首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study focusses on the effects of pH, temperature, intensity of white, red far-red light on zygospore germination in the filamentous green algaSpirogyra hyalina. Maximum germination of zygospores occurred at pH 8.0 and 25°C. Germination of zygospores was favored by white light at an intensity of 3–4 klx. Red light resulted in higher germination when applied at the beginning or in the middle of the dark period, while far-red light decreased zygospore germination. Red light in the middle of the dark period was found to be most effective for germination. These observations suggest a possible presence of the phytochrome system in the test alga contributing to its morphogenetic response.  相似文献   

2.
Seed germination of many plant species is influenced by light. Of the various photoreceptor systems, phytochrome plays an especially important role in seed germination. The existence of at least five phytochrome genes has led to the proposal that different members of the family have different roles in the photoregulation of seed germination. Physiological analysis of seed germination ofArabidopsis thaliana (L.) Heynh. with phytochrome-deficient mutants showed for the first time that phytochrome A and phytochrome B modulate the timing of seed germination in distinct actions. Phytochrome A photo-irreversibly triggers the photoinduction of seed germination after irradiation with extremely low fluence light in a wide range of wavelengths, from UV-A, to visible, to far-red. In contrast, phytochrome B mediates the well-characterized photoreversible reaction, responding to red and far-red light of fluences four orders of magnitude higher than those to which PhyA responds. Wild plants, such asA. thaliana, survive under ground as dormant seeds for long periods, and the timing of seed germination is crucial for optimizing growth and reproduction. It therefore seems reasonable for plants to possess at least two different physiological systems for sensing the light environment over a wide spectral range with exquisite sensitivity of different phytochromes. This redundancy seems to enhance plant survival in a fluctuating environment.  相似文献   

3.
Abstract Buchnera hispida, a facultative root parasite of grasses and graminaceous crops, has a light requirement for germination. Studies were carried out on the effects of varying photoperiods with or without preceding dark incubation, on seed germination. Buchnera seeds showed long-day behaviour, since they germinated at all photoperiods including continuous light, and longer photoperiods were more effective in triggering seed germination than shorter photoperiods. Also, effects of red and far-red light indicated that the phytochrome system is operative in the light-induced germination of Buchnera. Although dark incubation in water before illumination was not absolutely necessary for germination, it caused the seeds to respond more rapidly to light. The longer the time of the dark incubation the more responsive the seeds were to photoperiod except when 15 min light was given. The effectiveness of a preceding dark incubation in making Buchnera seeds sensitive to rapid light action was completely inhibited at 4°C. This is in agreement with the hypothesis that a reaction partner of the far-red absorbing form of phytochrome is produced during dark incubation of Buchnera seeds. Such an intermediate has also been reported in some positively photoblastic seeds of non-parasitic flowering plants.  相似文献   

4.
The effects of irradiations with different proportions of red/farred light and of gibberellic acid on the phytochrome-mediated seed germination of Kalanchoë blossfeldiana cv. Feuerblüte, were studied. The seed coat transmits much more red than far-red light, and therefore the energy ratio between 660 nm and 730 nm is given only for the transmitted light. Decreasing this ratio from 65 to 1.0 caused only a very slight inhibition. If this ratio is further lowered to 0.64, a 10 min terminal irradiation after a 3-h white light photoperiod is inhibitory, but a 12-h photoperiod or continuous irradiation is not. If the ratio is decreased to 0.44 or 0.31, a 12-h photoperiod is now also inhibitory, although continuous irradiation and 10 min terminal irradiation are still more inhibitory. These results are discussed in terms of phytochrome phototransformations. Although gibberellic acid is unable to cause any germination in complete darkness, it can result in a very high germination percentage, if combined with treatments which by themselves do not induce any germination such as continuous far-red, terminal far-red after short photoperiods, or very short photoperiods at 25°C. These results point to a strong synergism between gibberellic acid and the so-called stabilized form of phytochrome, P*FR.  相似文献   

