首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AbbreviationsNS1 protein - Non Structural 1 proteinNA - Neuraminidase, HA - Hemagglutinin, M - Matrix, 127-40-2 - 4-[(1E, 3E, 5E,7Z, 9E, 11E, 13E, 15E, 17E)-18-(4-hydroxy-2,6,6-trimethylcyclohex-2-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17- nonaenyl]-3, 5, 5-trimethylcyclohex-3-en-1-ol, Quercitrin 2 - (3,4-dihydroxyphenyl)-5,7-dihydroxy-3- [(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxychromen-4-one, Tiplasinin 2 - [1-benzyl-5-[4-(trifluoromethoxy) phenyl] indol-3-yl]-2-oxoacetic acid, Hyperoside 2 - (3,4-dihydroxyphenyl)-5,7-dihydroxy-3- [(2S,3R,4S,5R,6R)-3, 4, 5-trihydroxy-6- (hydroxymethyl)oxan-2- yl]oxychromen-4-one LGH 4-(2-chloro-4-nitrophenyl)piperazin-1-yl][3-(2-methoxyphenyl)-5-methyl-1,2-oxazol-4-yl]methanone, nRUTIN 2 - (3, 4-dihydroxyphenyl) -5, 7-dihydroxy-3-[(2S, 3R, 4S, 5S, 6R)-3, 4, 5-trihydroxy-6-[[(2R, 3R, 4R, 5R, 6S)-3,4,5-trihydroxy- 6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxychromen-4-one.  相似文献   

2.
The discovery, synthesis, potential binding mode, and in vitro kinase profile of 3-(3-bromo-4-hydroxy-5-(2'-methoxyphenyl)-benzylidene)-5-bromo-1,3-dihydro-pyrrolo[2,3-b]pyridin-2-one, 3-[(1-methyl-1H-indol-3-yl)methylene]-1,3-dihydro-2H-pyrrolo[3,2-b]-pyridin-2-one as potent TrkA inhibitors are discussed.  相似文献   

3.
Microbial hydroxylation of 2-(cyclopent-1-enyl)benzoxazole (1) and 2-(cyclohex-1-enyl)benzoxazole (2) by Cunninghamella blakesleeana DSM 1906 and Bacillus megaterium DSM 32, respectively, gave chiral allylic alcohols 3-(benz-1,3-oxazol-2-yl)cyclopent-2-en-1-ol (3) and 3-(benz-1,3-oxazol-2-yl)cyclohex-2-en-1-ol (4) along with achiral ketones 3-(benz-1,3-oxazol-2-yl)cyclopent-2-en-1-one (5) and 3-(benz-1,3-oxazol-2-yl)cyclohex-2-en-1-one (6). Both allylic alcohols were produced in enantiomeric excesses higher than 99%. The determination of their absolute configurations (S in both cases) is described.  相似文献   

4.
Alkylation of 2-methylthiopyrimidin-4(1H)-one (1a) and its 5(6)-alkyl derivatives 1b-d as well as theophylline (7) with 2,2-bis(bromomethyl)-1,3-diacetoxypropane (2) under microwave irradiation gave the corresponding acyclonucleosides 1-[(3-acetoxy-2-acetoxymethyl-2-bromomethyl)prop-1-yl]-2-methyl-thio pyrmidin-4(1H)-ones 3a-d and 7-[(3-acetoxy-2-acetoxymethyl-2-bromomethyl)prop-1-yl]theophylline (8), which upon further irradiation gave the double-headed acyclonucleosides 1,1 '-[(2,2-diacetoxymethyl)-1,3-propylidene]-bis[(2-(methylthio)-pyrimidin-4(1H)-ones] 4a-c, and 7,7 '-[(2,2-diacetoxymethyl)-1,3-propylidene]-bis(theophylline) (9). The deacetylated derivatives were obtained by the action of sodium methoxide. The activity of deacetylated nucleosides against Hepatitis B virus was evaluated. Compound 5b showed moderate inhibition activity against HBV with mild cytotoxicity.  相似文献   

