Alloteropsis semialata, Aristida biglandulosa, Arundinella nepalensis. The presence of a suberized lamella in PCR cell walls was perfectly correlated with photosynthetic type. All PEP-carboxykinase type and NADP-malic enzyme type C4 species examined possessed a suberized lamella in outer tangential and radial walls, but with variable presence in inner tangential walls. PCR cells of bothAlloteropsis semialata andArundinella nepalensis also possessed a suberized lamella. A lamella was totally absent from parenchymatous bundle sheath cells of the C3 species examined (5 spp.) and ofPanicum milioides, a C3-C4 intermediate. It was also absent from PCR cells of NAD-malic enzyme type C4 species (14 spp.) andAristida biglandulosa. The results are discussed in relation to the leakage of CO2 from PCR cells, and to differences between C4 types in 13C values, chloroplast position in PCR cells, and other anatomical characteristics.  相似文献   

8.
Abscisic acid and water transport in sunflowers   总被引:5,自引:0,他引:5  
The role of abscisic acid (ABA) in the transport of water and ions from the root to the shoot of sunflower plants (Helianthus annuus) was investigated by application of ABA either to the root medium or to the apical bud. The exudation at the hypocotyl stump of decapitated seedlings was measured with and without hydrostatic pressure (0–0.3 MPa) applied to the root. All ABA concentrations tested (10-10–10-4 mol·l-1) promoted exudation. Maximal amounts of exudate (200% of control) were obtained with ABA at 10-6·mol·l-1 and an externally applied pressure of 0.1 MPa. The effect was rapid and long-lasting, and involved promotion of ion release to the xylem (during the first hours) as well as an increase in hydraulic conductivity. Abscisic acid applied to the apical bud had effects similar to those of the rootapplied hormone. Increased rates of exudation were also obtained after osmotic stress was applied to the root; this treatment increased the endogenous level of ABA in the root as well as in the shoot. Water potentials of the hypocotyls of intact plants increased when the roots were treated with ABA at 5°C, whereas stomatal resistances were lowered. The results are consistent with the view that ABA controls the water status of the plant not only by regulating stomatal transpiration, but also by regulating the hydraulic conductivity of the root.Abbreviations and symbols ABA abscisic acid - Tv volume flow - Lp hydraulic conductivity - PEG polyethyleneglycol - water potential - osmotic potential - osmotic value - P hydrostatic pressure  相似文献   

9.
Drought response of a native and introduced Hawaiian grass   总被引:6,自引:0,他引:6  
The alien grass, Pennisetum setaceum, dominates many of the lowland arid regions that once supported native Heteropogon contortus grassland on the island of Hawaii. Response to drought in a glasshouse was compared between these C4 grasses to test if success as an invader is related to drought tolerance or plasticity for traits that confer drought tolerance. Pennisetum produced 51% more total biomass, allocated 49% more biomass to leaves, and had higher net photosynthetic rates (P n) on a leaf area basis than Heteropogon. Plants of both species under drought produced less total biomass and increased their allocation to roots compared to well-watered plants, but there was no difference between the two species in the magnitude of these responses. The decline in P n with decreasing leaf water potential (1) was greater for Pennisetum compared to Heteropogon. Plasticity in the response of P n to 1, osmotic potentials, and the water potentials at turgor loss in response to drought were not different between the two species. Stomata were more responsive to w in Heteropogon than in Pennisetum and for well-watered plants compared to droughted plants. Plasticity for the stomatal response to w, however, was not different between the species. There was no evidence that the alien, Pennisetum, had greater plasticity for traits related to drought tolerance compared to the native, Heteropogon. Higher P n and greater biomass allocation to leaves resulted in greater growth for Pennisetum compared to Heteropogon and may explain the success of Pennisetum as an invader of lowland arid zones on Hawaii.  相似文献   