5.
Photoinduction and photoinhibition of germination in seed from a homozygous tobacco (Nicotiana tabacum L.) line containing an introduced oat phyA cDNA (encoding phytochrome A) is compared with that of isogenic wild-type (WT) tobacco. Under continuous irradiation by a light source with a low redfar-red (RFR) ratio the transgenic tobacco seed appeared to be less susceptible to photoinhibition of germination compared with WT seed. However, induction of germination following a short pulse by R (666 nm) was not enhanced in the genotype transformed by oat phyA cDNA compared with the WT; neither did germination of the transgenic tobacco seed show an increased sensitivity to saturating pulses of light of longer wavelengths (666–730 nm). In seeds of transgenic Arabidopsis thaliana (L.) Heynh. which contained an introduced phytochrome-B-encoding cDNA, levels of dark germination were enhanced, consistent with mediation of response by phytochrome B-Pfr. The germination behaviour of Arabidopsis genotypes wich contained an introduced cDNA encoding phytochrome A, however, did not significantly differ from that of the WT.Abbreviations ABO seed transformed with Arabidopsis phyB - cDNA; CaMV cauliflower mosaic virus - FR far-red light - Pfr far-red-absorbing form of phytochrome - Ptot total phytochrome - Pfr/Ptot phytochrome photoequilibrium - R red light - RBO seed transformed with rice phyB cDNA - RFR quantum ratio of red and far-red light - WL white light - WL + FR whitelight supplemented with far-red light - WT wild type The authors wish to thank R.D. Vierstra (Department of Horticulture, University of Wisconsin-Madison, USA) for providing the transgenic tobacco line, and M.T. Boylan, D. Wagner and P.H. Quail (U.C. Berkeley/USDA Plant Gene Expression Center, Albany, Calif. USA) for providing the transgenic Arabidopsis lines. The work presented in this paper was funded by grants from the Agricultural and Food Research Council (H.S., A.C.M., G.C.W.).  相似文献   

6.
Summary Germination of Amaranthus caudatus is inhibited by light, far-red being the most effective part of the spectrum. At temperatures of 25° and below there is a low final germination percentage under continuous far-red whereas above 25° there is only a delaying effect. In the presence of a saturating concentration of gibberellic acid (GA3) at 25° seeds germinate under continuous far-red although they are delayed. At 25° seeds exposed to 48 hr far-red fail to germinate when transferred to darkness. This induced dormancy can be broken by a single short exposure to red light given at any time after the far-red illumination. This effect of short red can be reversed by a subsequent short period of far-red indicating that the seeds are phytochrome controlled. Although most seeds have escaped from the reversing effect of short far-red after an intervening dark period of 5 hours, germination is greatly reduced by continuous far-red at this time. Results of exposing seeds to varying periods of far-red before and after dark imbibition are interpreted in terms of a continual production of phytochrome in its active P fr form and a requirement for P fr action over a long period of time. Effects of intermittent and continuous low intensity far-red on the inhibition of germination provides further evidence for a low energy photoreaction involving phytochrome. Effects on Germination Index of continuous illumination with various light sources maintaining different P fr /P total ratios have been investigated. The results suggest that the proportion of phytochrome in the P fr form is the most important factor in the regulation of germination. A scheme for the phytochrome control of germination in Amaranthus caudatus is presented and possible explanations for the dependence on P fr /P total ratio are discussed.Holder of a Science Research Council Studentship.  相似文献   

