首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
McAuley  P. J. 《Hydrobiologia》1991,216(1):369-376
Supply of amino acids may be important in controlling cell division of Chlorella symbiotic with green hydra. Freshly isolated symbionts display characteristics of N-limited algae, and low pH in perialgal vacuoles and high levels of host glutamine synthetase (GS) limit uptake of ammonium. Movement of tritiated amino acids from host to algal pools suggests that symbiotic algae utilize amino acids derived from host digestion of prey. Amounts are significant in relation to host and algal amino acids pools. During host starvation, glutamine produced by host GS may be important as a nitrogen supply to the algae, which take up this amino acid at high rates at low pH.  相似文献   

2.
When incubated at pH 4–5, Chlorella freshly isolated from symbiosis with Hydra viridissima PALLAS 1766 (green hydra) release large amounts of photosynthetically fixed carbon in the form of maltose, and assimilation of inorganic N is inhibited. Physiological responses to N starvation of the cultured 3N813A strain of maltose-releasing Chlorella differed from those caused by 48 h of maltose release induced by low pH. N starvation increased rates of ammonium assimilation at pH 7.0 in light or darkness, and ammonium assimilation in darkness stimulated cell respiration. In contrast, cells pretreated at pH 5.0 to induce maltose release were unable to take up ammonium at pH 7.0 unless supplied with an external carbon source such as bicarbonate, acetate, or succinate, and rates of uptake were similar to control cells. Freshly isolated symbionts displayed a similar dependency. Rates of ammonium uptake by cells pretreated at pH 5.0 were reduced in darkness and did not stimulate cell respiration. N-starved cells supplied with ammonium also showed a large short-term increase in glutamine pools at the expense of glutamate, as might be expected if large amounts of ammonium were rapidly assimilated via glutamine synthetase/glutamate synthase, whereas after long-term maltose release cells showed only a small increase in glutamine when supplied with ammonium. Furthermore, maltose release caused a fall in pool sizes of a number of amino acids, including glutamine and glutamate, and also caused a decrease in pool sizes of 2-oxoglutarate and phospho-enol-pyruvate, which are required for ammonium assimilation into amino acids. Cells stimulated to synthesize and release maltose may be unable to assimilate ammonium and synthesize amino acids because of diversion of fixed carbon from N metabolism. We estimate that 40–50% affixed C is required for maximal maltose synthesis, whereas up to 30% fixed C is required for ammonium assimilation. These results are discussed in the context of host regulation of symbiotic algal growth.  相似文献   

3.
Summary The ciliateClimacostomum virens forms an endosymbiotic association with coccoid chlorophycean algae which can be isolated and grown as sterile mass cultures with an inorganic medium. According to both morphological and physiological properties, the algae probably belong to the genusChlorella and have some features in common with symbiotic chlorellae isolated from the ciliatesParamecium bursaria andStentor polymorphus. These and other endosymbiotic chlorellae studied so far excrete maltose or glucose, but algae fromClimacostomum virens show a different excretion pattern by releasing glucose, fructose and xylose. Possible biosynthetic pathways are discussed. Algae inClimacostomum virens are either located individually in special perialgal vacuoles where they are probably protected against attack by host lytic enzymes or to a lesser extent in food vacuoles in different states of digestion. The endosymbiotic character of theClimacostomum virens-Chlorella sp.-association is discussed.Dedicated to Prof. H. A.von Stosch on the occasion of his 75th birthday.  相似文献   

4.
P. J. McAuley 《Planta》1987,171(4):532-538
Chlorella algae symbiotic in the digestive cells of Hydra viridissima Pallas (green hydra) were found to contain less amino-N and smaller pools of free amino acids than their cultured counterparts, indicating that growth in symbiosis was nitrogen-limiting. This difference was reflected in uptake of amino acids and subsequent incorporation into protein; symbiotic algae incorporated a greater proportion of sequestered radioactivity, supplied as 14C-labelled alanine, glycine or arginine, than algae from nitrogen-sufficient culture, presumably because smaller internal pools diluted sequestered amino acids to a lesser extent. Further experiments with symbiotic algae showed that metabolism of the neutral amino acid alanine differed from that of the basic amino acid arginine. Alanine but not arginine continued to be incorporated into protein after uptake ceased, and while internal pools of alanine were exchangeable with alanine in the medium, those of arginine were not exchangeable with external arginine. Thin-layer chromatography of ethanol-soluble extracts of algae incubated with [14C]alanine or [14C]arginine showed that both were precursors of other amino acids. The significance of nitrogen-limiting growth of symbiotic algae is discussed in terms of host-cell regulation of algal cell growth and division.  相似文献   

