首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the effect of visible light exposure on retinal pigment epithelium (RPE). The activation of Wnt/β-catenin pathway was investigated by immunofluorescence and Western blot analysis using human retinal pigment epithelial (ARPE-19) cells, which demonstrated that the exposure of white light induced the activation of the Wnt/β-catenin pathway. Real time RT-PCR demonstrated that the mRNA of α-smooth muscle actin (α-SMA), and vimentin increased 2.5-4-fold and that of zona occludens 1 (ZO-1) decreased approximately 0.8-fold after white light exposure. The up-regulation of vimentin expression and the down-regulation of ZO-1 were evident by Western blot analysis and immunohistochemistry. Moreover, the ability of phagocytosis of ARPE-19 cells decreased 0.6-fold after light exposure. Together, white light exposure was supposed to induce the activation of Wnt/β-catenin pathway, the changes in the expression markers of epithelial and mesenchymal cells in RPE cells, and the concomitant impairment of the ability of phagocytosis.  相似文献   

2.
The retinal pigment epithelium (RPE) is essential for maintaining retinal homeostasis by removing and recycling photoreceptor outer segment (POS) in membranes. It also produces and secretes growth factors involved in retinal homeostasis. Arrestin 1 (ARR1) is specifically expressed in photoreceptors (PRs) and a vital molecule for keeping visual cycle between PRs and RPE. In the present study, we showed the expression of ARR1 was decreased by form-deprivation (FD) in retina of rat. The ARR1 was detected in the RPE of the controls but not in the RPE of FD, which indicates RPE phagocytes POS containing ARR1. Furthermore, we overexpressed ARR1 in cultured human RPE and revealed the ARR1 upregulates bFGF expression and downregulates TGF-β1, -β2 and bone morphogenetic protein-2 (BMP-2). The upregulation of bFGF by ARR1 directly works for PR survival and the downregulation of TGF-βs by ARR1 inhibits epithelial mesenchymal transition (EMT) of RPE, which is the underlying mechanism of keeping retinal homeostasis. Our results also indicate the regulation of ARR1 expression in RPE might become a novel therapeutic option for various ocular diseases.  相似文献   

3.
Summary Microtubules and 10 nm-filaments appear to be involved in the functions of the retinal pigment epithelium (RPE). The presence of microtubules in the RPE of light-adapted eyes, but not in dark-adapted eyes, suggests that they may be involved primarily in organelle movement. On the other hand, the random and constant presence of 10 nm-filaments within the basal portion of the PE implies a cytoskeletal role for these filaments.The authors thank their colleagues Pierre Couillard and Michel Anctil for helpful advice and criticism during the course of this study. Financial support was provided by the C.R.S.N.G. du Canada and the Ministère de l'Education du Québec (F.C.A.C.)  相似文献   

4.
Human retinal pigment epithelium (HRPE) cells are important in maintaining the normal physiology within the neurosensory retina and photoreceptors. Recently, transplantation of HRPE has become a possible therapeutic approach for retinal degeneration. By negative immunoselection (CD45 and glycophorin A), in this study, we have isolated and cultivated adult human bone marrow stem cells (BMSCs) with multilineage differentiation potential. After a 2- to 4-week culture under chondrogenic, osteogenic, adipogenic, and hepatogenic induction medium, these BMSCs were found to differentiate into cartilage, bone, adipocyte, and hepatocyte-like cells, respectively. We also showed that these BMSCs could differentiate into neural precursor cells (nestin-positive) and mature neurons (MAP-2 and Tuj1-positive) following treatment of neural selection and induction medium for 1 month. Furthermore, the plasticity of BMSCs was confirmed by initiating their differentiation into retinal cells and photoreceptor lineages by co-culturing with HRPE cells. The latter system provides an ex vivo expansion model of culturing photoreceptors for the treatment of retinal degeneration diseases.  相似文献   

5.
Summary Some characteristics of early premelanosomes (PM) suggest that primarily a continuous cisternal complex of the endoplasmic reticulum (ER) is transformed simultaneously to PM. These characteristics are: (i) the form and size, which are similar to ER cisternae; (ii) the localization in groups in the ER; (iii) the same stage of maturation within a group; (iv) the continuities between early PM, and (v) the lack of continuities between ER and PM. Comparative measurements reveal that the limiting membrane of PM, with a total thickness of 7.6±0.19 nm and a center-to-center distance of 5.2±0.06 nm, is significantly thicker than the ER membrane (6.3±0.15 nm and 4.3±0.04 nm, respectively) and the melanosome limiting membrane (6.5±0.22nm and 4.4±0.05 nm, respectively). Therefore, during the formation of melanosomes, the limiting membrane must be transformed from a thin (ER) to a thick (PM) and again to a thin (melanosome) state.  相似文献   