7.
Schulz , Sister M. Richardis , O.P., and Richard M. Klein . (N. Y. Bot. Gard., N. Y., N. Y.) Effects of visible and ultraviolet radiation on the germination of Phacelia tanacetifolia. Amer. Jour. Bot. 50(5): 430–434. Illus. 1963.—Germination of Phacelia tanacetifolia was suppressed by exposure to white light increasing with intensity and length of illumination. The light effect decayed during 24 hr of darkness. Seeds were most sensitive to the suppressive effects of light 13–17 hr after the beginning of imbibition. Light suppression was caused by a photocatalytic reaction. Wavelengths causing the suppression lie in the far-red, red, blue, near-ultraviolet and far-ultraviolet regions of the spectrum. At equal energies, blue light was less effective than far-red, red or ultraviolet radiation. There was no evidence for the existence of the phytochrome system. Simultaneous irradiation with red and blue light or simultaneous irradiation with red and far-red induced a synergistic repression of germination. The presentation of different wavelengths in various sequential patterns markedly altered the germination response. An interaction between elevated temperatures and visible radiation affecting germination response was also noted.  相似文献   

8.
9.
ABSTRACT

Seed germination is regulated by light. Phytochromes (Phys) act as red and far-red light photoreceptors to mediate seed germination. However, the mechanism of this process is not well understood. In this study, we found that the Arabidopsis thaliana mutants vascular plant one-zinc finger 1 (voz1) and voz2 showed higher seed germination percentage than wild type when PhyB was inactivated by far-red light. In wild type, VOZ1 and VOZ2 expression were downregulated after seed imbibition, repressed by PhyB, and upregulated by Phytochrome-interacting factor 1 (PIF1), a key negative regulator of seed germination. Red light irradiation and the voz1voz2 mutation caused increased expression of Gibberellin 3-oxidase 1 (GA3ox1), a gibberellin (GA) biosynthetic gene. We also found that VOZ2 is bound directly to the promoter of GA3ox1 in vitro and in vivo. Our findings suggest that VOZs play a negative role in PhyB-mediated seed germination, possibly by directly regulating GA3ox1 expression.  相似文献   

10.
General characteristics of light sensitivity of Impatients wallerana seeds were investigated. Germination was absolutely dependent on light, irrespective of temperature. High percentages of germination were obtained by exposure to long periods of illumination or, alternatively, to several repeated short irradiations with red light. In this case, responsiveness to light was not altered by increasing either the initial incubation period in darkness or the dark intervals between short exposures. Effects of red light were reversed by far-red light, thus demonstrating the involvement of phytochrome. Evidence was presented for an interactive effect, of unknown physiological nature between red and far-red light on the germination of the seeds.Abbreviations Pr phytochrome, red light absorbing form - Pfr phytochrome far-red absorbing form  相似文献   

11.
Both red light (10 minutes) and 35°C treatment (60 minutes) stimulate the germination of seeds of Rumex obtusifolius otherwise maintained in darkness at 25°C. Fluence response curves were determined for the effect of red light to stimulate germination of seeds with and without 35°C treatment. The endogenous far-red absorbing form (Pfr) level in the seeds was determined using short saturating fluences of wavelengths of light which maintain different proportions of phytochrome as Pfr at equilibrium. In the seed batches investigated, the endogenous Pfr level was found to be 4% or less of the total phytochrome. High dark germination after 35°C treatment does not result from an increase in sensitivity of the whole population to Pfr. Calculated fluence response curves for germination which best fit the experimental data suggest that seeds germinate in darkness after 35°C treatment because of a nonphytochrome-related process (overriding factor).  相似文献   

12.
The inhibitory effects of ethylene on spore germination were investigated. In darkness spore germination was completely inhibited by 10 μ1 · 1−1 ethylene. Light partially overcame this inhibition, and the effect of continuous irradiation with white fluorescent light saturated at about 450 μW · cm−2. Monochromatic red, blue and far-red light were effective in overcoming ethylene inhibition, whereas green was not. Short periodic exposures to red or far-red light were not sufficient to overcome ethylene inhibition. This suggested that phytochrome was not involved. The photosynthetic inhibitor DCMU blocked the effect of light. Infrared gas analysis showed that photosynthesis saturated at about 450 μW · cm−2 in white light. Red, blue and far-red light were more efficient photosynthetically than green light; DCMU blocked photosynthesis. Normalized curves of photosynthesis and germination vs. light intensity showed a similar dependence on light energy. It was concluded that light appears to overcome the inhibitory effects of ethylene through some process dependent on photosynthesis.  相似文献   

