首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollen from three S-genotypes of Nicotiana alata was grown in vitro in the presence of S-glycoproteins isolated from styles of the same three genotypes. Pollen germination was not affected by the presence of the S-glycoproteins, but pollen tube growth of all genotypes was inhibited. S2 pollen was preferentially inhibited by the S2-glycoprotein and S3 pollen by the S3-glycoprotein. The S6-glycoprotein preferentially inhibited growth of both S2 and S6 pollen over S3 pollen. Heat treatment dramatically increased the inhibitory activity of the S-glycoproteins as inhibitors both of pollen germination and tube growth; after heat treatment, S-allele specificity of pollen tube inhibition was not detected.  相似文献   

2.
In the S-RNase-based self-incompatibility system, subcellular events occurring in the apical region of incompatible pollen tubes during the pollen rejection process are poorly understood. F-actin dynamics and endomembrane trafficking are crucial for polar growth, which is temporally and spatially controlled in the tip region of pollen tubes. Thus, we developed a simple in vitro assay to study the changes in the F-actin cytoskeleton and the endomembrane system at the apical region of incompatible pollen tubes in Nicotiana alata. Growth but not germination of pollen tubes of S c10 -, S 70 -, and S 75 -haplotypes was selectively inhibited by style extracts carrying the same haplotypes. Pollen F-actin cytoskeleton and endomembrane system, visualized by fluorescent markers, were normal during the initial 60 min of pollen culture in the presence of compatible and incompatible style extracts. Additional culture resulted in complete growth arrest and critical alterations in the integrity of the F-actin cytoskeleton and the endomembrane system of incompatible pollen tubes. The F-actin ring and the V-shaped zone disappeared from the apical region, while distorted F-actin cables and progressive formation of membrane aggregates evolved in the subapical region and the shank. The vacuolar network of incompatible pollen tubes invaded the tip region, but vacuolar membrane integrity remained mostly unaffected. The polar growth machinery of incompatible pollen tubes was uncoupled, as evidenced by the severe disruption of colocalization between the F-actin cytoskeleton and the endomembrane compartments. A model of pollen rejection integrating the main subcellular events occurring in incompatible pollen is discussed.  相似文献   

3.
A number of components isolated from styles of P. avium cv. Napoleon (S 3 S 4) have been tested for their capacity to influence in vitro growth of pollen tubes from fresh and stored pollen (cv. Napoleon (S 3 S 4)). An antigenic glycoprotein (Antigen S) is a potent inhibitor of in-vitro pollen tube growth, causing a 65% reduction in tube length at a concentration of 20 g/ml. None of the other style components were effective inhibitors of pollen tube growth; neither were proteins of animal origin such as histone, serum albumin, cytochrome C, and the glycoproteins ovalbumin and thyroglobulin, effective inhibitors.  相似文献   

4.
Summary The expressed activity in pollen and stigma was determined for both S alleles of sixteen S-alíele heterozygous genotypes and for one of the two S alleles of two additional heterozygotes. Activities were measured using pollen tube penetration and seed set data from reciprocal crosses between each S-allele heterozygote and its two corresponding S-allele homozygotes.In pollen the S-allele activities ranged from zero to 100% inhibition of pollen tube penetration and seed set, and in the stigma they ranged from 8 to 100% inhibition. Of the sixty-eight S-allele activities measured, thirty-three (48%) were 90 to 100% inhibition, nine (13%) were 80 to 89% inhibition and one to five were within each ten-unit range below 80% inhibition.In an S-allele heterozygote, each subset of two S alleles had an activity for each allele in both pollen and stigma which was highly repeatable among duplicate pollinations within and among successive years. Each subset of two S alleles had a specific S-allele interaction in the pollen, and the same or another specific interaction in the stigma. In pairings with six other S alleles, allele S 2 had four calculated levels of activity in pollen that ranged from 88 to 94%, and five levels in the stigmas between 15 and 94%. When paired in a heterozygote, alleles S 3 and S 5 had activities ranging between 42 and 59%, representing mutual weakening of S-allele activity. Also, heterozygote S 15 S 3 had pollen activities, respectively, of 25 and 6%, i.e. mutual weakening in the pollen.These results indicate that in heterozygous combination with a series of other S alleles, each S-allele may have activity in pollen and also in stigma that potentially is between zero and 100% inhibition. They further indicate that the defined sexual-organ X S-allele-interaction Types I, II, III and IV are extremes; all intermediate variations including complete weakening of both alleles are possible. Recessiveness is weakening of the activity of but one of the two S alleles. The pollen tube penetrations into the style and seed set were highly correlated.Department of Plant Breeding and Biometry Paper No. 683  相似文献   

