首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Properties and Location of Poly(A) in Rous Sarcoma Virus RNA   总被引:40,自引:26,他引:14       下载免费PDF全文
The poly(A) sequence of 30 to 40S Rous sarcoma virus RNA, prepared by digestion of the RNA with RNase T(1), showed a rather homogenous electrophoretic distribution in formamide-polyacrylamide gels. Its size was estimated to be about 200 AMP residues. The poly(A) appears to be located at or near the 3' end of the 30 to 40S RNA because: (i) it contained one adenosine per 180 AMP residues, and because (ii) incubation of 30 to 40S RNA with bacterial RNase H in the presence of poly(dT) removed its poly(A) without significantly affecting its hydrodynamic or electrophoretic properties in denaturing solvents. The viral 60 to 70S RNA complex was found to consist of 30 to 40S subunits both with (65%) and without (approximately 30%) poly(A). The heteropolymeric sequences of these two species of 30 to 40S subunits have the same RNase T(1)-resistant oligonucleotide composition. Some, perhaps all, RNase T(1)-resistant oligonucleotides of 30 to 40S Rous sarcoma virus RNA appear to have a unique location relative to the poly(A) sequence, because the complexity of poly(A)-tagged fragments of 30 to 40S RNA decreased with decreasing size of the fragment. Two RNase T(1)-resistant oligonucleotides which distinguish sarcoma virus Prague B RNA from that of a transformation-defective deletion mutant of the same virus appear to be associated with an 11S poly(A)-tagged fragment of Prague B RNA. Thus RNA sequences concerned with cell transformation seem to be located within 5 to 10% of the 3' terminus of Prague B RNA.  相似文献   

2.
The genome of the defective, murine spleen focus-forming Friend virus (SFFV) was identified as a 50S RNA complex consisting of 32S RNA monomers. Electrophoretic mobility and the molecular weights of unique RNase T1-resistant oligonucleotides (T1-oligonucleotides) indicated that the 32S RNA had a complexity of about 7.4 kilobases. Hybridization with DNA complementary to Friend murine leukemia virus (Fr-MLV) has distinguished two sets of nucleotide sequences in 32S SFFV RNA, 74% which were Fr-MLV related and 26% which were SFFV specific. By the same method, SFFV RNA was 48% related to Moloney MLV. We have resolved 23 large T1-oligonucleotides of SFFV RNA and 43 of Fr-MLV RNA. On the basis of the relationship between SFFV and Fr-MLV RNAs, the 23 SFFV oligonucleotides fell into four classes: (i) seven which had homologous equivalents in Fr-MLV RNA; (ii) six more which could be isolated from SFFV RNA-Fr-MLV cDNA hybrids treated with RNases A and T1; (iii) eight more which were isolated from hybrids treated with RNases A and T1; and (iv) two which did not have Fr-MLV-related counterparts. Surprisingly, the two class iv oligonucleotides had homologous counterparts in the RNA of six amphotropic MLV's including mink cell focus-forming and HIX-MLVs analyzed previously. The map locations of the 23 SFFV T1-oligonucleotides relative to the 3' polyadenylic acid coordinate of SFFV RNA were deduced from the size of the smallest polyadenylic acid-tagged RNA fragment from which a given oligonucleotide was isolated. The resulting oligonucleotide map could be divided roughly into three segments: two terminal segments which are mosaics of oligonucleotides of classes i, ii, and iii and an internal segment between 2 and 2.5 kilobases from the 3' end containing the two oligonucleotides shared with amphotropic MLVs. Since SFFV RNA consists predominantly of sequence elements related to ecotropic and amphotropic helper-independent MLVs, it would appear that the transforming gene of SFFV is not a major specific sequence unrelated to genes of helper viruses, as is the case with Rous sarcoma and probably withe other defective sarcoma and acute leukemia viruses.  相似文献   