10.
Guenni  Orlando  Baruch  Zdravko  Marín  Douglas 《Plant and Soil》2004,258(1):249-260
Neotropical savannas are exposed to recurrent dry periods of varied duration, and forage grasses must be able to cope with such temporal stresses to maintain productive pastures. This study compared leaf water relations and net photosynthesis under drought of five perennial Brachiaria species: the tufted B. brizantha (CIAT 6780), the semi-stoloniferous B. decumbens (CIAT 606) and B. mutica, and the stoloniferous B. humidicola (CIAT 679) and B. dictyoneura (CIAT 6133). Plants of the five grasses were grown in large pots and subjected to drought by suspending watering until first wilting symptoms (14 days for B. brizantha, B. decumbens and B. mutica, and 29 days for B. humidicola and B. dictyoneura). Afterwards, they were re-watered and a second soil dry cycle was imposed. Time trends in leaf water potential (l), relative water content (RWC), osmotic potential at full turgor (0 100), stomatal conductance (Gs) and net photosynthesis (A) of stressed (DT) plants were compared to those of well-irrigated (CT) plants. Predawn l in DT plants decreased to a minimum of –1.5 and –2.0 MPa in B. brizantha and B. mutica, compared to –2.5 to –3.0 MPa in B. decumbens, B. humidicola and B. dictyoneura. RWC decreased up to 50% in B. brizantha, compared to 75% in the other species. In B. humidicola, B. dictyoneura and in a lesser extent, B. decumbens, leaves of DT plants adjusted osmotically, by an apparent accumulation of nutrient solutes, at a rather constant ratio of turgid to dry weight of the tissue. Calculated osmotic adjustment ranged between 0.38 (B. decumbens) to 0.87 MPa (B. humidicola). This adjustment in 0 100 was in some cases maintained 7 days after re-watering. In B. brizantha and B. mutica, Gs and A were significantly affected by drought, with maximum reduction percentages at the second drought period of 65 and 80%, respectively. The corresponding reduction in B. decumbens was 53 and 55%, respectively; whereas in B. humidicola and B. dictyoneura Gs and A were reduced less than 20%. In all species, re-watering allowed for the water relations (except 0 100) and photosynthetic activity of leaves of DT plants to reach values comparable to those of CT plants. Results are discussed in term of root morphology and soil water extraction pattern, as well as leaf traits that may contribute to withstand drought under moderate soil water stress.  相似文献   

11.
M. B. Jones 《Oecologia》1987,71(3):355-359
Summary Photosynthesis and transpiration was measured in the large emergent C4 sedge Cyperus papyrus (papyrus) which occupies wide areas of wetland on the African continent. The maximum observed value of net assimilation was 35 mol CO2 m-2 s-1 at full sunlight but light saturation of photosynthesis did not occur. The quantum yield of photosynthesis obtained from the initial slope of the light response curves (0.06 mol mol-1 incident light) was relatively high and close to previously recorded values for some C4 grasses. Measurements made over two days showed that stomatal conductance was sensitive to the ambient air vapour pressure deficit (VPD) and was consistently lower on the day when VPD's were higher. There was, however, no marked midday closure of the stomata. Photosynthesis was also reduced on the day when VPD's were higher. The relationship between net photosynthesis and stomatal conductance was close to linear over the range of measurement conditions, with the result that intercellular CO2 concentrations (C i ) did not vary markedly. There was some evidence that C i decreased at high VPD's. The regulation of stomatal movement in papyrus appears to minimise excessive water loss while not severely limiting photosynthesis. The significance of this strategy for a wetland species with plentiful supplies of water is discussed.  相似文献   

