共查询到20条相似文献,搜索用时 15 毫秒
1.
Keiko Mitsunaga-Nakatsubo Akiko Fujiwara Ikuo Yasumasu 《Development, growth & differentiation》1992,34(4):379-385
The activity of ouabain-sensitive Na+ , K+ -ATPase in sea urchin embryos at the morula and the swimming blastula stage was practically the same to that in unfertilized eggs. The activity increased during the period between the mesenchyme blastula and the late gastrula stages. In embryo-wall cell fraction, which contained presumptive ectodermal cells as well as those of other cell lineages at the pre-gastrula stage and ectodermal cells at the late gastrula stage, the Na+ , K+ -ATPase activity increased in this developmental period more largely than in another cell fraction, containing mesenchyme cells and archenteron cells. Cycloheximide did not only block the activity increase in this period but also caused evident decrease in the activity in embryos at all examined stages. The activity increase in this period was strongly blocked by the treatment with actinomycin D, starting before the mesenchyme blastula stage, and was not seriously inhibited by the treatment starting at the mesenchyme blastula stage. The treatment starting at the initiation of gastrulation only slightly blocked further increase in the activity. Probably, an accumulation of mRNA encoding Na+ , K+ -ATPase occurs mainly in ectodermal cells and is completed up to the early gastrula stage. 相似文献
2.
Keiko Mitsunaga-Nakatsubo Miyuki Kanda Ken Yamazaki Hiroto Kawashita Akiko Fujiwara Kazumi Yamada Koji Akasaka Hiraku Shimada Ikuo Yasumasu 《Development, growth & differentiation》1992,34(6):677-684
A marked increase in the Na+ , K+ -ATPase activity of sea urchin embryos occurred following an elevation of its mRNA level, revealed by Northern blotting analysis, in developmental period between the swimming blastula and the late gastrula stage. cDNA clone of Na+ , K+ -ATPase α-subunit, obtained from γgt10 cDNA library of sea urchin gastrulae, was digested with EcoRl ad Hindlll. The obtained 268 bp cDNA fragment, hybridized to a 4.6 Kb RNA, was used as probe for Northern blotting analysis. The level of Na+ , K+ -ATPase mRNA was higher in embryo-wall cell fraction isolated from late gastrulae (ectoderm cells) than the level in the bag fraction, containing mesenchyme cells (mesoderm cells) and archenteron (endoderm cells). The activity of Na+ , K+ -ATPase and the level of its mRNA were higher in animalized embryos obtained by pulse treatment with A23187 for 3 hr, starting at the 8–16 cell stage and were considerably lower in vegetalized embryos induced by 3 hr treatment with Li+ than that in normal embryos at the post gastrula corresponidng stage. Augmentation of Na+ , K+ -ATPase gene expression can be regarded as a marker for ectoderm cell differentiation at the post gastrula stage, which results from determination of cell fate in prehatching period. 相似文献
3.
Keiko Mitsunaga Akiko Fujiwara Yukio Fujino Ikuo Yasumasu 《Development, growth & differentiation》1989,31(2):171-178
In cultured cells derived from micromeres isolated at the 16-cell stage of sea urchin embryos, the activity of H+ , K+ -ATPase became detectable after 15 hr of culture, when the cells started to form spicules, and then increased reaching a plateau from 25 hr of culture. The Na+ , K+ -ATPase activity of isolated micromeres increased to a maximum at 20 hr of culture and thereafter decreased gradually. Allylisothiocyanate, an inhibitor of H+ , K+ -ATPase, caused a decrease in intracellular pH (pHi) accompanied by blockage of 45 Ca deposition in spicule rods in spicule-forming cells at 30 hr of culture. Ouabain and amiloride had scarcely any effect on the pHi or 45 , deposition. In cultured cells exposed to nifedipine, which blocked 45 Ca deposition in spicule rods, allylisothiocyanate did not cause any decrease in pHi. These results show that H+ , which is generated in the overall reaction to produce CaCO3 from Ca2+ and HCO3 − , is probably released from the cells mainly in the reaction catalyzed by H+ , K+ -ATPase to maintain successive production of CaCO3 . 相似文献
4.