5.
Pollen-stigma compatibility was studied in cultivars and more than 1800 seedlings of the European hazelnut (Corylus avellana L). Four new S-alleles were identified, bringing the total to 25 unique alleles within C. avellana. The new alleles are the recessive alleles in ‘Tonda di Giffoni’ and ‘Segorbe’ (S23), in ‘Neue Riesennuss’ (S25), in ‘Gasaway’ (S26), and a dominant allele in a seedling of Turkish origin (S24). Dominance relationships in 233 of the possible 300 pairs of alleles were determined in both pistil and pollen. All alleles exhibited independent action in the pistil, whereas in the pollen either dominance or codominance was exhibited. The dominance hierarchy of alleles in the pollen was revised in light of the new information obtained. All 25 alleles have been assigned to a level in the hierarchy that is linear and now has eight levels. S6 and S9 were reassigned to lower levels in the hierarchy. Thirteen of the alleles are on the level of S1, while S4, S6, S11, and S23 occupy unique positions in the hierarchy. Improved pollen tester clones were identified for several S-alleles. The alleles in 55 cultivars were determined. The alleles identified in ‘DuChilly’ (S10 S14) did not agree with previous reports. Four cultivars have the same alleles as ‘Römische Nuss’ (S10 S18) and are morphologically indistinguishable from it: ‘Frutto-grosso’, ‘Istarski Okrogloplodna’, ‘Payrone’, and ‘Romai’. ‘Belle di Giubilino’ and ‘Tonda di Biglini’ are both S1 S10 and appear to be synonyms for the same cultivar.  相似文献   

6.
The polymorphic S-locus regulating self-incompatibility (SI) in Petunia contains the S-RNase gene and a number of S-locus F-box (SLF) genes. While penetrating the style through the stigma, a pollen tube takes up all S-RNases, but only self S-RNase inhibits pollen tube growth. Recent evidence suggests that SLFs produced by pollen collectively interact with and detoxify non-self S-RNases, but none can interact with self S-RNase. An SLF may be the F-box protein component of an SCF complex (containing Cullin1, Skp1 and Rbx1), which mediates ubiquitination of protein substrates for degradation by the 26S proteasome. However, the precise nature of the complex is unknown. We used pollen extracts of a transgenic plant over-expressing GFP-fused S2-SLF1 (SLF1 of S 2-haplotype) for co-immunoprecipitation (Co-IP) followed by mass spectrometry (MS). We identified PiCUL1-P (a pollen-specific Cullin1), PiSSK1 (a pollen-specific Skp1-like protein) and PiRBX1 (an Rbx1). To validate the results, we raised transgenic plants over-expressing PiSSK1:FLAG:GFP and used pollen extracts for Co-IP–MS. The results confirmed the presence of PiCUL1-P and PiRBX1 in the complex and identified two different SLFs as the F-box protein component. Thus, all but Rbx1 of the complex may have evolved in SI, and all SLFs may be the F-box component of similar complexes.  相似文献   

7.
The S-allele-associated proteins (S-proteins) in the styles of the Japanese pear (Pyrus serotina Rehd. var. culta Rehd.) were purified by cation exchange chromatography. Their inhibitory action on the growth of incompatible pollen tubes (pollen tubes bearing the same S- allele as in the style from which the S-proteins were prepared) was characterized in vitro. Germination and tube growth of self-pollen (pollen from the same cultivar from which the S-proteins were prepared) decreased dose-dependently when the S-protein was added to the medium. Tube length was reduced to 10% that of compatible pollen tubes (pollen tubes bearing the S-allele different from that in the style from which the S-proteins were prepared) at 1.5 μg μl1. S-proteins from Shinsui (S 4 S 5 ) also inhibited growth of cross-incompatible Kosui (S 4 S 5 ) pollen tubes, but not of compatible Chojuro (S 2 S 3 ) pollen tubes. After inactivation of RNase of the S- protein, the inhibitory action of the S-protein disappeared. These results indicate that the S-protein acts directly to inhibit growth of incompatible pollen tubes in Japanese pear styles, and that the RNase activity of the protein is essential for the biological function. However, small amounts of proteins that co-migrated with the S-protein may also play some roles in the inhibition. This is the first report on the selective inhibitory action of S-proteins in Rosaceae. Received: 11 April 2000 / Revision accepted: 28 September 2000  相似文献   