13.
Massanori Takaki  V. M. Zaia 《Planta》1984,160(2):190-192
A short period (15–30 min) at 30° C promotes germination of seeds of Lactuca sativa L. cv. Repolhuda in darkness. Far-red light reverses this stimulation, and the escape curves for phytochrome and high-temperature action are quite similar, indicating that the two factors act at a common point in the chain of events leading to germination. It is suggested that high temperature acts by decreasing the threshold of the active, far-red absorbing, form of phytochrome (Pfr) needed to promote germination.Abbreviations FR far-red light - Pfr far-red-absorbing form of phytochrome - R red light  相似文献   

14.
A far-red effect exists in 4 marine phytoplankton species: the diatom Ditylum brightwelli, the coccolithophorid Coccolithus huxleyi, the green flagellate Dunaliella tertiolecta, and the dinoflagellate Pyrocystis lunula. The effect is reversible and is manifested through a change in cell division rate. Cultures of algae which received 30-min far-red (FR) light (750 nm) prior to the dark period were compared to controls which received, no FR. Reversal of the FR effect was studied by exposing experimental cultures to 30 min FR followed by 5-min red (R) light (650 nm) prior to the dark period. Controls received only FR. Cultures were exposed to light at 6 different enumerated wavelengths between 460 and 750 nm. A decrease in division rate runs evident only with light at 750 nm. These results give evidence for the presence of the phytochrome system in these phytoplankton species.  相似文献   

15.
A study was conducted to determine water-assisted dissemination of conidia of Coniothyrium minitans (Cm), a mycoparasite of Sclerotinia sclerotiorum (Ss), in four soils (yellow–brown soil, red-clay soil, fluvo-aquic soil and black soil) and one sand. Conidial suspensions (1×107 conidia mL?1) of Cm were applied to sieved (2 mm screen) soil or sand in glass tubes to test vertical dissemination (VD) and in aluminum boxes to test horizontal dissemination (HD) of conidia. Results showed that conidia of Cm could be disseminated with water and spread in soil or sand for 16–20 cm vertically and for 5–10 cm horizontally. The conidial concentration of Cm was logarithmically reduced with the increase in depth of VD or the distance of HD. Dissemination of Cm conidia in sand was better than that in four soils. Potting experiments were done to further understand the potential of water-assisted dissemination of Cm conidia in suppression of Ss carpogenic germination. Results showed that more apothecia were produced by Ss sclerotia located at the soil surface than those at 5 and 10 cm in depth. The minimum Cm concentration for suppression of Ss carpogenic germination was 1000 conidia g?1 soil. Two-season field trials indicated that water-assisted application of Cm was an effective strategy used at the time for transplanting oilseed rape seedlings to suppress Ss carpogenic germination, thereby reducing the primary infection source for sclerotinia diseases of oilseed rape.  相似文献   

16.
The absorption of visible light in aquatic environments has led to the common assumption that aquatic organisms sense and adapt to penetrative blue/green light wavelengths but show little or no response to the more attenuated red/far-red wavelengths. Here, we show that two marine diatom species, Phaeodactylum tricornutum and Thalassiosira pseudonana, possess a bona fide red/far-red light sensing phytochrome (DPH) that uses biliverdin as a chromophore and displays accentuated red-shifted absorbance peaks compared with other characterized plant and algal phytochromes. Exposure to both red and far-red light causes changes in gene expression in P. tricornutum, and the responses to far-red light disappear in DPH knockout cells, demonstrating that P. tricornutum DPH mediates far-red light signaling. The identification of DPH genes in diverse diatom species widely distributed along the water column further emphasizes the ecological significance of far-red light sensing, raising questions about the sources of far-red light. Our analyses indicate that, although far-red wavelengths from sunlight are only detectable at the ocean surface, chlorophyll fluorescence and Raman scattering can generate red/far-red photons in deeper layers. This study opens up novel perspectives on phytochrome-mediated far-red light signaling in the ocean and on the light sensing and adaptive capabilities of marine phototrophs.  相似文献   