5.
On the characteristics and taxonomic position of symbiotic Chlorella   总被引:1,自引:0,他引:1  
Three strains of symbiotic Chlorella (NC64A, CE/76, UTEX-130) could be assigned to C. vulgaris by physiological and DNA-hybridization studies and a fourth symbiotic strain, 3N8/13-1, exhibited characteristics intermediate between C. vulgaris and C. sorokiniana. None of the strains contained detectable sporopollenin or was nutritionally fastidious but the capacity for sugar release (usually maltose) may be a characteristic of all symbiotic Chlorella.  相似文献   

6.
Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes.  相似文献   

7.
To investigate interactions between the basal metazoan Hydra viridis and its symbiotic Chlorella algae, we generated aposymbiotic hydra lacking algae and compared them to symbiotic ones with regard to growth and sexual differentiation. Under standard feeding conditions aposymbiotic polyps proliferated similarly to symbiotic polyps. Under moderate and low feeding conditions asexual growth was reduced in polyps lacking algae, indicating that the symbionts supply nutrients to their hosts. In addition, the Chlorella symbionts had a strong influence on the sexual reproduction of Hydra viridis: in most cases female gonads were produced only when symbiotic algae were present. Spermatogenesis proceeded similarly in symbiotic and aposymbiotic polyps. Since during oogenesis symbionts are actively transferred from endodermal epithelial cells to the ectodermal oocytes, this oogenesis promoting role could indicate that the symbionts are critically involved in the control of sexual differentiation in green hydra.  相似文献   

8.
Zusammenfassung Der endosymbiontische Verband von Paramecium bursaria Ehrbg. mit Chlorella spec. (grünes Paramecium) wurde physiologisch und cytologisch untersucht. Ein Vergleich der Eigenschaften der Symbiosecinheit mit denen der getrennt kultivierten Symbiosepartner ergab die folgenden Merkmale und Unterschiede: 1. Der symbiontische Verband hat bis zu einer Beleuchtungsstärke von 6000 lux eine stärkere Photosyntheseleistung als die aus ihm isolierte und in Massenkultur in einem definierten Medium kultivierte Alge. Algenfreie P. bursaria zeigen nur eine minimale Fähigkeit zur CO2-Fixierung. 2. Der Kompensationspunkt der Photosynthese liegt beim algenhaltigen Paramecium bei ca. 4000–5000 lux, derjenige der getrennt kultivierten Alge bei ca. 200–400 lux. 3. Die Symbioseeinheit hat im Dunkeln im Vergleich mit algenfreien P. bursaria einen niedrigeren, im Vergleich mit der frei kultivierten Alge jedoch einen höheren Sauerstoffbedarf. 4. Das grüne Paramecium nimmt weniger Kohlenhydrate aus dem Medium auf als algenfreie Paramecien, hat aber eine höhere Aufnahmeleistung als die isoliert gezogenen Algen. 5. Im Symbioseverband besitzt die symbiontische Alge im Licht eine kompakte Lagerung der photosynthetischen Membranen und eine massive Stärkeablagerung. Die Vergiftung der Photosynthese durch 3-(3,4-Dichlorphenyl)-1,1-dimethylharnstoff (DCMU) oder die Kultur im Dunkeln führt in algenhaltigen Paramecien zu einer aufgelockerten Lagerung der Thylakoide und einer Verringerung der Stärkeablagerung. Die Algen-population unterliegt im symbiontischen Verband einem komplexen Regulationsmechanismus, bei dem u. a. der intracelluläre Kohlenhydratspiegel eine Rolle spielt. Die geschilderten Ergebnisse werden im Zusammenhang mit der Ökologie des grünen P. bursaria diskutiert.
The metabolic interactions between Paramecium bursaria Ehrbg. and Chlorella spec. in the Paramecium bursaria-symbiosisII. Symbiosis-specific properties of the physiology and the cytology of the symbiotic unit and their regulation
The endosymbiotic association of Paramecium bursaria Ehrbg. with Chlorella spec. (green Paramechim) was studied both physiologically and cytologically. Comparison of the properties of the symbiotic unit with those of the symbiotic partiners which bad been isolated from it revealed the following features and differences: 1. Up to 6000 lux the photosynthetic capacity of the symbiotic unit is higher than that of the isolated symbiotic algae grown independently in mass culture under defined conditions. Alga-free. Paramecium bursaria (colourless Paramecium) show a very low rate of CO2-fixation. 2. The green Paramecium has a higher compensationpoint of photosynthesis (4000–5000 lux) than the isolated alga (200–400 lux). 3. Green paramecia consume less oxygen in darkness than colourless organisms but more than the isolated algae. 4. The uptake of carbohydrates from the culture medium by green paramecia is lower than the uptake by alga-free P. bursaria but higher than the one of the isolated algae. 5. Symbiotic algae within the intact symbiotic unit show tightly packed photosynthetic membranes and an intense deposition of starch. In the presence of 3-(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU) or in darkness the arrangement of thylakoids is less compact and the deposition of starch is reduced. The growth and the number of the symbiotic algae in situ is regulated by a complex mechanism to which the intracellular level of carbohydrates belongs. The results are discussed in connection with ecological aspects of the Paramecium bursaria-endosymbiosis.
  相似文献   