5.
A few novel 1,3-dioxane carboxylic acid derivatives were designed and synthesized to aid in the characterization of PPAR alpha/gamma dual agonists. Structural requirements for PPARalpha/gamma dual agonism of 1,3-dioxane carboxylic acid derivatives included the structural similarity with potent glitazones in fibric acid chemotype. The compounds with this pharmacophore and substituted oxazole as a lipophilic heterocyclic tail were synthesized and evaluated for their in vitro PPAR agonistic potential and in vivo hypoglycemic and hypolipidemic efficacy in animal models. Lead compound 2-methyl-c-5-[4-(5-methyl-2-(4-methylphenyl)-oxazol-4-ylmethoxy)-benzyl]-1,3-dioxane-r-2-carboxylic acid 13b exhibited potent hypoglycemic, hypolipidemic and insulin sensitizing effects in db/db mice and Zucker fa/fa rats.  相似文献   

6.
The unsymmetrical cyanine dyes BOXTO (4-[6-(benzoxazole-2-yl-(3-methyl-)-2,3-dihydro-(benzo-1,3-thiazole)-2-methylidene)]-1-methyl-quinolinium chloride) and its positive divalent derivative BOXTO-PRO (4-[3-methyl-6-(benzoxazole-2-yl)-2,3-dihydro-(benzo-1,3-thiazole)-2-methylidene)]-1-(3-trimethylammonium-propyl)-quinolinium dibromide) were studied as real-time PCR reporting fluorescent dyes and compared to SYBR GREEN I (SG) (2-[N-(3-dimethylaminopropyl)-N-propylamino]-4-[2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene]-1-phenylquinolinium). Unmodified BOXTO showed no inhibitory effects on real-time PCR, while BOXTO-PRO showed complete inhibition, Sufficient fluorescent signal was acquired when 0.5–1.0 μM BOXTO was used with RotorGene and iCycler platforms. Statistical analysis showed that there is no significant difference between the efficiency and dynamic range of BOXTO and SG. BOXTO stock solution (1.5 mM) was stable at −20°C for more than one year and 40 μM BOXTO solution was more stable than 5x SG when both were stored at 4°C for 45 days.  相似文献   

7.
A new series of 1,3-dioxane-2-carboxylic acid derivatives was synthesized and evaluated for agonist activity at human peroxisome proliferator-activated receptor (PPAR) subtypes. Structure-activity relationship studies led to the identification of 2-methyl-c-5-[4-(5-methyl-2-phenyl-1,3-oxazol-4-yl)butyl]-1,3-dioxane-r-2-carboxylic acid 4b as a potent PPARalpha agonist with high subtype selectivity at human receptor subtypes. This compound exhibited a substantial hypolipidemic effect in type 2 diabetic KK-A(y) mice.  相似文献   

8.
1,2,4-Triazole-3-one prepared from tryptamine was converted to the corresponding carbothioamides by several steps. Their treatment with ethyl bromoacetate or 4-chlorophenacyl bromide produced the corresponding 5-oxo-1,3-thiazolidine or 3-(4-chlorophenyl)-1,3-thiazole derivatives. Acetohydrazide derivative that was obtained starting from tryptamine, was converted to the corresponding Schiff basis and sulfonamide by the treatment with suitable aldehydes and benzensulphonyl chloride, respectively. 2-[(4-Amino-5-thioxo-4,5-dihydro-1H-1,2,4-triazole-3-yl)methyl]-4-[2-(1H-indole-3-yl)ethyl]-5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-one was synthesized starting from hydrazide via the formation of the corresponding 1,3,4-oxadiazole compound, while the other bitriazole compounds were obtained by intramolecular cyclisation of carbothioamides in basic media. The treatment of 1,2,4-triazole or 1,3,4-oxadiazole compound with several amines generated the corresponding Mannich bases. Ethyl (2-amino-1,3-thiazole-4-yl)acetate was converted to the corresponding 1,3,4-oxadiazole derivative, arylidenehydrazides, 1,2,4-triazole-3-one and 5-oxo-1,3-oxazolidine derivatives by several steps. The structural assignments of new compounds were based on their elemental analysis and spectral (FT IR, 1H NMR, 13C NMR and LC-MS) data. The antimicrobial, antilipase and antiurease activity studies revealed that some of the synthesized compounds showed antimicrobial, antilipase and/or antiurease activity.  相似文献   