12.
The possibility of improving the recovery of plant photosynthesis after water stress by cytokinin-induced stimulation of stomatal opening or delay of leaf senescence was tested. The 6-benzylaminopurine (BAP) in concentrations 1 and 10 M was applied to the substrate (sand + nutrient solution) or sprayed on primary leaves of 14-d-old Phaseolus vulgaris L. plants sufficiently supplied with water or water-stressed for 4 d. The later ones having relative water content decreased to 69 % were fully rehydrated during the following three days. Parameters of photosynthesis and water relations were measured in primary leaves of 7-, 10-, 14-, and 17-d-old plants. Application of 1 M BAP slightly delayed leaf senescence: in 17-d-old control plants, net photosynthetic rate (PN) and chlorophyll (Chl) content, and when sprayed on leaves also some of Chl a fluorescence kinetic parameters of BAP-treated leaves were slightly higher than those of untreated leaves. Both types of application of 1 M BAP slightly improved recovery of plants during rehydration after water stress in terms of increased gad, gab and PN, i.e., parameters which were markedly decreased by mild water stress. However, contents of Chl a, Chl b and carotenoids and parameters of Chl a fluorescence kinetic were not markedly affected by mild water stress and after rehydration were not stimulated by 1 M BAP. 10 M BAP had mostly negative effects on the parameters measured.  相似文献   

13.
The effect of a short period of saline stress was studied in two phenotypically different cultivars, one of normal fruit-size (L. esculentum cv. New Yorker) and one of cherry fruit-size (L. esculentum var.cerasiforme cv. PE-62). In both cultivars the relative growth rate (RGR) and the leaf area ratio (LAR) decreased following salinisation. The leaf turgor potential (p) and the osmotic potential at full turgor (os) decreased to the same extent in both cultivars. However, the contributions of organic and inorganic solutes to the osmotic adjustment was different between cultivars. New Yorker achieved the osmotic adjustment by means of the Cl and Na+ uptake from the substrate, and by synthesis of organic solutes. In the cherry cultivar organic solutes did not contribute to the osmotic adjustment, instead, their contribution decreased after salinisation. After the salt stress was removed, the water stress disappeared, the content of organic solutes decreased in plants of both cultivars and, therefore, their growth was not retarded by the diversion of resources for the synthesis of organic solutes. However, the toxic effects of the Cl and Na+ did not disappear after removal of the salt stress, and the net assimilation rate (NAR) and the rate of growth (RGR) did not recover.  相似文献   

14.
Canopy CO2-exchange rates (CER), air temperatures, and dew points were measured throughout ten days during the 1987 growing season for cotton (Gossypium hirsutum L.), grain sorghum [Sorghum bicolor (L) Moench], and five soybean [Glycine max (L) Merr.] cultivars, and throughout seven days in 1988, on maize (Zea maize L.). The objective was to determine if the decline in CER per unit light during the afternoon is associated with a vapor pressure deficit (VPD) increase. Some of the soybean and maize plots were kept as dry as possible. A VPD term significantly contributed (P0.05) to a canopy CER regression model in 54 of 80 data sets in 1987. Grain sorghum was less sensitive than the well-watered soybean genotypes to an increasing VPD (P0.05) on three of the ten measurement days and less sensitive than cotton (P0.05) on only one day. Cotton demonstrated less VPD sensitivity than soybean (P0.05) on one day. The moisture stressed soybean plots showed a greater CER sensitivity to VPD (P0.05) than the well-watered soybean plots. In 1988, the frequently irrigated maize plots were less sensitive to VPD (P0.05) than the rain-fed plots early in the season, before the rain-fed plots were excessively damaged by moisture stress. These results indicate that the afternoon declines in canopy CER found in a number of different species are associated with increases in the VPD; recent work of others suggests that this may be due to partial stomatal closure.Abbreviations CER carbon dioxide exchange rate - VPD vapor pressure deficit - PPFD photosynthetic photon flux density - DAP days after planning  相似文献   