8.
The breakdown of self-incompatibility, which could result from the accumulation of non-functional S-haplotypes or competitive interaction between two different functional S-haplotypes, has been studied extensively at the molecular level in tetraploid Rosaceae species. In this study, two tetraploid Chinese cherry (Prunus pseudocerasus) cultivars and one diploid sweet cherry (Prunus avium) cultivar were used to investigate the ploidy of pollen grains and inheritance of pollen-S alleles. Genetic analysis of the S-genotypes of two intercross-pollinated progenies showed that the pollen grains derived from Chinese cherry cultivars were hetero-diploid, and that the two S-haplotypes were made up of every combination of two of the four possible S-haplotypes. Moreover, the distributions of single S-haplotypes expressed in self- and intercross-pollinated progenies were in disequilibrium. The number of individuals of the two different S-haplotypes was unequal in two self-pollinated and two intercross-pollinated progenies. Notably, the number of individuals containing two different S-haplotypes (S1- and S5-, S5- and S8-, S1- and S4-haplotype) was larger than that of other individuals in the two self-pollinated progenies, indicating that some of these hetero-diploid pollen grains may have the capability to inactivate stylar S-RNase inside the pollen tube and grow better into the ovaries.  相似文献   

9.
European pear exhibits RNase-based gametophytic self-incompatibility controlled by the polymorphic S-locus. S-allele diversity of cultivars has been extensively investigated; however, no mutant alleles conferring self-compatibility have been reported. In this study, two European pear cultivars, ‘Abugo’ and ‘Ceremeño’, were classified as self-compatible after fruit/seed setting and pollen tube growth examination. S-genotyping through S-PCR and sequencing identified a new S-RNase allele in the two cultivars, with identical deduced amino acid sequence as S 21 , but differing at the nucleotide level. Test-pollinations and analysis of descendants suggested that the new allele is a self-compatible pistil-mutated variant of S 21 , so it was named S 21 °. S-genotypes assigned to ‘Abugo’ and ‘Ceremeño’ were S 10 S 21 ° and S 21 °S 25 respectively, of which S 25 is a new functional S-allele of European pear. Reciprocal crosses between cultivars bearing S 21 and S 21 ° indicated that both alleles exhibit the same pollen function; however, cultivars bearing S 21 ° had impaired pistil-S function as they failed to reject either S 21 or S 21 ° pollen. RT-PCR analysis showed absence of S 21 °-RNase gene expression in styles of ‘Abugo’ and ‘Ceremeño’, suggesting a possible origin for S 21 ° pistil dysfunction. Two polymorphisms found within the S-RNase genomic region (a retrotransposon insertion within the intron of S 21 ° and indels at the 3′UTR) might explain the different pattern of expression between S 21 and S 21 °. Evaluation of cultivars with unknown S-genotype identified another cultivar ‘Azucar Verde’ bearing S 21 °, and pollen tube growth examination confirmed self-compatibility for this cultivar as well. This is the first report of a mutated S-allele conferring self-compatibility in European pear.  相似文献   

10.
The formation of distinct actin filament arrays in the subapical region of pollen tubes is crucial for pollen tube growth. However, the molecular mechanisms underlying the organization and dynamics of the actin filaments in this region remain to be determined. This study shows that Arabidopsis thaliana MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) has the actin filament–severing activity of an actin binding protein. This protein negatively regulated pollen tube growth by modulating the organization and dynamics of actin filaments in the subapical region of pollen tubes. MDP25 loss of function resulted in enhanced pollen tube elongation and inefficient fertilization. MDP25 bound directly to actin filaments and severed individual actin filaments, in a manner that was dramatically enhanced by Ca2+, in vitro. Analysis of a mutant that bears a point mutation at the Ca2+ binding sites demonstrated that the subcellular localization of MDP25 was determined by cytosolic Ca2+ level in the subapical region of pollen tubes, where MDP25 was disassociated from the plasma membrane and moved into the cytosol. Time-lapse analysis showed that the F-actin-severing frequency significantly decreased and a high density of actin filaments was observed in the subapical region of mdp25-1 pollen tubes. This study reveals a mechanism whereby calcium enhances the actin filament–severing activity of MDP25 in the subapical region of pollen tubes to modulate pollen tube growth.  相似文献   