6.
We assessed structural elements of the retina in individuals with Friedreich ataxia (FRDA) and in mouse models of FRDA, as well as functions of the retinal pigment epithelium (RPE) in FRDA using induced pluripotent stem cells (iPSCs). We analyzed the retina of the FRDA mouse models YG22R and YG8R containing a human FRATAXIN (FXN) transgene by histology. We complemented this work with post-mortem evaluation of eyes from FRDA patients. Finally, we derived RPE cells from patient FRDA-iPSCs to assess oxidative phosphorylation (OXPHOS) and phagocytosis. We showed that whilst the YG22R and YG8R mouse models display elements of retinal degeneration, they do not recapitulate the loss of retinal ganglion cells (RGCs) found in the human disease. Further, RPE cells differentiated from human FRDA-iPSCs showed normal OXPHOS and we did not observe functional impairment of the RPE in Humans.  相似文献   

7.
Summary Light- and urethane-induced retinopathies in rats are characterized by loss of photoreceptors. Retinal capillaries subsequently become incorporated into the normally avascular retinal pigment epithelium. These models provided an opportunity to study the response of epithelial cells to closely apposed capillaries, in order to determine if capillaries contribute to the polar organization of epithelial cells. Pigment epithelial cells reorganized their lateral plasma membrane where the latter faced intraepithelial capillaries. This normally flat, undifferentiated membrane developed attachment sites, folds and intracytoplasmic tubules, and exhibited endocytosis and putative basal lamina secretion. These structural and functional specializations are normally restricted to the basal plasma membrane — the normal vascular front of the cell facing the dense meshwork of capillaries constituting the choriocapillaris. We conclude that RPE cells, and perhaps epithelia in general, polarize in response to an adjacent capillary bed.  相似文献   

8.
The glucose transport across the bovine retinal pigment epithelium (RPE) was studied in a modified Ussing chamber. Unidirectional fluxes were recorded with radioactive tracers L-[14C]-glucose (LG) and 3-O-methyl-D-[3H]-glucose (MDG). There was no significant difference between the unidirectional MDG fluxes (retina to choroid, and choroid to retina directions) with or without ouabain. The effects of two glucose transporter inhibitors, phloretin and cytochalasin B, on the glucose fluxes from choroid to retina cells were also investigated. The MDG flux was found to be inhibited by 45.5% by phloretin (10(-4) M) and 87.4% by cytochalasin B (10(-4) M). These inhibitory characteristics resembled the facilitated diffusion mode of glucose transport. The glucose transporter protein in the plasma membrane of RPE was located by means of photolabeling [3H]-cytochalasin B. The labeled plasma membrane enriched fraction was analysed by SDS-PAGE. The glucose transporter of bovine RPE was found to have a molecular weight range of 46-53 kDa. The molecular weight range of this transporter protein agreed with those of facilitated glucose transporters in other tissues indicating a molecular similarity between them. The results indicated that the glucose transport across the RPE is via passive facilitated diffusion.  相似文献   

9.
Summary Myeloid bodies (MBs) occur in the newt (Notophthalmus viridescens) retinal pigment epithelium (RPE) and are similar to areas of specialized endoplasmic reticulum found in a variety of other cell types. The function of these structures is unknown, although a role in lipid metabolism has been strongly suggested. Random samples from conventionally-fixed and sectioned newt RPE, obtained over a 24-hr cycle (LD 1212), were examined by electron microscopy. Myeloid bodies appear as stacks of flattened endoplasmic reticulum-associated saccules which increase in length and number as the RPE accumulates shed outer segment material, prior to increase in the amount of stored lipid. Associations of MBs with the nuclear envelope can be related to this increased length. Myeloid bodies decrease numerically in the cell as phagosomes are removed from the cytoplasm, but a decrease in mean sectional MB area, seen in the light phase, is counteracted in darkness where individual MBs are larger than those found in the light. The total sectional area of MBs within a cell and their mean length varied depending on the lighting condition; differences were also found between eyes after extended periods of continuous light and dark. Ribosomes were found in association with the surfaces of both flattened and circular MBs, but they were consistently more densely associated with the shorter concave surfaces of curved regions. A new hypothesis for MB function is presented, which is concerned with their role in isolating toxic lipids such as retinoids, which are accumulated during phagocytosis of shed outer segment tips, and which are capable of disrupting membrane-bound systems necessary for their eventual metabolism and safe storage.  相似文献   