3.
The large RNase T1-resistant oligonucleotides of the nondefective (nd) Rous sarcoma virus (RSV): Prague RSV of subgroup B (PR-B), PR-C and B77 of subgroup C; of their transformation-defective (td0 deletion mutants: td PR-B, td PR-C, and td B77; and of replication-defective (rd) RSV(-) were completely or partially mapped on the 30 to 40S viral RNAs. The location of a given oligonucleotide relative to the poly(A) terminus of the viral RNAs was directly deduced from the smallest size of the poly(A)-tagged RNA fragment from which it could be isolated. Identification of distinct oligonucleotides was based on their location in the electrophoretic/chromatographic fingerprint pattern and on analysis of their RNase A-resistant fragments. The following results were obtained. (i) The number of large oligonucleotides per poly(A)-tagged ffagment increased with increasing size of the fragment. This implies that the genetic map is linear and that a given RNase T1-resistant oligonucleotides has, relative to the poly(A) end, the same location on all 30 to 40S RNA subunits of a given 60 to 70S viral RNA complex, (ii) Three sarcoma-specific oligonucleotides were identified in the RNAs of Pr-B, PR-C and B77 by comparison with the RNAs of the corresponding td viruses...  相似文献   

4.
We analyzed the genetic structure and gene products of the newly isolated avian sarcoma virus UR1, which recently has been shown to be replication defective and to contain no sequences homologous to the src gene of Rous sarcoma virus. The sizes of the genomic RNAs of UR1 and its associated helper virus, UR1AV, were determined to be 29S and 35S (5.9 and 8.5 kilobases), respectively, by gel electrophoresis and sucrose gradient sedimentation. RNase T1 oligonucleotide mapping of purified viral RNAs indicated that UR1 RNA contains eight unique oligonucleotides in the middle of the genome and shares four 5'-terminal and three 3'-terminal oligonucleotides with UR1AV RNA. The unique sequences of UR1 and Fujinami sarcoma virus were found to be closely related to each other by molecular hybridization of UR1 RNA with DNA complementary to the unique sequence of Fujinami sarcoma virus RNA, but minor differences were found by oligonucleotides fingerprinting. In the regions flanking the unique sequences, UR1 and Fujinami sarcoma viral RNAs contain distinct oligonucleotides, which are shared with oligonucleotides of the respective helper viral RNAs. Cell transformed with UR1 produce a single 29S RNA species which contains a UR1 unique sequence; this species is most likely the mRNA coding for the transforming protein. In UR1-transformed cells, a phosphoprotein fo 150,000 daltons (p150) was detected by immunoprecipitation with antiserum against gag proteins. p150 was associated with a protein kinase activity that was capable of phosphorylating p150 itself, immunoglobulin G of antiserum, and a soluble substrate, alpha-casein. This enzyme transferred phosphate exclusively to tyrosine residues of substrates in vitro, but p 150 labeled in vivo with 32P contained both phosphoserine and phosphotyrosine. The in vitro kinase reaction was not affected by the presence of cyclic AMP or cyclic GMP and strongly preferred Mn2+ over Mg2+. Thus, the properties of UR1 protein are almost identical to those of Fujinami sarcoma virus protein.  相似文献   

5.
We have recently shown that a newly isolated avian sarcoma virus, UR2, is defective in replication and contains no sequences homologous to the src gene of Rous sarcoma virus. In this study, we analyzed the genetic structure and transforming sequence of UR2 by oligonucleotide fingerprinting. The sizes of the genomic RNAs of UR2 and its associated helper virus, UR2AV, were determined to be 24S and 35S, respectively, by sucrose gradient sedimentation. The molecular weight of the 24S UR2 genomic RNA was estimated to be 1.1 x 10(6), corresponding to 3,300 nucleotides, by gel electrophoresis under the native and denatured conditions. RNase T1 oligonucleotide mapping indicated that UR2 RNA contains seven unique oligonucleotides in the middle of the genome and shares eight 5'- and six 3'-terminal oligonucleotides with UR2AV RNA. From these data, we estimated that UR2 RNA contains a unique sequence of about 12 kilobases in the middle of the genome, and contains 1.4 and 0.7 kilobases of sequences shared with UR2AV RNA at the 5' and 3' ends, respectively. Partial sequence analysis of the UR2-specific oligonucleotides by RNase A digestion revealed that there are no homologous counterparts to these oligonucleotides in the RNAs of other avian sarcoma and acute leukemia viruses studied to date. UR2-transformed non-virus-producing cells contain a single 24S viral RNA which is most likely the message coding for the transforming protein of UR2. On the basis of the uniqueness of the transforming sequence, we concluded that UR2 is a new member of the defective avian sarcoma viruses.  相似文献   