YUKIO FUJINO KEIKO MITSUNAGA IKUO YASUMASU 《Development, growth & differentiation》1987,29(6):591-597
Embryos kept with omeprazole, a specific H+ , K+ -ATPase inhibitor, in a period of development between the mesenchyme blastula and the pluteus corresponding stage became abnormal plutei having quite small spicules, somewhat poor pluteus arms and apparently normal archenterons. In micro-mere-derived cells, kept with omeprazole at pH 8.2 in a period between 15 and 40 hr of culture at 20°C, omeprazole strongly inhibited spicule formation but did not block the outgrowth of pseudopodial cables, in which spicule rods were to be formed. These indicate that omeprazole probably exerts no obvious inhibitory effects other than spicule rods formation. Omeprazole-sensitive H+ , K+ -ATPase, an H+ pump, seems to be indispensable for CaCO3 deposition (formation of spicule rod) in these spicule forming cells. H+ , produced in overall reaction for CaCO3 formation: Ca2+ + CO2 +H2 O°CaCO3 +2H+ , is probably released from the cells by this H+ pump and hence, this reaction tends to go to CaCO3 production to form spicule rods. Omeprazole, known to become effective following its conversion to a specific inhibitor of H+ , K+ -ATPase at acidic pH, is able to inhibit formation of spicule rod at alkaline pH in sea water. This is probably due to an acidification of sea water near the cell surface by H+ ejection in H+ , K+ -ATPase reaction. 相似文献
5.
Keiko Mitsunaga Yukio Fujino Ikuo Yasumasu 《Differentiation; research in biological diversity》1987,35(3):190-196
In cultured cells derived from isolated micromeres of sea urchin eggs, H+,K+-ATPase activity, which became detectable simultaneously with the initiation of spicule formation, was localized in the plasma membrane and the microsome fractions. Activities of marker enzymes for plasma membrane, 5'-nucleotidase, Na+,K+-ATPase, and adenylate cyclase, were found to be high in the plasma membrane fraction. Considerable activity of rotenone-insensitive NADPH-cytochrome c reductase, a marker enzyme for microsome, was detectable in the microsome fraction. These fractions exhibited barely any appreciable activity of markers for the other organellae. H+,K+-ATPase in plasma membrane probably mediates H+ release from the cells, in which H+ is produced in overall reaction to form CaCO3, the main component of spicules, from Ca2+, CO2 and H2O. Cl-,HCO3(-)-ATPase activity was also found in these two fractions before and after the initiation of spicule formation. After initiation, the skeletal vacuole fraction was obtained from subcellular structures containing spicules. Considerable activity of Cl-,HCO3(-)-ATPase was observed in this fraction, which exhibited a weak activity of UDP-galactose: N-acetylglucosamine galactosyltransferase, a marker enzyme for Golgi body. Cl-,HCO3(-)-ATPase in the skeletal vacuole membrane probably mediates HCO3- transport into the vacuoles to supply HCO3- for spicule formation. 相似文献
6.
MITSUNOBU NAKATSUKA 《Development, growth & differentiation》1985,27(6):653-661
The intracellular hatching enzyme was confirmed to be particulate-bound in the sea urchin, Hemicentrotus pulcherrimus. The enzyme was solubilized most effectively by sonication in buffer containing 12.5 mM CaCl2 , and 0.5 M KCl. The intracellular hatching enzyme is suggested to be activated by an antipain- or elastatinal-susceptible protease(s) on its solubilization. Since the intracellular hatching enzyme solubilized in the absence of protease inhibitors was inhibited by phenylmethylsulfonyl fluoride (PMSF) and chymostatin, the active hatching enzyme is concluded to be a chymostatin-sensitive serine protease. The enzyme required CaCl2 , and KCl or NaCl for both stability and activity. The preference of the enzyme of anions as sodium salts was as follows: Cl− > NO3 − > I− > SCN− . The apparent molecular weights of the intracellular hatching enzyme (IHE) and the hatching enzyme secreted from the blastula with or without the fertilization envelope (SHE or dSHE) were estimated as 89,000, 135,000, 80,000, respectively. On incubations with isolated fertilization envelopes as an enzyme substrate, the apparent molecular weights of dSHE and IHE increased to 128,000 and 105,000, respectively. 相似文献
7.