9.
Cunninghamella blakesleeana DSM 1906 was found to be an efficient biocatalyst for the biotransformation of cycloalkylcarboxylic acids into hydroxy and oxo derivatives. When cultivated in submerged culture, the fungus grew in pellets. In comparison with malt extract-glucose-peptone-yeast extract medium (medium E), Czapek-Dox medium was found to reduce pellet size. Cycloalkylcarboxylic acids were protected against microbial degradation by chemical transformation into 2-cycloalkyl-1,3-benzoxazoles. The transformations of protected cyclopentyl-, cyclohexyl-, cycloheptyl-, and cyclooctylcarboxylic acids by C. blakesleeana were investigated. The biotransformations were performed in medium E by using an aerated, stirred-tank bioreactor. The transformation of 2-cyclopentyl-1,3-benzoxazole yielded (1S,3S)-3-(benz-1,3-oxazol-2-yl)cyclopentan-1-ol as the main product. The main by-product was (1R)-3-(benz-1,3-oxazol-2-yl)cyclopentan-1-one, and 2-(benz-1,3-oxazol-2-yl)cyclopentan-1-ol was also obtained in small amounts. During the experiment, the enantiomeric excess of the main product increased up to 64%. 2-Cyclohexyl-1,3-benzoxazole was hydroxylated to 4-(benz-1,3-oxazol-2-yl)cyclohexan-1-ol. 2-Cycloheptyl-1,3-benzoxazole and 2-cyclooctyl-1,3-benzoxazole were transformed into several alcohols and ketones, all in low yields (2 to 19%).  相似文献   

10.
Chemical studies on the constituents of Eranthis cilicica led to isolation of ten chromone derivatives, two of which were previously known. Comprehensive spectroscopic analysis, including extensive 1D and 2D NMR data, and the results of enzymatic hydrolysis allowed the chemical structures of the compounds to be assigned as 8,11-dihydro-5-hydroxy-2,9-dihydroxymethyl-4H-pyrano[2,3-g][1]benzoxepin-4-one, 5,7-dihydroxy-8-[(2E)-4-hydroxy-3-methylbut-2-enyl]-2-methyl-4H-1-benzopyran-4-one, 5,7-dihydroxy-2-hydroxymethyl-8-[(2E)-4-hydroxy-3-methylbut-2-enyl]-4H-1-benzopyran-4-one, 7-[(β-d-glucopyranosyl)oxy]-5-hydroxy-8-[(2E)-4-hydroxy-3-methylbut-2-enyl]-2-methyl-4H-1-benzopyran-4-one, 7-[(β-d-glucopyranosyl)oxy]-5-hydroxy-2-hydroxymethyl-8-[(2E)-4-hydroxy-3-methylbut-2-enyl]-4H-1-benzopyran-4-one, 9-[(O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl)oxy]methyl-8,11-dihydro-5,9-dihydroxy-2-methyl-4H-pyrano[2,3-g][1]benzoxepin-4-one, 8,11-dihydro-5,9-dihydroxy-9-hydroxymethyl-2-methyl-4H-pyrano[2,3-g][1]benzoxepin-4-one, and 7-[(O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl)oxy]methyl-4-hydroxy-5H-furo[3,2-g][1]benzopyran-5-one, respectively. The isolated compounds were evaluated for their antioxidant activity.  相似文献   