6.
The genomic complexity of visna virus was measured by quantitative analysis of 18 RNase T1-resistant oligonucleotides from 60-70S RNA. T1-resistant oligonucleotides were separated by two-dimensional polyacrylamide gel electrophoresis. Visna virus had a genomic complexity of 3.6 X 10(6) daltons, very close to the size of a single 30-40S RNA subunit. It was therefore concluded that the visna virus genome is largely polyploid. Visna virus 60-70S RNA polyadenylic acid segment was purified by T1 RNase digestion followed by oligodeoxythymidylic acid-cellulose column chromatography. It contained over 99% AMP and had a size of about 200 nucleotides. The binding capacities on oligodeoxythymidylic acid-cellulose of native 60-70S RNA and purified 30-40S RNA subunits were examined. It was concluded that two out of three intact subunits contain a polyadenylic acid segment.  相似文献   

7.
Current studies were undertaken to compare the genomes of Kirsten murine sarcoma virus (Ki-MuSV), Harvey murine sarcoma virus (Ha-MuSV), and the replication-defective endogenous rat virus to understand the function of these viral RNAs. Genome organization and sequence homology were studied by fingerprinting large RNase T1-resistant oligonucleotides and by cross-protecting homologous oligonucleotides against RNase A and T1 digestion with complementary DNA prepared from each of the other viral RNA. Ki-MuSV and Ha-MuSV were found to share an extensive series of rat-derived oligonucleotides begining ca. 1 kilobase (kb) from the 3' end and extending to within 1.5 kb of the 5'end of Ki-MuSV RNA. The total map distance covered in ca. 5.5 kb. The eight oligonucleotides covering the 1.5 kb at the 5' end of Ki-MuSV RNA were not found in Ha-MuSV RNA. Five out of these eight oligonucleotides, however, could be designated with certainty to be of rat virus origin. Since Ha-MuSV is 6.5 kb in size and Ki-MuSV is 8 kb in size, the major difference between them is the 1.5 kb from the replication-defective endogenous rat virus sequences at the 5' end of Ki-MuSV not present in Ha-MuSV. Consistent with the difference in the genome structure, these two sarcoma viral RNA'S yielded distinct major translation products in cell-free systems, I.E., A 50,000-dalton polypeptide (P50) from Ki-MuSV and a 22,000-dalton polypeptide (p22) from Ha-MuSV. These polypeptides may provide the necessary protein makers for identifying in vivo virus-coded proteins.  相似文献   

8.
The site of recombination of a mink cell focus-inducing strain (Mo-MuLV83) derived from an ecotropic Moloney murine leukemia virus (Mo-MuLV) was mapped by fingerprint analysis of the large RNase T1-resistant oligonucleotides, employing a two-dimensional gel electrophoresis method. Mo-MuLV83, in contrast to the ecotropic Mo-MuLV, demonstrated a broadened host range, i.e., growth not only on mouse cells but also on mink cells, and recombination involved the env gene function. The genomic RNA of these two viruses shared 42 out of a total of 51 to 53 large T1 oligonucleotides (81%) and possessed a similar subunit size of 36S. Most of these T1 oligonucleotides were mapped in their relative order to the 3' polyadenylic acid end of the viral RNA molecules. There were 10 common oligonucleotides immediately next to the 3' termini. A cluster of 7 (in Mo-MuLV83) or 10 (in Mo-MuLV) unique T1 oligonucleotides were mapped next to the common sequences at the 3' end, and they all appeared concomitantly in a polyadenylic acid-containing RNA fraction with a sedimentation coefficient slightly larger than 18S. Therefore, the env gene of Mo-MuLV was situated at a location approximately 2,000 to 4,000 nucleotides from the 3' end of the genomic RNA, and the gene order of Mo-MuLV appeared to be similar to that of the more rigorously determined avian oncornaviruses. cDNA(SFFV) specific for the xenotropic sequences in the spleen focus-forming virus RNA hybridized to the cluster of unique oligonucleotides of Mo-MuLV83 RNA. This suggests that the loci of recombination involve the homologous env gene region of a xenotropic virus.  相似文献   