15.
Interactions between drought, insect herbivory, photosynthesis, and water potential play a key role in determining how plants tolerate and defend against herbivory, yet the effects of insect herbivores on photosynthesis and water potential are seldom assessed. We present evidence that cynipid wasp galls formed by Antistrophus silphii on Silphium integrifolium increase photosynthesis (A), stomatal conductance (g), and xylem water potential (). Preliminary data showed that in drought-stressed plants galled shoots had 36% greater A, and 10% greater stem than ungalled shoots, while in well-watered plants leaf gas exchange was not affected by galls. We hypothesized that 1) galled shoots have higher , g, and A than ungalled shoots, but this differences diminishes if plant drought stress is reduced, and 2) galls can reduce decreases in A and g if water availability decreases. A field experiment testing the first hypothesis found that galls increased g and , but that differences between galled and ungalled shoots did not diminish after plants were heavily watered. A laboratory test of the second hypothesis using potted Silphium found that galled plants had smaller drops in A and g over a 4-day dry-down period. A vs g and A vs intercellular CO2 concentration relationships were consistent with the explanation that increased allows galls to increase A by reducing stomatal limitation of A, rather than by altering sink-source relationships or by removing low- limitations on non-stomatal components of A. Our working hypothesis is that galls increase and A by reducing the shoot: root ratio so that the plant is exploiting a greater soil volume per unit leaf area. We argue that increased A is an ineffective way for Silphium to compensate for negative effects of gall insect attack. Instead, increased and A may protect gall insects from variation in resource availability caused by periodic drought stress, potentially reducing negative effects of drought on plant quality and on gall insect populations.  相似文献   

16.
We investigated how leaf gas exchange and hydraulic properties acclimate to increasing evaporative demand in mature beech trees, Fagus crenata Blume and Fagus japonica Maxim., growing in their natural habitat. The measurements in the top canopy leaves were conducted using a 16-m-high scaffolding tower over two growing seasons. The daily maxima of net photosynthetic rate for the early growing season were close to the annual maximum value (11.9 mol m–2 s–1 in F. crenata and 7.7 mol m–2 s–1 in F. japonica). The daily maxima of water vapor stomatal conductance were highest in the summer, approximately 0.3 mol m–2 s–1 in F. crenata and 0.15 mol m–2 s–1 in F. japonica. From the early growing season to the summer season, the leaf-to-air vapor pressure deficit increased and the daily minima of leaf water potentials decreased. However, there was no loss of leaf turgor in the summer as a result of effective osmotic adjustment. Both the soil-to-leaf hydraulic conductance per unit leaf area and the twig hydraulic conductivity simultaneously increased in the summer, probably as a result of production of new vessels in the xylem. These results suggest that both osmotic adjustment and increased hydraulic conductance resulted in the largest diurnal maximum of stomatal conductance in the summer, resulting in the lowest relative stomatal limitation on net photosynthetic rate, although the leaf-to-air vapor pressure deficit was highest. These results indicate that even in a mesic forest, in which excessive hydraulic stress does not occur, the seasonal acclimation of hydraulic properties at both the single leaf and whole plant levels are important for plant carbon gain.  相似文献   

17.
Summary Rates of apparent photosynthesis were measured in situ at five positions between the upper crown and a lower branch of a 34 m tall Argyrodendron peralatum (F.M. Bailey) H.L. Edlin ex I.H. Boas tree, and on an understorey sapling of the same species growing in a northern Australian rainforest. At the end of the dry season, rapid reductions in photosynthetic rates occurred in the upper crown within three days after a rain event, but changes in the lower crown and the sapling were less marked. Complete recovery of photosynthesis followed a second rain event. At high photon flux densities, stomatal conductance to water vapour decreased in a curvilinear fashion as the vapour pressure difference between leaf and air increased. Apparent photosynthesis was linearly related to stomatal conductance on the first clear day after each rain event, but there was no relationship between these parameters at the end of a brief natural drying cycle. Under conditions of adequate water supply, stomatal conductances of both upper crown and understorey leaves increased linearly with increasing photon flux density up to about 300 mol m-2 s-1. During water deficits, stomatal conductances in leaves from the understorey increased much more rapidly at very low photon flux densities than did conductances in leaves from the upper canopy.  相似文献   