9.
The kinetic analysis of l-amino acid uptake by the green alga Chlorella revealed at least seven different uptake systems to be present in cells grown autotrophically with nitrate as nitrogen source. There is a ‘general system’ which transports most neutral and acidic amino acids, a system for short-chain neutral amino acids including proline, a system for basic amino acids including histidine, a special system for acidic amino acids, and specific systems for methionine, glutamine and threonine. The ‘general system’ is possibly the same as that which can be stimulated by incubation of cells in glucose plus ammonium (Sauer, N. (1984) Planta 161, 425–431). The incubation of Chlorella in glucose induces the increased synthesis of six amino acid uptake systems, namely the above-mentioned system for short-chain neutral amino acids, a threonine system, a methionine system, and a glutamine system. These results indicate that the uptake of l-amino acids by the green alga Chlorella is as complex as in other free-living organisms such as bacteria or yeast. The small number of amino acid uptake systems found in cells of higher plants, i.e. two or three, seems therefore to be a consequence of integration of the cells in a tissue supplying a relatively constant environment, and not a consequence of autotrophic growth on mineral carbon and mineral nitrogen.  相似文献   

10.
Starch biosynthesis and degradation was studied in seedlings and mature plants of Euphorbia heterophylla L. and E. myrsinites L. Mature embryos, which lack starch grains in the non-articulated laticifers, develop into seedlings that accumulate starch rapidly when grown either in the light or the dark. Starch accumulation in laticifers of dark-grown seedlings was ca. 47 and 43% of total starch in light-grown controls in E. heterophylla and E. myrsinites, respectively. In light-grown seedlings, starch was present in laticifers as well as parenchyma of stems and leaves, whereas in dark-grown seedlings starch synthesis was almost exclusively limited to laticifers. In 7-month-old plants placed into total darkness, the starch in chyma was depleted within 6 d, whereas starch in laticifers was not mobilized. The starch content of latex in plants during development of floral primordia, flowering, and subsequent fruit formation remained rather constant. The results indicate that laticifers in seedlings divert embryonal storage reserves to synthesize starch even under stress conditions (darkness) in contrast to other cells, and that starch accumulated in laticifers does not serve as a metabolic reserve. The laticifer in Euphorbia functions in the accumulation and storage of secondary metabolites yet retains the capacity to produce, but not utilize starch, a primary metabolite.  相似文献   