9.
The genetic compositions of two independently derived preparations of the Bratislava-77 strain (B77) of Rous sarcoma virus were analyzed after each was passaged seven or more times in duck embryo fibroblasts. RNase, T1-resistant oligonucleotide fingerprint analysis of virion RNA from both preparations of duck-passaged B77 revealed the presence of two large noncontiguous deletions. Approximately 75% of the RNAs contained a deletion which spans oligonucleotides 304 to 4 on the viral genome (about 3,500 nucleotides) and encompasses all of the B77 polymerase gene. More than 90% of the RNAs also contained a deletion which spans src-specific oligonucleotides 6 and 5(about 2,200 nucleotides) and is identical to the deletion observed in transformation-defective B77. Virion RNA from duck-passaged B77 also contained two oligonucleotides (D1 and D2) not observed in the RNA of B77 virus grown on chicken embryo fibroblasts. Analysis of the virion RNA of duck-passaged B77 by denaturing agarose gel electrophoresis revealed four major subunits with molecular weights of 3.40 x 10(6), 2.65 x 10(6), 2.25 x 10(6), and 1.55 x 10(6). Whereas the 3.40- and 2.65-megadalton (Mdal) RNA species comigrated with the nondefective and transformation-defective RNAs of B77 propagated on chicken embryo fibroblasts, no counterparts to the 2.25- and 1.55-Mdal RNAs were observed in the RNA of B77 grown on chicken embryo fibroblasts. Oligonucleotide fingerprint analysis of these RNA species revealed that the 2.65-Mdal RNA contains the src-specific deletion and that 2.25-Mdal RNA contains the polymerase region deletion; both of these deletions were observed in the 1.55-Mdal RNA, which was the major RNA subunit species detected in duck-passaged B77. The new oligonucleotides (D1 and D2) observed in the duck-passaged virus were present in the 2.25- and 1.55-Mdal RNA species in vitro and in vivo and directs the synthesis of a 130,000-dalton protein (p130). p130 contains antigenic determinants specific for p27 (gag gene) and gp85 (env gene) but does not contain sequences which cross-react with antisera directed against the alpha beta form of RNA-dependent DNA polymerase (pol gene). This RNA, therefore, is generated by a fusion of the gag and env genes of Rous sarcoma virus B77.  相似文献   

10.
The src genes of six different strains of avian sarcoma virus (ASV) were compared with those of a series of newly isolated sarcoma viruses, termed "recovery avian sarcoma viruses" (rASV's). The rASV's were isolated recently from chicken and quail tumors induced by transformation-defective (td) deletion mutants of Schmidt-Ruppin Rous sarcoma virus. The RNase T1-resistant oligonucleotide maps were constructed for the RNA genomes of different strains of ASV and td mutants. The src-specific sequences, characterized by RNase T1-resistant oligonucleotides ranging from 9 to 19 nucleotides long, were defined as those mapping between approximately 600 and 2,800 nucleotides from the 3' polyadenylate end of individual sarcoma viral RNAs, and missing in the corresponding td viral RNAs. Our results revealed that 12 src-specific oligonucleotides were highly conserved among several strains of ASV, including the rASV's, whereas certain strains of ASV were found to contain one to three characteristic src-specific oligonucleotides. We previously presented evidence supporting the idea that most of the src-specific sequences present in rASV RNAs are derived from cellular genetic information. Our present data indicate that the src genes of rASV's are closely related to other known ASVs. We conclude that the src genes of different strains of ASV and the cellular sarc sequences are of common origin, although some divergence has occurred among different viral src genes and related cellular sequences.  相似文献   