The stimulation of dicotyledonous leaf growth by light depends on increased H+ efflux, to acidify and loosen the cell walls, and is enhanced by K+ uptake. The role of K+ is generally considered to be osmotic for turgor maintenance. In coleoptiles, auxin‐induced cell elongation and wall acidification depend on K+ uptake through tetraethylammonium (TEA)‐sensitive channels (Claussen et al., Planta 201, 227–234, 1997), and auxin stimulates the expression of inward‐rectifying K+ channels ( Philippar et al. 1999) . The role of K+ in growing, leaf mesophyll cells has been investigated in the present study by measuring the consequences of blocking K+ uptake on several growth‐related processes, including solute accumulation, apoplast acidification, and membrane polarization. The results show that light‐stimulated growth and wall acidification of young tobacco leaves is dependent on K+ uptake. Light‐stimulated growth is enhanced three‐fold over dark levels with increasing external K+, and this effect is blocked by the K+ channel blockers, TEA, Ba++ and Cs+. Incubation in 10 mm TEA reduced light‐stimulated growth and K+ uptake by 85%, and completely inhibited light‐stimulated wall acidification and membrane polarization. Although K+ uptake is significantly reduced in the presence of TEA, solute accumulation is increased. We suggest that the primary role of K+ in light‐stimulated leaf growth is to provide electrical counterbalance to H+ efflux, rather than to contribute to solute accumulation and turgor maintenance. 相似文献
8.
Shigehisa Furuya Yasuyuki Kamata Ikuo Yasumasu 《Development, growth & differentiation》1994,36(1):103-110
Two-dimensional electrophoresis (2D-PAGE) of a histone fraction isolated from nuclei of embryos of the sea urchin Hemicentrotus pulcherrimus exhibited almost all histone species at all stages examined. At the gastrula stage, a spot of H1A became evident and three spots closely associated with one another were found in place of a single spot of H2A.1. In the histone fraction isolated from [adenylate-32 P] NAD+ -treated nuclei of all stages examined, autoradiograms of 2D-PAGE exhibited spots of mono [ADP-ribosyl] ated H1 and polymodified H2B.2, H3.1, H3.3 and H4 but did not show ADP-ribosylated H2A.1, H2A.2 or H2B.1. Poly [ADP-ribosyl] ated H3.2, found in morulae, was not detectable in blastulae and gastrulae. Treatment with dimethylsulfate, known to activate ADP-ribosylation in other cell types, induced poly [ADP-ribosyl] ation of H2A.2 and H2B.1 in embryos at all stages examined, and also polymodification of H3.2 in gastrulae. ADP-ribosylation of H1, H2B.2, H3.1 and H3.3 was hardly affected by dimethylsulfate treatment, though modification of H4 was blocked by this treatment. Probably, strong regulation of ADP-ribosyltransferase reactions causes failures of modification of H2A.2 and H2B.1 throughout early development and also of H3.2 at the gastrula stage. Regulation of histone ADP-ribosylation is thought to alter chromatin structures and the rate of gene expression, contributing to cell differentiation. 相似文献
9.
Alain Gerbi Marcel Debray Jean-Michel Maixent† Claude Chanez Jean-Marie Bourre 《Journal of neurochemistry》1993,60(1):246-252
Abstract: The Na+ sensitivity of whole brain membrane Na+ ,K+ -ATPase isoenzymes was studied using the differential inhibitory effect of ouabain (α1, low affinity for ouabain; α2, high affinity; and α3, very high affinity). At 100 m M Na+ , we found that the proportion of isoforms with low, high, and very high ouabain affinity was 21, 38, and 41%, respectively. Using two ouabain concentrations (10−5 and 10−7 M ), we were able to discriminate Na+ sensitivity of Na+ , K+ -ATPase isoenzymes using nonlinear regression. The ouabain low-affinity isoform, α1, exhibited high Na+ sensitivity [ K a of 3.88 ± 0.25 m M Na+ and a Hill coefficient ( n ) of 1.98 ± 0.13]; the ouabain high-affinity isoform, α2, had two Na+ sensitivities, a high ( K a of 4.98 ± 0.2 m M Na+ and n of 1.34 ± 0.10) and a low ( K a of 28 ± 0.5 m M Na+ and an n of 1.92 ± 0.18) Na+ sensitivity activated above a thresh old (22 ± 0.3 m M Na+ ); and the ouabain very-high-affinity isoform, α3, was resolved by two processes and appears to have two Na+ sensitivities (apparent K a values of 3.5 and 20 m M Na+ ). We show that Na+ dependence in the absence of ouabain is the result of at least of five Na+ reactivities. This molecular functional characteristic of isoenzymes in membranes could explain the diversity of physiological roles attributed to isoenzymes. 相似文献
10.