11.
P-Glycoprotein (P-gp) overexpression is considered to be the leading cause of multidrug resistance (MDR) and failure of chemotherapy for leukemia. In this study, seventeen thiosemicarbazone-containing compounds were prepared and evaluated as potential antileukemia agents against drug resistant K562/A02 cell overexpressing P-gp. Among them, N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide could significantly inhibit K562/A02 cells proliferation with an IC50 value of 0.96 μM. Interestingly, N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide could dose-dependently increase ROS levels of drug resistant K562/A02 cells, thus displaying a potential collateral sensitivity (CS)-inducing effect and selectively killing K562/A02 cells. Furthermore, N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide possessed potent inhibitory effect on HDAC1 and HDAC6, and could promote K562/A02 cells apoptosis via dose-dependently increasing Bax expression, reducing Bcl-2 protein level, and inducing the cleavage of PARP and caspase3. These present findings suggest that N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide might be a promising lead to discover novel antileukemia agents against P-gp overexpressing leukemic cells.  相似文献   

12.
A series of quinazolin-4-one Schiff bases were synthesized and tested in vitro for their cytotoxicity against two cancerous cell lines (MCF-7, Caco-2) and a human embryonic cell line (HEK-293) including their antibacterial evaluation against two Gram-positive and four Gram-negative bacterial strains. Most of the quinazoline-Schiff bases exhibited potent cytotoxicity against Caco-2. 3-[(Z)-({4-[(But-2-yn-1-yl)oxy]phenyl}methylidene)amino]-2-methylquinazolin-4(3H)-one ( 6f ) with the O-butyne functional group displayed three-fold higher cytotoxic activity (IC50=376.8 μM) as compared to 5-fluorouracil (5-FU; IC50=1086.1 μM). However, all compounds were found to be toxic to HEK-293, except for 3-[(Z)-({4-[(2,4-difluorophenyl)methoxy]phenyl}methylidene)amino]-2-methylquinazolin-4(3H)-one ( 6h ) that showed ∼three-fold lower toxicity and higher selectivity index than 5-FU. Structure–activity relationship (SAR) analysis revealed that O-alkylation generally increased the anticancer activity and selectivity of quinazoline-4-one Schiff bases toward Caco-2 cells. The fluorinated Schiff-base generally exhibited even more significant cytotoxic activity compared to their chlorine analogs. Surprisingly, none of the quinazoline-4-one Schiff bases displayed encouraging antibacterial activity against the bacterial strains investigated. Most of the compounds were predicted to show compliance with the Lipinski parameters and ADMET profiles, indicating their drug-like properties.  相似文献   

13.
A series of novel pyrimido and other fused quinoline derivatives like 4-methyl pyrimido [5,4-c]quinoline-2,5(1H,6H)-dione (4a), 4-methyl-2-thioxo-1,2-dihydropyrimido [5,4-c]quinoline-5(6H)-one (4b), 2-amino-4-methyl-1,2-dihydropyrimido [5,4-c]quinolin-5(6H)-one (4c), 3-methylisoxazolo [4,5-c]quinolin-4(5H)-one (4d), 3-methyl-1H-pyrazolo [4,3-c]quinoline-4(5H)-one (5e), 5-methyl-1H-[1,2,4] triazepino [6,5-c]quinoline-2,6(3H,7H)-dione (5f), 5-methyl-2-thioxo-2,3-dihydro-1H-[1,2,4]triazepino [6,5-c]quinolin-6(7H)-one (5 g) were synthesized regioselectively from 4-hydroxy-3-acyl quinolin-2-one 3. They were screened for their in vitro antioxidant activities against radical scavenging capacity using DPPH(), Trolox equivalent antioxidant capacity (TEAC), total antioxidant activity by FRAP, superoxide radical (O(2)(°-)) scavenging activity, metal chelating activity and nitric oxide scavenging activity. Among the compounds screened, 4c and 5 g exhibited significant antioxidant activities.  相似文献   