11.
The intracellular development and RNA composition of Theiler's murine encephalomyelitis virus (TMEV) isolates were determined by electron microscopy, sucrose gradient centrifugation, and RNase T1 fingerprinting. Replication of FA virus, a virulent strain of TMEV, was characterized by the appearance of viral crystalline arrays in the cytoplasm of infected cells. In contrast, cells infected with the less virulent isolates (WW, TO4, BeAn 8386, and Yale) showed no crystalline arrays; instead, virions were found to be arranged between two layers of membranes in the cytoplasm of infected cells. Analysis of the RNAs of TMEV isolates showed that the RNAs were single-stranded molecules having sedimentation coefficients of 35S. RNase T1 fingerprinting of TMEV RNA revealed that striking differences between the virulent and less virulent TMEV isolates existed. Moreover, base composition analysis of RNase T1-resistant oligonucleotides of two TMEV isolates which represented the two subgroups indicated that there were no substantial oligonucleotides common to both subgroups. Based on these findings and the known difference in virulence, we suggest that the TMEV group contains two genetically district subgroups of viruses.  相似文献   

12.
32P- and methyl-3H-labeled 70S Moloney murine leukemia virus RNA was purified from virions produced in Moloney murine leukemia virus-infected mouse embryo cells. Primer-free RNA subunits obtained by heat treatment and zonal centrifugation were digested with RNase T2, and methylated oligonucleotides were chromatographed on DEAE-Sephadex in 7 M urea. Approximately one molecule of RNase T2-stable oligonucleotide (-5 charge) was isolated per subunit. Structural analysis indicated that the sequence of the oligonucleotide is m7GpppGmpCp. Analysis of the mononucleotide fraction isolated by DEAE-Sephadex chromatography of the RNase T2 digest identified 15 to 23 internal N6-methyladenylic acid molecules per subunit.  相似文献   

13.
14.
The sequence complexity of the 60-70S RNA complex from Moloney murine leukemia virus (M-MuLV) was determined by measuring the annealing rate of radioactively labeled virus-specific DNA with M-MuLV 60-70S RNA in conditions of vast RNA excess. The M-MuLV RNA annealing rate, characterized by the quantity C(r)t((1/2)), was compared with the C(r)t((1/2)) values for annealing of poliovirus 35S RNA (2.6 x 10(6) molecular weight) with poliovirus-specific DNA and Sindbis virus 42S RNA (4.3 x 10(6) molecular weight) with Sindbis-specific DNA. M-MuLV-specific DNA was prepared in vitro by the endogenous DNA polymerase reaction of M-MuLV virions, and poliovirus and Sindbis virus DNAs were prepared by incubation of viral RNA and DNA polymerase purified from avian myeloblastosis virus and an oligo deoxynucleotide primer. The poliovirus and Sindbis virus DNAs were sedimented through alkaline sucrose gradients, and those portions of the DNA with sizes similar to the M-MuLV DNA were selected out for the annealing measurements. M-MuLV was cloned on NIH-3T3 cells because it appeared possible that the standard source of M-MuLV for these experiments was a mixture of viruses. The annealing measurements indicated a sequence complexity of approximately 9 x 10(6) daltons for the cloned M-MuLV 60-70S RNA when standardized to poliovirus and Sindbis virus RNAs. This value supports the hypothesis that each of the 35S RNA subunits of M-MuLV 60-70S RNA has a different base sequence.  相似文献   

15.
From analysis of the large RNase T1-resistant oligonucleotides of Kirsten sarcoma virus (Ki-SV), a physical map of the virus genome was deduced. Kirsten murine leukemia virus (Ki-MuLV) sequences were detected in T1 oligonucleotides closest to the 3' end of the viral RNA and extended approximately 1,000 nucleotides into the genome. The rat genetic sequences started at this point and extended all the way to the very 5' end of the RNA molecules, where a small stretch of Ki-MuLV sequence was detected. By comparison of the fingerprints of Ki-SV RNA and the RNA of the endogenous rat src genetic sequences, it was found that more than 50% of the T1 oligonucleotides were similar between Ki-SV and the endogenous rat src RNA, suggesting an identical primary nucleotide sequence in over 50% of the viral genomes. The results indicate that Ki-SV arose by recombination between the 5' and 3' ends of Ki-MuLV and a large portion of the homologous sequences of the endogenous rat src RNA.  相似文献   