The effects of external K+ , H+ and Ca2+ concentrations on the intracellular K+ concentration, [K+ ]i, and the K+ -ATPase activity in 2-day-old mung bean roots [ Vigna mungo (L.) Hepper] were investigated. [K+ ]i, in mung bean roots was markedly decreased by external K+ or H+ stress and did not recover the initial value even after the stress was removed. This decrease in [K+ ]i, gradually disappeared with the addition of (Ca2+ . Ca2+ may offset the harmful effects of ion stress. Ca2+ seems to have two effects on K+ transport; control of K+ permeability and activation of K+ uptake, although K+ -ATPase activity was inhibited by Ca2+ concentrations higher than 10–4 M. We suggest that Ca2+ activates K+ uptake indirectly through the acidification of the cytoplasm. 相似文献
11.
Abstract: Rat brain microsomes were preincubated with S -adenosylmethionine (SAM), MgCl2 , and CaCl2 , then re-isolated, and the activity of Na+ ,K+ -ATPase determined. SAM inhibited the Na+ ,K+ -ATPase activity compared with microsomes subjected to similar treatment in the absence of SAM. A biphasic inhibitory effect was observed with a 50% decrease at a SAM concentration range of 0.4 μ M -3.2 μ M and a 70% reduction at a concentration range above 100 μ M . Inclusion of either S- adenosylhomocysteine or 3-deazaadenosine in the preincubations prevented the SAM inhibition of Na+ ,K+ -ATPase activity. The inhibition by SAM appeared to be Mg2+ - or Ca2+ -dependent. 相似文献
12.
KOJI AKASAKA HIROSHI SASAKI HIRAKU SHIMADA TSUGIO SHIROYA 《Development, growth & differentiation》1986,28(1):85-94
Only one form of acetylcholinesterase (AchE) was detected in Hemicentrotus pulcherrimus embryos. In H. pulcherrimus embryos as well as in the other sea urchin embryos, AchE activity begins to increase rapidly after gastrula stage.
Purification of AchE from plutei has been carried out by the procedure including affinity chromatography. Purified AchE had the activity 14,600 times higher than that of homogenate, and the final yield of AchE was 8%. The enzyme seems to be electrophoretically homogeneous, and has a molecular weight of 3 × 105 as determined by Sepharose CL–6B column chromatography. 相似文献
Purification of AchE from plutei has been carried out by the procedure including affinity chromatography. Purified AchE had the activity 14,600 times higher than that of homogenate, and the final yield of AchE was 8%. The enzyme seems to be electrophoretically homogeneous, and has a molecular weight of 3 × 10
13.