14.
Effects of prostacyclin and carbacyclins on endothelin-induced DNA synthesis were investigated in vascular smooth muscle cells. DNA synthesis was estimated by [3H]thymidine incorporation. Five carbacyclins used in this report were 5-[(1S, 5S, 6R, 7R)-7-hydroxy-6-[(E)-(S)-3-hydroxy-1-octenyl]bicyclo [3.3.0]oct-2-en-3-yl) pentanoic acid (TEI-7165), methyl 5-[(1S, 5S, 6R, 7R)-7-hydroxy-6-[(E)-(S)-3-hydroxy-1-octenyl]bicyclo[3.3.0]oct-2-en-3- yl]pentanoate (TEI-9090), 5-[(1S, 5S, 6R, 7R)-7-hydroxy-6-[(E)-(3S, 5S)-3-hydroxy-5-methyl-1-nonenyl]bicyclo[3.3.0]oct-2-en-3-yl)penta noic acid (TEI-9063), methyl 5-[(1S, 5S, 6R, 7R)-7-hydroxy-6-[(E)-(3S, 5S)-3-hydroxy-5-methyl-1- nonenyl]bicyclo[3.3.0]oct-2-en-3-yl)pentanoate (TEI-1324), 5-[(1S, 5S, 6R, 7R)-7-hydroxy-6-[(E)-(S)-4-hydroxy-4-methyl-1- octenyl]bicyclo[3.3.0]oct-2-en-3-yl] pentanoic acid (TEI-3356). Prostacyclin and the carbacyclins inhibited the endothelin-induced DNA synthesis within the nanomolar range. These results suggest that prostacyclin and carbacyclins are possibly effective in inhibiting the proliferation of vascular smooth muscle cells under some situations in vivo.  相似文献   

15.
A variety of 1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one azomethines and 1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one benzamide were prepared, characterized and evaluated for the anticonvulsant activity in the rat using picrotoxin‐induced seizure model. The prepared 1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one azomethine derivatives emerged potentially anticonvulsant molecular scaffolds exemplified by compounds, 7‐{(E)‐[(4‐nitrophenyl)methylidene]amino}‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one, 7‐[(E)‐{[4‐(dimethylamino)phenyl]methylidene}amino]‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one, 7‐{(E)‐[(4‐bromo‐2,6‐difluorophenyl)methylidene]amino}‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one and 7‐[(E)‐{[3‐(4‐fluorophenyl)‐1‐phenyl‐1H‐pyrazol‐4‐yl]methylidene}amino]‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one. All these four compounds have shown substantial decrease in the wet dog shake numbers and grade of convulsions with respect to the standard drug diazepam. The most active compound, 7‐[(E)‐{[4‐(dimethylamino)phenyl]methylidene}amino]‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one, exhibited 74 % protection against convulsion which was higher than the standard drug diazepam. Furthermore, to identify the binding mode of the interaction amongst the target analogs and binding site of the benzodiazepine receptor, molecular docking study and molecular dynamic simulation were carried out. Additionally, in silico pharmacokinetic and toxicity predictions of target compounds were carried out using AdmetSAR tool. Results of ADMET studies suggest that the pharmacokinetic parameters of all the target compounds were within the acceptable range to become a potential drug candidate as antiepileptic agents.  相似文献   

16.
Sun J  Lou H  Dai S  Xu H  Zhao F  Liu K 《Phytochemistry》2008,69(6):1405-1410
Five indole alkaloids (naucleofficines A-E) were isolated from the stems (with bark) of Nauclea officinalis: (E)-2-(1-beta-d-glucopyranosyloxybut-2-en-2-yl)-3-(hydroxymethyl)-6,7-dihydro-indolo[2,3-a]quinolizin-4(12H)-one (1), (E)-1-propenyl-12-beta-d-glucopyranosyloxy-2,7,8-trihydro-indolo[2,3-a]pyran[3,4-g]quinolizin-4,5(13H)-dione (2), (E)-2-(1-hydroxybut-2-en-2-yl)-11-beta-d-glucopyranosyloxy-6,7-dihydro-indolo[2,3-a]quinolizin-4(12H)-one (3), (E)-1-propenyl-4-hydroxy-2,4a,7,8,13b,14,14a-hepthydro-(4alpha,4abeta,13balpha,14abeta)indolo[2,3-a]pyran[3,4-g]quinolizin-5(13H)-one (4) and 1-(1-hydroxyethyl)-10-hydroxy-7,8-dihydro-indolo[2,3-a]pirydine[3,4-g]quinolizin-5(13H)-one (10-hydroxyangustoline) (5), together with two known compounds, naucleidinal (6) and angustoline (7). All of the structures of the seven compounds above were elucidated by spectroscopic methods including use of 1D- and 2D-NMR spectroscopic analyses. Compounds 2 and 3 are rare examples of monoterpene indole alkaloids with a glucopyranosyloxy group attached to position C-12. In vitro activity screening of the above seven compounds showed weak to moderate inhibitory activity against Plasmodium falciparum.  相似文献   