16.
We purified the p19 proteins from the Prague C strain of Rous sarcoma virus, avian myeloblastosis virus, B77 sarcoma virus, myeloblastosis-associated virus-2(0), and PR-E 95-C virus and measured their binding affinities for 60S viral RNA by the nitrocellulose filter binding technique. The apparent association constants of the p19 proteins from Rous sarcoma virus Prague C, avian myeloblastosis virus, and B77 sarcoma virus for homologous and heterologous 60S RNAs were similar (1.5 x 10(11) to 2.6 x 10(11) liters/mol), whereas those of myeloblastosis-associated virus-2(0) and PR-E 95-C virus were 10-fold lower. The sizes and relative amounts of the virus-specific polyadenylic acid-containing RNAs in the cytoplasms of cells infected with Rous sarcoma virus Prague C, myeloblastosis-associated virus-2(0), and PR-E 95-C virus were determined by fractionating the RNAs on agarose gels containing methylmercury hydroxide, transferring them to diazobenzyloxymethyl paper and hybridizing them to a 70-nucleotide complementary DNA probe. In cells infected with Rous sarcoma virus Prague C we detected 3.4 x 10(6)-, 1.9 x 10(6)-, and 1.1 x 10(6)-dalton RNAs, in PR-E 95-C virus-infected cells we detected 3.4 x 10(6)-, 1.9 x 10(6)- and 0.7 x 10(6)-dalton RNAs, and in cells infected with myeloblastosis-associated virus-2(0) we detected 3 x 10(6)- and 1.3 x 10(6)-dalton RNAs. Each of these RNA species contained RNA sequences derived from the 5' terminus of genome-length RNA, as evidenced by hybridization with the 5' 70-nucleotide complementary DNA. The ratios of subgenomic mRNA's to genome-length RNAs in cells infected with myeloblastosis-associated virus-2(0) and PR-E 95-C virus were three- to five-fold higher than the ratio in cells infected with Rous sarcoma virus Prague C. These results suggest that more processing of viral RNA in infected cells is correlated with lower binding affinities of the p19 protein for viral RNA, and they are consistent with the hypothesis that the p19 protein controls processing of viral RNA in cells.  相似文献   

17.
A previous study of the infectivity of visna virus proviral DNA suggested that the genetic information of the virus is distributed over at least two of the RNA subunits. Because the genetic complexity of visna virus corresponds to the size of one subunit, this result may imply that sequence redundancies exist within each subunit. In the present article we have examined this question by constructing a map of the large RNase T1-resistant oligonucleotides of the viral genome. Our principal results are as follows: (i) all 36S RNA subunits have the same genetic content regardless of their polyadenylic acid [poly(A)] content; (ii) the poly(A) tract is present at the 3' end of the molecule; and (iii) the recoveries of 19 large RNase T1-resistant oligonucleotides from poly(A)-tagged RNA fragments of various sizes demonstrate that the oligonucleotides are organized in the same linear order within all subunits. Our results, therefore, exclude the existence of large sequence redundancies in the genome of visna virus.  相似文献   

18.
Avian sarcoma virus (ASV)-specific RNA was purified from ASV-infected cells by using hybridization techniques which employ polydeoxycytidylic acid-elongated DNA complementary to ASV RNA as well as chromatography on polyinosinic acid-Sephadex columns. The purity and nucleotide sequence composition of purified, virus-specific RNA were established by rehybridization experiments and analysis of labeled RNase T1-resistant oligonucleotides by two-dimensional polyacrylamide gel electrophoresis. Polyadenylic acid-containing RNA purified from ASV-infected cells contained approximately 1 to 4% virus-specific RNA, compared with 0.06 to 0.15% observed in uninfected cells. Sucrose gradient analysis of virus-specific RNA isolated from ASV-infected cells revealed two major classes of polyadenylated viral RNA with sedimentation values of 36S and 26-28S. Cells infected with transformation-defective ASV (virus containing a deletion of the sarcoma gene) contained 34S and 20-22S viral RNA species. Double-label experiments employing infected cells labeled initially for 48 h with [3H]uridine and then for either 30, 60, or 240 min with [32P]phosphate showed that the intracellular accumulation of genome-length RNA (36S) was significantly faster than that of the 26-28S viral RNA species.  相似文献   