17.
Janet R. Hilton 《Planta》1982,155(6):524-528
Seeds ofBromus sterilis L. germinated between 80–100% in darkness at 15° C but were inhibited by exposure to white or red light for 8 h per day. Exposure to far-red light resulted in germination similar to, or less than, that of seeds maintained in darkness. Germination is not permanently inhibited by light as seeds attain maximal germination when transferred back to darkness. Germination can be markedly delayed by exposure to a single pulse of red light following 4 h inhibition in darkness. The effect of the red light can be reversed by a single pulse of far-red light indicating that the photoreversible pigment phytochrome is involved in the response. The response ofB. sterilis seeds to light appears to be unique; the far-red-absorbing form of phytochrome (Pfr) actually inhibiting germination.Abbreviations Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome  相似文献   

18.
Dormancy-breaking treatment of the photosensitive Scots pine (Pinus sylvestris L.) seed by white light incubation or a 15-min exposure to red light decreased the abscisic acid content prior to radicle protrusion. Incubation in the dark or exposure to red light followed by a 5-min far-red light irradiation did not cause as great a decrease in abscisic acid content nor was the dormancy relieved. The ability of the far-red light to keep the ABA level high and to prevent germination gradually disappeared as the length of the dark period between the red and far-red treatments was increased to 24 h. ABA was quantified on a gas chromatograph with an electron capture detector.  相似文献   

19.
Summary After inhibition of Nemophila insignis seeds by far-red (FR) light, a short exposure to blue (Bl) will not induce germination again but stimulation by red (R), with reversion by FR, can be observed. Germination is inhibited by long exposures to Bl (maxima at 455 and 475 nm). These radiations are absorbed either directly by phytochrome or through intermediary pigments such as flavoproteins.Abbreviations Bl blue - FR far-red - R red  相似文献   

20.
沙埋与水分对科尔沁沙地主要固沙植物出苗的影响   总被引:3,自引:0,他引:3  
蒿属半灌木乌丹蒿(Artemisia wudanica)、白沙蒿(A. sphaerocephala)、差不嘎蒿(A. halodendron)是科尔沁沙地的主要固沙植物。其中乌丹蒿和差不嘎蒿是科尔沁沙地的本土植物,白沙蒿为来自于库布齐沙漠、毛乌素沙地的飞播植物。设置了 5个沙埋深度(0.5、1.0、1.5、2.0和3.0 cm)和 4个水分梯度(86、171、257和 342 mL,分别模拟每月25、50、75和100 mm的降雨量),以探讨3种植物幼苗出土对沙埋和水分的响应。结果表明,沙埋与水分均显著影响着3种蒿属植物的幼苗出土(P < 0.001)。3种植物最适沙埋深度在0.5-1.5 cm范围内,萌发出土时适宜水量要高于当地种子萌发期的平均降水量(50 mm/月)。两种固沙先锋植物乌丹蒿和白沙蒿的种子出苗率均显著高于差不嘎蒿,乌丹蒿较白沙蒿也明显为高,尤其在水分缺乏时,表现出两种先锋植物种子出苗对干旱有更好的适应性。协方差分析表明,乌丹蒿幼苗死亡率显著高于白沙蒿和差不嘎蒿(P < 0.05),在达到75 mm/月降水量时,3种植物的出苗较好,但不能满足乌丹蒿幼苗生长对水分的需求,而实际种子萌发期的降水量平均只有50 mm/月。因而降水的缺乏导致乌丹蒿种群更新出现问题,加之飞播植物的竞争,使得近几年科尔沁沙地较多乌丹蒿种群出现衰退。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号