17.
(2R,5S)-5-Amino-2-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]- 1,2,4-triazine-3(2H)-one (8) and (2R,5R)-5-amino-2-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-1,2,4-tr iazine-3(2H)-one (9) have been synthesized via a multi-step procedure from 6-azauridine. (2R,5S)-4-Amino-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-1,3, 5-triazine-2(1H)-one (11) and (2R,5R)-4-amino-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]- 1,3,5-triazine-2(1H)-one (12), and the fluorosubstituted 3-deazanucleosides (19-24) have been synthesized by the transglycosylation of (2R,5S)-1-[2-[[(tert-butyldiphenylsilyl) oxy]methyl]-1,3-oxathiolan-5-yl] cytosine (2) with silylated 5-azacytosine and the corresponding silylated fluorosubstituted 3-deazacytosines, respectively, in the presence of trimethylsilyl trifluoromethanesulfonate as the catalyst in anhydrous dichloroethane, followed by deprotection of the blocking groups. These compounds were tested in vitro for cytotoxicity against L1210, B16F10, and CCRF-CEM tumor cell lines and for antiviral activity against HIV-1 and HBV.  相似文献   

18.
Reaction of pyridin-2(1H)-one 1 with 4-bromobutylacetate (2), (2-acetoxyethoxy)methyl bromide (3) gave the corresponding nicotinonitrile O-acyclonucleosides, 4 and 5, respectively. Deacetylation of 4 and 5 gave the corresponding deprotected acyclonucleosides 6 and 7, respectively. Treatment of pyridin-2(1H)-one 1 with 1,3-dichloropropan-2-ol (8), epichlorohydrin (10) and allyl bromide (12) gave the corresponding nicotinonitrile O-acyclonucleosides 9, 11, and 13, respectively. Furthermore, reaction of pyridin-2(1H)-one 1 with the propargyl bromide (14) gave the corresponding 2-O-propargyl derivative 15, which was reacted via [3+2] cycloaddition with 4-azidobutyl acetate (16) and [(2-acetoxyethoxy)methyl]azide (17) to give the corresponding 1,2,3-triazole derivatives 18 and 19, respectively. The structures of the new synthesized compounds were characterized by using IR, (1)H, (13)C NMR spectra, and microanalysis. Selected members of these compounds were screened for antibacterial activity.  相似文献   

19.
The hit-to-lead optimization of the HNE inhibitor 5-methyl-2-(2-phenoxy-pyridin-3-yl)-benzo[d][1,3]oxazin-4-one is described. A structure–activity relationship study that focused on the 5 and 7 benzoxazinone positions yielded the optimized 5-ethyl-7-methoxy-benzo[d][1,3]oxazin-4-one core structure. 2-[2-(4-Methyl-piperazin-1-yl)-pyridin-3-yl] derivatives of this core were shown to yield HNE inhibitors of similar potency with significantly different stabilities in rat plasma.  相似文献   

20.
A new series of triazol-3-one derivatives bearing 4-methyl-4H-thieno[3',2': 5,6]thiopyrano[4,3-d][1,3]thiazolyl or 4-(thiophene-3-yl) thiazolyl moiety at 4-position and alkyl substitution at 2-position are synthesized. All the synthesized compounds are characterized by elemental analysis, IR, (1)H NMR, (13)C NMR, and mass spectral data. The newly synthesized compounds are screened for antifungal and antibacterial activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号