Ouabain Binding, ATP Hydrolysis, and Na+ ,K+ -Pump Activity During Chemical Modification of Brain and Muscle Na+ ,K+ -ATPase 总被引:1,自引:0,他引:1
J. Teisinger H. Zemková P. Svoboda E. Amler F. Vyskoil 《Journal of neurochemistry》1992,58(3):1066-1072
The effects of 16 group-specific, amino acid-modifying agents were tested on ouabain binding, catalytical activity of membrane-bound (rat brain microsomal), sodium dodecyl sulfate-treated Na+,K(+)-ATPase, and Na+,K(+)-pump activity in intact muscle cells. With few exceptions, the potency of various tryptophan, tyrosine, histidine, amino, and carboxy group-oriented drugs to suppress ouabain binding and Na+,K(+)-ATPase activity correlated with inhibition of the Na+,K(+)-pump electrogenic effect. ATP hydrolysis was more sensitive to inhibition elicited by chemical modification than ouabain binding (membrane-bound or isolated enzyme) and than Na+,K(+)-pump activity. The efficiency of various drugs belonging to the same "specificity" group differed markedly. Tyrosine-oriented tetranitromethane was the only reagent that interfered directly with the cardiac receptor binding site as its inhibition of ouabain binding was completely protected by ouabagenin preincubation. The inhibition elicited by all other reagents was not, or only partially, protected by ouabagenin. It is surprising that agents like diethyl pyrocarbonate (histidine groups) or butanedione (arginine groups), whose action should be oriented to amino acids not involved in the putative ouabain binding site (represented by the -Glu-Tyr-Thr-Trp-Leu-Glu- sequence), are equally effective as agents acting on amino acids present directly in the ouabain binding site. These results support the proposal of long-distance regulation of Na+,K(+)-ATPase active sites. 相似文献
14.
D. Guillaume†‡ T. Grisar†‡ A. V. Delgado-Escueta‡§ J. Laschet M. Bureau-Heeren‡ 《Journal of neurochemistry》1990,54(1):130-134
Analysis of purified Na+,K+-ATPase from cat and human cortex by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals two large catalytic subunits called alpha (-) (lower molecular weight) and alpha (+) (higher molecular weight). Differences in K+ dephosphorylation of these two molecular forms have been investigated by measuring the phosphorylation level of each protein after their separation on sodium dodecyl sulfate gels. In the presence of Na+, Mg2+, and ATP, both subunits are phosphorylated. Increasing concentrations (from 0 to 3 mM) of K+ induce progressive dephosphorylation of both alpha-subunits, although the phosphoprotein content of alpha (-) is decreased significantly less than that of alpha (+). Ka values of alpha (-) for K+ are 40% and 50% greater in cat and human cortex, respectively, than values of alpha (+). alpha (-) and alpha (+) are thought to be localized in specific cell types of the brain: alpha (-) is the exclusive form of nonneuronal cells (astrocytes), whereas alpha (+) is the only form of axolemma. Our results support the hypothesis that glial and neuronal Na+,K+-ATPases are different molecular entities differing at least by their K+ sensitivity. Results are discussed in relation to the role of glial cells in the regulation of extracellular K+ in brain. 相似文献
15.
Abstract: We have previously purified and characterized a nervous system-specific glycoprotein antigen from adult Drosophila heads, designated Nervana [nerve antigen (NRV)] and identified two separate genes coding for three different proteins. All three proteins share homology with the β subunits of Na+ ,K+ -ATPase from various other species. In this study we have isolated a new Drosophila Na+ ,K+ -ATPase α subunit cDNA clone (PSα; GenBank accession no. AF044974) and demonstrate expression of functional Na+ ,K+ -ATPase activity when PSα mRNA is coinjected into Xenopus oocytes along with any of the three different Nrv mRNAs. Western blotting, RNase protection assays, and immunocytochemical staining of adult fly sections indicate that NRV2 is expressed primarily in the nervous system. Staining is most intense in the brain and thoracic ganglia and is most likely associated with neuronal elements. NRV1 is more broadly expressed in muscle and excretory tissue and also shows diffuse distribution in the nervous system. Similar to other species, Drosophila expresses multiple isoforms of Na+ ,K+ -ATPase subunits in a tissue- and cell type-specific pattern. It will now be possible to use the advantages of Drosophila molecular and classical genetics to investigate the phenotypic consequences of altering Na+ ,K+ -ATPase expression in various cell and tissue types. 相似文献
16.