10.
To better understand if a complex process such as phagocytosis is influenced by substrate stiffness, we investigated the influence of substrate elastic modulus on phagocytosis in the retinal pigment epithelial (RPE) cell line ARPE-19. RPE cells lie on Bruch?s membrane, directly under the retina, and phagocytose the shed photoreceptor outer segments. Bruch?s membrane is known to increase in stiffness by an order of magnitude with age and thus, this study has potential relevance in explaining retinal changes in age-related macular degeneration.  相似文献   

11.
The iris is a fine structure that controls the amount of light that enters the eye. The ciliary body controls the shape of the lens and produces aqueous humor. The retinal pigment epithelium and choroid (RPE/choroid) are essential in supporting the retina and absorbing light energy that enters the eye. Proteins were extracted from iris, ciliary body, and RPE/choroid tissues of eyes from five individuals and fractionated using SDS‐PAGE. After in‐gel digestion, peptides were analyzed using LC‐MS/MS on an Orbitrap Elite mass spectrometer. In iris, ciliary body, and RPE/choroid, we identified 2959, 2867, and 2755 nonredundant proteins with peptide and protein false‐positive rates of <0.1% and <1%, respectively. Forty‐three unambiguous protein isoforms were identified in iris, ciliary body, and RPE/choroid. Four “missing proteins” were identified in ciliary body based on ≥2 proteotypic peptides. The mass spectrometric proteome database of the human iris, ciliary body, and RPE/choroid may serve as a valuable resource for future investigations of the eye in health and disease. The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD001424 and PXD002194.  相似文献   

12.
13.
14.
Summary It has been suggested (Yorke and Dickson 1984) that myeloid bodies (MBs) in the retinal pigment epithelium (RPE) of the newt, Notophthalmus viridescens, may represent areas of endoplasmic reticulum where lipids, such as 11-cis retinal derived from phagocytized outer segment tips, accumulate prior to esterification. Experiments in which an artificial ester substrate was added during in-vitro incubations have shown that esterase activity is represented in all areas of the newt RPE endoplasmic reticulum, including sites adjacent to all MBs. In related tests in which the localization of enzyme activity was restricted to areas of the cell where there had been accumulations of naturally-occurring (endogenous) esters, the products of ester hydrolysis were restricted to profiles of endoplasmic reticulum associated with lipid droplets, and with the interior of about 20% of those MBs that appeared completely circular in sections. This enzyme activity was not associated with other MB configurations. Results from endogenous-ester hydrolysis were identical to those obtained after staining with ZIO. This ZIO-reactivity was not affected by pre-incubation with agents that blocked or protected sulphydryl groups, and ZIO-reactive sites associated with MBs did not form complexes with digitonin. These observations suggest that MBs are a site of lipid-ester formation, but that they do not represent unique intracellular areas for this activity.  相似文献   

15.
Mutation or loss of MerTK as well as deficiency of vβ5-integrins, gives rise to retinal-degeneration due to inefficient phagocytosis of photoreceptor outer-segment fragments by the retinal pigment epithelium (RPE). This study shows that Gas6 expressed endogenously by human RPE promotes phagocytosis. The RPE expresses Gas6 more highly in vivo and in serum-reduced conditions in vitro than in high-serum conditions, suggesting a negative-feedback control. An antibody-blockage approach revealed that Gas6-expressing RPE phagocytizes photoreceptor outer-segment fragments due to stimulation of MerTK by endogenous Gas6 in vitro. MerTK- and Gas6-antibodies reduced phagocytosis. Blocking L-type Ca2+-channels with nifedipine inhibited MerTK dependent phagocytosis in vitro. Application of integrin inhibitory, soluble, RGD-containing peptides or soluble vitronectin reduced L-type Ca2+-channel currents in RPE. Herbimycin A, which reduces phosphorylation of integrin receptor-associated proteins and decreases L-type Ca2+-channel currents in RPE, eliminates the inhibiting vitronectin effect and abolishes phagocytosis. Thus, Gas6-promoted phagocytosis was inhibited by L-type Ca2+-channel blockage, which in turn may be activated by integrin receptor stimulation. These results suggest that L-type Ca2+-channels could be regulated downstream of both MerTK and vβ5-integrin, indicating that the binding and uptake mechanisms of phagocytosis are part of a converging pathway.  相似文献   

16.
[3H]Quinuclidinyl benzylate (3H-QNB) specific binding of the developing rat retinal pigment epithelium (RPE) and neural retina has been examined. The binding of3H-QNB to RPE was saturable and displaced by the antagonist pirenzepine. Scatchard analysis of3H-QNB binding showed two high affinity sites to RPE, with KB=2.6nM and 45 nM. Specific3H-QNB binding membranes from neural retina exhibited a characteristic developmental profile. RPE showed a high density of3H-QNB binding sites through all developmental periods studied. The major onset of binding sites is at the time of RPE differentiation. Our data open the possibility of muscarinic receptors being involved in differentiation and/or proliferation of RPE.  相似文献   