18.
Mildew resistance in the ornamental apple White Angel was found to be determined by complementary genes. The gene R w was found to be necessary for the expression of resistance controlled by the resistance gene Pl w . The close linkage between the isoenzyme gene, Lap-2, for leucine aminopeptidase and P1 w was confirmed. The efficiency of Lap-2 as a marker in screening for mildew resistance is limited, as it cannot account for susceptible plants with the r w r w P1 w p1 w genotype. It has, however, an important role to play in combining resistance genes from different sources. The genotypes of White Angel (R w r w , Pl w pl w , Lap-2an), Jester (R w r w , p1 w p w , Lap-2an) Katja (R w r w ,p1 w p1 w , Lap-2an) and Gloster 69 (r w r w , p1 w p1 w , Lap-2an) were determined. It also appeared that R w might influence Lap-2 activity in young seedlings.  相似文献   

19.
Tissue-water relations were used to characterize the responses of two Mediterranean co-occurring woody species (Quercus ilex L. and Phillyrea latifolia L.) to seasonal and experimental drought conditions. Soil water availability was reduced 15% by partially excluding rain throughfall and lateral flow (water runoff). Seasonal and experimental drought elicited physiological and morphological adaptations other than osmotic adjustment: both species showed large increases in cell-wall elasticity and decreased saturated-to-dry-mass ratio. Increased elasticity (lower elastic modulus) resulted in concurrent decreases in relative water content at turgor loss. In addition, P. latifolia showed significant increases in apoplastic water fraction. Decreased saturated-to-dry-mass ratio and increased apoplastic water fraction were accompanied by an increased range of turgor maintenance, which indicates that leaf sclerophyllous traits might be advantageous in drier scenarios. In contrast, the degree of sclerophylly (as assessed by the leaf mass-to-area ratio) was not related to tissue elasticity. An 15% reduction in soil water availability resulted in significant reductions in diameter growth when compared to control plants in both species. Moreover, although P. latifolia underwent larger changes in tissue water-related traits than Q. ilex in response to decreasing water availability, growth was more sensitive to water stress in P. latifolia than in Q. ilex. Differences in diameter growth between species might be partially linked to the effects of cell-wall elasticity and turgor pressure on growth, since Q. ilex showed higher tissue elasticity and higher intrinsic tolerance to water deficit (as indicated by lower relative water content at turgor loss) than P. latifolia.  相似文献   

20.
The effects of water stress and osmotic stress (sorbitol treatment) on the production of putrescine and proline in excised rice leaves were compared. Osmotic stress and water stress were found to affect differentially the levels of putrescine and proline in excised rice leaves. Putrescine accumulation is induced by osmotic stress, whereas proline accumulation is induced by water stress. The effects of ABA on the levels of proline and putrescine are similar to those of water stress, whereas the effects of jasmonic acid methyl ester (JA-Me) are similar to those of osmotic stress. Water stress results in an increase of endogenous ABA is excised rice leaves. However, neither osmotic stress nor JA-Me has effect on endogenous ABA levels in excised rice leaves. Of particular interest is the finding that proline levels increase when putrescine levels induced by osmotic stress or JA-Me are reduced by D-arginine and -methylornithine. L-arginine and L-ornithine applied exogenously also cause an increase in proline levels. It seems that L-arginine and L-ornithine are preferentially utilized as precursors for putrescine accumulation in excised rice leaves treated with osmotic stress and JA-Me, and for proline accumulation in excised rice leaves exposed to water stress and ABA.Abbreviations ABA abscisic acid - BSA bovine serum albumin - ELISA enzyme-linked immunosorbent assay - HPLC high performance chromatography - JA-Me jasmonic acid methyl ester - PVP poly-vinylpyrrolidone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号