Rie Hosoi Toshio Matsuda Shoichi Asano Hiroaki Nakamura Hitoshi Hashimoto Kazuhiro Takuma Akemichi Baba 《Journal of neurochemistry》1997,69(5):2189-2196
Abstract: There are two α-subunit isoforms (α1 and α2) and two β-subunit isoforms (β1 and β2) of Na+ ,K+ -ATPase in astrocytes, but the functional heterodimer composition is not known. Ouabain (0.5–1.0 m M ) increased the levels of α1 and β1 mRNAs, whereas it decreased those of α2 and β2 mRNAs in cultured rat astrocytes. The increases in α1 and β1 mRNAs were observed at 6–48 h after addition of the inhibitor. Immunochemical analyses showed that ouabain increased α1 and β1, but not α2 and β2, proteins, and that the isoforms in control and ouabain-treated cultures were of glial origin. Low extracellular K+ and monensin (20 µ M ) mimicked the effect of ouabain on α1 mRNA. The ouabain-induced increase in α1 mRNA was blocked by the protein synthesis inhibitor cycloheximide (10 µ M ), the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane- N,N,N',N' -tetraacetic acid tetraacetoxymethyl ester (30 µ M ), and the calcineurin inhibitor FK506 (1 n M ). These findings indicate that chronic inhibition of Na+ ,K+ -ATPase up-regulates the α1 and β1, but not α2 and β2, isoforms in astrocytes, suggesting a functional coupling of α1β1 complex. They also suggest that intracellular Na+ , Ca2+ , and calcineurin may be involved in ouabain-induced up-regulation of the enzyme in astrocytes. 相似文献
17.
The effect of alloxan diabetes on the activities of Na+,K+-ATPase and Mg2+-ATPase was studied in three regions of rat brain at various time intervals after the onset of diabetes. It was observed that Na+,K+-ATPase activity increased at early time intervals after diabetes, followed by a recovery to near control levels in all three regions of the brain. There was an overall increase in Mg2+-ATPase activity in all the regions. A reversal of the effect was observed with insulin administration to the diabetic rats. 相似文献
18.
The aim of the present experiments was to study the effects of the neurotransmitters acetylcholine, noradrenaline, 5-hydroxytryptamine, and dopamine on the Na+,K+-ATPase of rat brain synaptosomal fractions. It is shown that dopamine at low concentrations specifically inhibits the Na+,K+-ATPase of synaptic membranes from the brain regions rich in dopaminergic endings, but has no effect on the synaptosomal Na+,K+-ATPase from the other parts of brain. Acetylcholine and noradrenaline have similar specific effects on Na+,K+-ATPase from cholinergic and adrenergic synaptosomes. The Na+,K+-ATPase of synaptic membranes from the different brain regions, characterised by different distributions of cholinergic, adrenergic, and 5-hydroxytryptaminergic endings, show different reactions with neurotransmitters. These data indicate a functional significance of the effects of the neurotransmitters on the synaptosomal Na+,K+-ATPase. 相似文献
19.
The effects of nerve growth factor (NGF) on induction of Na+,K+-ATPase were examined in a rat pheochromocytoma cell line, PC12h. Na+,K+-ATPase activity in a crude particulate fraction from the cells increased from 0.37 +/- 0.02 (n = 19) to 0.55 +/- 0.02 (n = 20) (means +/- SEM, mumol Pi/min/mg of protein) when cultured with NGF for 5-11 days. The increase caused by NGF was prevented by addition of specific anti-NGF antibodies. Epidermal growth factor and insulin had only a small effect on induction of Na+,K+-ATPase. A concentration of basic fibroblast growth factor three times higher than that of NGF showed a similar potency to NGF. The molecular form of the enzyme was judged as only the alpha form in both the untreated and the NGF-treated cells by a simple pattern of low-affinity interaction with cardiotonic steroids: inhibition of enzyme activity by strophanthidin (Ki approximately 1 mM) and inhibition of Rb+ uptake by ouabain (Ki approximately 100 microM). As a consequence, during differentiation of PC12h cells to neuron-like cells, NGF increases the alpha form of Na+,K+-ATPase, but does not induce the alpha(+) form of the enzyme, which has a high sensitivity for cardiotonic steroid and is a characteristic form in neurons. 相似文献
20.
Two monovalent ion porters, the putative Na+/H+ antiporter (NapA) of Enterococcus hirae and the putative K+/H+ antiporter (KefC) of Escherichia coli, are similar in sequence throughout their hydrophobic domains. These two proteins, which comprise a novel family of transporters unrelated to the previously characterized Na+/H+ exchangers of E. coli (NhaA and NhaB) are proposed to function by essentially the same mechanism. 相似文献