17.
According to a recent hypothesis the melanin granules in the retinal pigment epithelium of mammals originate from photosensory membrane degradation. To test this hypothesis the retinal pigment epithelium of cattle was kept in tissue culture and exposed to gold-labelled rod outer segments. Gold granules were later detected inside phagosomes, melanosomes and mature melanin granules. Tyrosinase, the key enzyme in melanogenesis, was additionally localized inside phagosomes. These results indicate that in cultured retinal pigment epithelium the matrix of the melanosome can originate from phagosomes. therefore, the melanosome is a specialized lysosome.  相似文献   

18.
《Cytokine》2014,69(2):137-140
Connective tissue growth factor (CTGF) is known to be involved in retinal fibrotic disorders. We used human retinal pigment epithelial cells (HRPE), which play critical roles in retinal fibrosis, to examine the expression of CTGF and its regulation by ceramide and TGF-β. Real-time PCR analysis showed downregulation of CTGF mRNA by C2 ceramide and upregulation by TGF-β. C2 ceramide also inhibited constitutive and TGF-β-enhanced CTGF secretion by HRPE cells. Predominant secretion (>80% of total) of CTGF from the apical side was observed in highly polarized HRPE cells. Fumonosin, an inhibitor of ceramide synthesis, stimulated CTGF secretion while 4HPR, an activator of ceramide synthesis, downregulated CTGF secretion. Based on these results demonstrating ceramide regulation of CTGF secretion by HRPE, we suggest that ceramide may have therapeutic potential for the treatment of retinal fibrotic diseases by inhibiting CTGF production.  相似文献   

19.
Retinal pigment epithelium (RPE) plays a critical role in vertebrate vision by providing functional and structural support to the retina. Degeneration of RPE by cumulative oxidative stresses or acute injury frequently results in retinal degenerative diseases, notably age-related macular degeneration (AMD). Moreover, it has been shown that phosphorylation-mediated inactivation of PTEN (phosphatase and tensin homolog) in RPE is closely linked to AMD-like retinal degeneration in mice [1]. In this study, we used AMD mouse models, in which chemokine (C–C motif) ligand 2 (Ccl2) or chemokine (C–C motif) receptor 2 (Ccr2) were genetically ablated, to examine mechanisms linking reactive oxygen species (ROS) to phosphorylation/inactivation of PTEN in RPE. We found that ROS levels were increased in these RPE cells in association with phosphorylation/inactivation of PTEN. Both PTEN phosphorylation/inactivation and consequent Akt activation in the RPE of AMD model mice were inhibited by antioxidant treatment, indicating a functional role for elevated intracellular ROS. We further discovered that PTEN phosphorylation in oxidatively stressed RPE was repressed by a phosphoinositide 3-kinase (PI3K) inhibitor, but not by an Akt inhibitor. Taken together, these results suggest that ROS-activated PI3K potentiates AMD-related RPE pathogenesis through phosphorylation/inactivation of PTEN.  相似文献   

20.
Summary Myeloid bodies are believed to be differentiated areas of smooth endoplasmic reticulum membranes, and they are found within the retinal pigment epithelium in a number of lower vertebrates. Previous studies demonstrated a correlation between phagocytosis of outer segment disc membranes and myeloid body numbers in the retinal pigment epithelium of the newt. To test the hypothesis that myeloid bodies are directly involved in outer segment lipid metabolism and to further characterize the origin and functional significance of these organelles, we examined the effects on myeloid bodies of eliminating the source of outer segment membrane lipids (neural retina removal) and of the subsequent return of outer segments (retinal regeneration) in the newt Notophthalmus viridescens. Light- and electron-microscopic analysis demonstrated that myeloid bodies disappeared from the pigment epithelium within six days of neural retina removal. By week 6 of regeneration, rudimentary photoreceptor outer segments were present but myeloid bodies were still absent. However, at this time, the smooth endoplasmic reticulum in some areas of the retinal pigment epithelial cells had become flattened, giving rise to small (0.5 m long), two-to-four layer-thick lamellar units, which are myeloid body precursors. Small myeloid bodies were first observed one week later at week 7 of retinal regeneration. This study revealed that newt myeloid bodies are specialized areas of smooth endoplasmic reticulum. It also showed that a contact between functional photoreceptors and the retinal pigment epithelium is essential to the presence of myeloid bodies in the epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号