11.
Previous studies have shown that UV-B could affect pollen germination and tube growth. However, the mechanism of response of pollen to UV-B has not been clear. The purpose of this study was to investigate the role of hydrogen peroxide (H2O2) in the UV-B-induced reduction of in vitro pollen germination and tube growth of Paeonia suffruticosa Andr. and Paulownia tomentosa Steud. Exposure of pollen of the two species to 0.4 and 0.8 W m−2 UV-B radiation for 3 h resulted in not only the reduction of pollen germination and tube growth, but also the H2O2 production in pollen grain and tube. Also, exogenous H2O2 inhibited pollen germination and tube growth of the two species in a dose-dependence manner. Two scavengers of H2O2, ascorbic acid and catalase, largely prevented not only the H2O2 generation, but also the reduction of pollen germination and tube growth induced by UV-B radiation in the two species. These results indicate that H2O2 is involved in the UV-B-inhibited pollen germination and tube growth.  相似文献   

12.
Three progenies of sour cherry (Prunus cerasus) were analysed to correlate self-(in)compatibility status with S-RNase phenotype in this allotetraploid hybrid of sweet and ground cherry. Self-(in)compatibility was assessed in the field and by monitoring pollen tube growth after selfing. The S-RNase phenotypes were determined by isoelectric focusing of stylar proteins and staining for RNase activity and, for the parents, confirmed by PCR. Seedling phenotypes were generally consistent with disomic segregation of S-RNase alleles. The genetic arrangements of the parents were deduced to be ‘Köröser’ (self-incompatible) S 1 S 4 .S B S D , ‘Schattenmorelle’ (self-compatible) S 6 S 13 .S B S B , and clone 43.87 (self-compatible) S 4 S 13 .S B S B , where “.” separates the two homoeologous genomes. The presence of S 4 and S 6 alleles at the same locus led to self-incompatibility, whereas S 13 and S B at homoeologous loci led to self-compatibility. The failure of certain heteroallelic genotypes in the three crosses or in the self-incompatible seedlings indicates that S 4 and S 6 are dominant to S B . However, the success of S 13 S B pollen on styles expressing corresponding S-RNases indicates competitive interaction or lack of pollen-S components. In general, the universal compatibility of S 13 S B pollen may explain the frequent occurrence of S 13 and S B together in sour cherry cultivars. Alleles S B and S D , that are presumed to derive from ground cherry, and S 13 , presumably from sweet cherry, were sequenced. Our findings contribute to an understanding of inheritance of self-(in)compatibility, facilitate screening of progenies for self-compatibility and provide a basis for studying molecular interactions in heteroallelic pollen.  相似文献   

13.
Sk2 protein is the most abundant member of the pistil-specific proteins of Solanum tuberosum. Sk2 protein has been localized by use of a polyclonal antibody (anti-Sk2) in the pistils of four clones of Solanum tuberosum. In the stigmas Sk2 protein accumulates to a high level in the cytoplasm of the internal secretory cells underlying the papillae one day prior to anthesis. In styles, the intercellular matrix of the transmitting tissue cells is intensely labelled by anti-Sk2. Sk2 protein is present in all four clones and shows the same labelling pattern. The possible role of the Sk2 protein in pollen tube growth is discussed.  相似文献   

14.
Ectopic expression in Arabidopsis of a pea (Pisum sativum) cDNA (2ox2) encoding a gibberellin (GA) 2-oxidase (PsGA2ox2), involved in the deactivation of biologically active GAs, has been used to establish a role for GAs in promoting pollen tube growth. One line, 35S:2ox2/28c, when homozygous for the transgene, exhibits a novel small fruit phenotype. The 28c transgene reduces pollen tube growth, and this results in a reduced number of fertilized seeds that are only present at the end of the silique nearest the stigma. To confirm that the 28c pollen tube phenotype is due to sense expression of the 2ox2 mRNA, a “hairpin” RNA interface silencing construct, designed to silence 2ox2 expression, has been used to restore pollen tube growth and fruit development. The interaction between 28c and other mutants with increased GA response has also been examined to provide further evidence that GAs play an important role in pollen tube growth. Based on the ability of mutant alleles to suppress the 35S:2ox2/28c phenotype, we define new roles for the gar2-1 and rga alleles in GA signaling during pollen tube elongation in addition to their previously established roles in vegetative tissues. In contrast to the constitutive GA response observed in internodes and leaves lacking RGA and GAI, the rga-2 gai-d5 mutant combination is only a partial suppressor of the 28c phenotype. Because the dominant dwarfing gai-1 allele reduces GA response in vegetative tissues, its effect on plant fertility has been examined. Although gai-1 reduces seed set, this appears to reflect defects in reproductive development other than pollen tube function. Finally, we show that the genetic background (Landsberg erecta or Columbia) modifies the 28c phenotype and that this effect is not due to the ER/er difference between these two ecotypes.  相似文献   