19.
D Dina  K Beemon  P Duesberg 《Cell》1976,9(2):299-309
The 50S-70S RNA of a Moloney sarcoma-leukemia virus [Mo-MSV(MLV)] complex produced by a particular mouse cell line was shown by gel electrophoresis to contain a major (97%) 30S sarcoma-specific subunit species and a minor (3%) 38S leukemia virus-specific subunit. On the basis of its sedimentation coefficient and known complexity, the 30S Mo-MSV RNA was estimated to be a unique RNA molecule of about 6000 nucleotides. Hybridization experiments using viral RNA and DNA complementary to viral RNA (cDNA) made by viral DNA polymerase indicated that the 30S Mo-MSV RNA shared 70% of its sequences with Mo-MLV, 30% with another MLV derived from Mo-MLV, and 30% with Kirsten sarcoma-xenotropic leukemia virus. The 30S Mo-MSV RNA sequences shared with these viruses were not additive. The Tm of a Mo-MSV RNA-MLV cDNA hybrid was 83 degrees C, indicating that large contiguous nucleotide sequences were shared between the two nucleic acids. Mo-MSV RNA and Mo-MLV RNA shared possibly seven of 20-30 RNAase T1-resistant oligonucleotides, while Mo-MSV RNA contained three, and Mo-MLV RNA contained at least five specific oligonucleotides. We conclude that the 30S Mo-MSV RNA molecule consists of approximately 70% (about 4200 nucleotides) Mo-MLV-specific sequences and of 30% (1800 nucleotides) Mo-MSV-specific sequences covalently linked. Our results favor the hypothesis that 30S Mo-MSV RNA was generated by recombination between Mo-MLV and other genetic elements. We discuss whether all or only the MSV-specific sequences of the 30S Mo-MSV RNA function as sarcoma genes. Mo-MLV cDNA was hybridized about 45% by unfractionated Mo-MSV (MLV) RNA at RNA/DNA ratios of up to 10, about 50% by electrophoretically purified 30S Mo-MSV RNA at RNA/DNA ratios up to 500, but close to 100% by unfractionated Mo-MSV(MLV) RNA at RNA/DNA ratios over 900. This indicated that unfractionated RNA of our Mo-MSV(MLV) contained a complete complement of Mo-MLV, albeit at a low ratio.  相似文献   

20.
Kirsten murine sarcoma-leukemia virus (Ki-MSV[MLV]) was found to contain less RNase H per unit of viral DNA polymerase than avian Rous sarcoma virus (RSV). Upon purification by chromatography on Sephadex G-200 and subsequent glycerol gradient sedimentation the avian DNA polymerase was obtained in association with a constant amount of RNase H. By contrast, equally purified DNA polymerase of Ki-MSV(MLV) and Moloney [Mo-MSV(MLV)] lacked detectable RNase H if assayed with two homopolymer and phage fd DNA-RNA hybrids as substrates. On the basis of picomoles of nucleotides turned over, the ratio of RNase H to purified avian DNA polymerase was 1:20 and that of RNase H to purified murine DNA polymerase ranged between <1:2,800 and 5,000. Based on the same activity with poly (A).oligo(dT) the activity of the murine DNA polymerase was 6 to 60 times lower than that of the avian enzyme with denatured salmon DNA template or with avian or murine viral RNA templates assayed under various conditions (native, heat-dissociated, with or without oligo(dT) and oligo(dC) and at different template enzyme ratios). The template activities of Ki-MSV(MLV) RNA and RSV RNA were enhanced uniformly by oligo(dT) but oligo(dC) was much less efficient in enhancing the activity of MSV(MLV) RNA than that of RSV RNA. It was concluded that the purified DNA polymerase of Ki-MSV(MLV) differs from that of Rous sarcoma virus in its lack of detectable RNase H and in its low capacity to transcribe viral RNA and denatured salmon DNA. Some aspects of these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号