15.
One- and two-dimensional electrophoresis of Nicotiana tabacum pollen and pollen tube proteins confirmed that a new protein is preferentially synthesized during pollen germination and tube growth and becomes the most abundant protein in pollen tubes. Analysis of proteins extracted with sodium dodecyl sulfate (SDS) from different pollen tube fractions showed that it is the most abundant non-covalently bound wall protein, characterized by molecular mass of 69 kDa, pI between 7.9 and 8.2, and glycosylation with glucose and/or mannose. Amino acid analysis revealed relative abundance of serine, glutamic acid and glycine, but did not show the presence of hydroxyproline. According to all these characteristics, it cannot be classified as an extensin-like protein. Another prominent wall-bound glycoprotein has a molecular mass of 66 kDa and the same pI as the 69 kDa glycoprotein. These two glycoproteins are similar also in ConA binding, rate of synthesis, and rapid incorporation into pollen tube walls. Their synthesis is strongly reduced by tunicamycin and this inhibition results in the occurrence of new polypeptides in the range of 57–61 kDa. Tunicamycin also inhibited pollen tube growth. At 10 ng ml-1 and 50 ng ml-1 the inhibitor reduced pollen tube mass after 24 h of culture by 30% and 85%, respectively. This indicates that tobacco pollen presents a system highly sensitive to tunicamycin and that cotranslational N-linked glycosylation on the rough endoplasmic reticulum is required for 66 and 69 kDa glycoprotein formation and for pollen tube growth. Although other proteins appear during pollen germination and tube growth, the new proteins occur at low levels and seem to originate through modifications of preexisting polypeptides. In contrast to 69 and 66 kDa proteins, most proteins detected by [14C]amino acid incorporation and fluorography of gels were not revealed by Coomassie blue staining.  相似文献   

16.
Pollen tube growth is essential for the fertilization process in angiosperms. When pollen grains arrive on the stigma, they germinate, and the pollen tubes elongate through the styles of the pistils to deliver sperm cells into the ovules to produce the seeds. The relationship between the growth rate and style length remains unclear. In previous studies, we developed a liquid pollen germination medium for observing pollen tube growth. In this study, using this medium, we examined the pollen tube growth ability in Petunia axillaris subsp. axillaris, P. axillaris subsp. parodii, P. integrifolia, and P. occidentalis, which have different style lengths. Petunia occidentalis had the longest pollen tubes after 6 h of culture but had a relatively shorter style. Conversely, the pollination experiments revealed that P. axillaris subsp. parodii, which had the longest style, produced the longest pollen tubes in vivo. The results revealed no clear relationship between the style lengths and the growth rate of pollen tubes in vitro. Interspecific pollinations indicated that the styles affected pollen tube growth. We concluded that, in vitro, the pollen tubes grow without being affected by the styles, whereas, in vivo, the styles significantly affected pollen tube growth. Furthermore, interspecific pollination experiments implied that the pollen tube growth tended to be suppressed in the styles of self-incompatibility species. Finally, we discussed the pollen tube growth ability in relation to style lengths.  相似文献   

17.
 It is known that pollen tubes contain two high molecular weight polypeptides which share some biochemical and immunological properties with dynein heavy chains. This paper reports data on the subcellular localization of the two dynein heavy chain-related polypeptides during pollen tube growth. Immunofluoresence studies using a purified antibody (Dy-1) raised against a synthetic peptide reproducting the P-loop conserved sequence of dynein heavy chains showed spot-like structures, with a characteristic distribution pattern that depended on the tube length. Biochemical evidence confirmed the presence of dynein heavy chain-related bands in the pollen tube membrane fraction. The association of proteins carrying dynein heavy chain-related polypeptides to cell membranes was affected by detergent (Triton×100), whereas other stripping agents, like NaCl and Na2CO3, did not significantly influence the interaction of dynein heavy chain-related doublet with their cytoplasmic targets. These data suggest that dynein heavy chain-related polypeptides associate with membranous organelles within the vegetative cell of Nicotiana tabacum pollen tubes, implying their involvement in the cytoplasmic distribution of these organelles. Received: 22 May 1997 / Revision accepted: 11 November 1997  相似文献   

18.
Homomorphic self‐incompatibility is a well‐studied example of a physiological process that is thought to increase population diversity and reduce the expression of inbreeding depression. Whereas theoretical models predict the presence of a large number of S‐haplotypes with equal frequencies at equilibrium, unequal allele frequencies have been repeatedly reported and attributed to sampling effects, population structure, demographic perturbation, sheltered deleterious mutations or selection pressure on linked genes. However, it is unclear to what extent unequal segregations are the results of gametophytic or sexual selection. Although these two forces are difficult to disentangle, testing S‐alleles in the offspring of controlled crosses provides an opportunity to separate these two phenomena. In this work, segregation and transmission of S‐alleles have been characterized in progenies of mixed donors and fully compatible pollinations under field conditions in Prunus avium. Seed set patterns and pollen performance have also been characterized. The results reveal paternal‐specific distorted transmission of S‐alleles in most of the crosses. Interestingly, S‐allele segregation within any given paternal or maternal S‐locus was random. Observations on pollen germination, pollen tube growth rate, pollen tube cohort size, seed set dynamics and transmission patterns strongly suggest post‐pollination, prezygotic sexual selection, with male–male competition as the most likely mechanism. According to these results, post‐pollination sexual selection takes precedence over frequency‐dependent selection in explaining unequal S‐haplotype frequencies.  相似文献   

19.
Pollen germination and pollen tube growth was quantified among various native Iranian wild almonds (P. dulcis (Mill.) D. A. Webb, P. eleaegnifolia Mill., P. orientalis Mill., P. lycioides Spach, P. reuteri Bioss. et Bushe, P. arabica Olivier, P. glauca Browick and P. scoparia Spach in order to identify differences in the tolerance of pollen to temperature variations. Pollen germination and pollen tube growth were observed after incubation in darkness in a germination medium for 24?h at 10?C50°C at 5°C intervals. Maximum pollen germination of the wild almond species and specify that 60% was obtained for P. orientalis pollen and 98% for P. scoparia. Pollen tube length ranged from 860???m was obtained in P. lycioides and 1490???m in P. scoparia. A modified bilinear model best described the response to temperature of pollen germination and pollen tube length. Almond species variation was found for cardinal temperatures (T min, T opt and T max) of pollen germination percentage and pollen tube growth. Mean cardinal temperatures averaged over eight almond species were 14.7, 24.2, and 43.7°C for maximum percentage pollen germination and 14.48, 25.3, and 44.4 °C for maximum pollen tube length. The principal component analysis (PCA) identified maximum percentage pollen germination and pollen tube length of the species, and T max for the two processes as the most important pollen parameters in describing a species tolerance to high temperature. PCA also classified Prunus L. spp. into four groups according to the tolerance of pollen to temperature variations. The T min and T opt for pollen germination and tube growth, rate of pollen tube growth were less predictive in discriminating species for high temperature tolerance.  相似文献   

20.
β2-GlycoproteinI was shown to be a hydrophilic protein exhibiting no charge shift in the presence of a cationic detergent, but a charge shift in the presence of an anionic detergent. The latter was suggested to be caused by a binding of β2-glycoprotein I to deoxycholate in the Triton X-100/deoxycholate micelles. Quantification by electroimmunoassay of asialo-β2-glycoprotein and I and subfractions of β2-glycoprotein I gave different results although identical results were obtained in single radial immunodiffusion. Addition of 0.2% (w/v) of deoxycholate to the agarose gels containing Triton X-100 prior to electrophoresis, however, eliminated these differences. The effect of deoxycholate on the rate of migration of β2-glycoprotein I was found applicable for electroimmunoassay of the protein. Crossed immunofocusing of plasma from individual donors, electrophoresed in an agarose containing Triton X-100/deoxycholate micelles confirmed a postulated variation in the relative composition of subfractions of β2-glycoprotein I in plasma earlier suggested by Finlayson and Mushinski (Finlayson, J.S. and Mushinski, J.F. (1967) Biochim. Biophys. Acta 147, 413–420).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号