11.
Zusammenfassung Infektionsexperimente algenfreier Paramecium bursaria mit aus diesen isolierten und unter Stickstoffmangel-Bedingungen vorkultivierten Algen deuten darauf hin, daß die Versorgung der endosymbiontischen Algen mit stickstoffhaltigen Verbindungen durch ihren Wirt in einem zu gutem Wachstum und Vermehrung der Alge ausreichendem Maße möglich ist. Die Bedeutung dieser stoffwechselphysiologischen Beziehung für die Symbiosepartner wird diskutiert.Die Vergiftung der Photosynthese der endosymbiontischen Chlorella durch 3-(3,4-Dichlorphenyl)-1,1-dimethylharnstoff (DCMU) führt in grünen Paramecium bursaria durch Beeinflussung des Kohlenstoff-Stoffwechsels zu einer Entkoppelung des symbiontischen steady state-Systems und damit zur Auflösung der Symbiose. Eine ausreichende heterotrophe Ernährung der Alge durch das Paramecium ist in der Symbiose offenbar nicht möglich.Die Anwendung von 3-(3,4-Dichlorphenyl)-1,1-dimethylharnstoff (DCMU) kann als neue Methode zur Züchtung algenfreier Paramecium bursaria dienen.
The metabolic interactions between Paramecium bursaria Ehrbg. and Chlorella spec. in the Paramecium bursaria-symbiosisI. The nitrogen and the carbon metabolism
Symbiotic Chlorellae have been isolated from Paramecium bursaria Ehrbg. and cultivated under conditions of nitrogen deficiency. Reinfection of Chlorella-free Paramecium bursaria with these nitrogen-deficient algae resulted in a complete regeneration and multiplication of the algae within the host cells. The endosymbiotic algal cells of the Paramecium bursaria-symbiosis can be supplied by their host with nitrogen.The inhibition of photosynthesis by 3-(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU) leads in green Paramecium bursaria to a breakdown of the symbiotic steady state-system resulting in a loss of algal cells. Obviously the endosymbiotic algae cannot be fed heterotrophically by their host to such an extent that a stable symbiosis is maintained.The application of 3-(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU) can be used as a new method for culturing Chlorella-free Paramecium bursaria.
  相似文献   

12.
The nature of Chlorella symbioses in invertebrates and protists has attracted much interest, but the uncertain taxonomy of the algal partner has constrained a deeper ecological understanding of this symbiosis. We sequenced parts of the nuclear 18S rDNA, the internal transcribed spacer (ITS)‐1 region, and the chloroplast 16S rDNA of several Chlorella isolated from pelagic ciliate species of different lakes, Paramecium bursaria symbionts, and free‐living Chlorella to elucidate phylogenetic relationships of Chlorella‐like algae and to assess their host specificity. Sequence analyses resulted in well‐resolved phylogenetic trees providing strong statistical support for a homogenous ‘zoochlorellae’ group of different ciliate species from one lake, but clearly different Chlorella in one of those ciliate species occurring in another lake. The two Chlorella strains isolated from the same ciliate species, but from lakes having a 10‐fold difference in underwater UV transparency, also presented a distinct physiological trait, such as the ability to synthesize UV‐absorbing substances known as mycosporine‐like amino acids (MAAs). Algal symbionts of all P. bursaria strains of different origin resolved in one clade apart from the other ciliate symbionts but split into two distinct lineages, suggesting the existence of a biogeographic pattern. Overall, our results suggest a high degree of species specificity but also hint at the importance of physiological adaptation in symbiotic Chlorella.  相似文献   

13.
The rotifer, Brachionus calyciflorus, was grown with two algae species (Chlorella sp. and Scenedesmus obliquus) at different concentrations (0.1, 1 and 10 × 106 cells ml−1). The body size (lorica biovolume) of individual rotifer and their egg size were measured when the populations were roughly in the exponential phase of population growth. The body size of the rotifers differed significantly (P < 0.05) among the two algae species used, however this effect was not observed for egg size. The body size of rotifers fed on higher densities of Chlorella sp. (10 × 106 cells ml−1) was significantly larger than for those fed on lower and medium densities (0.1 and 1 × 106 cells ml−1). Body size and egg size of rotifers fed with different amounts of Scenedesmus did not differ significantly. The egg size was significantly larger at higher food level of Chlorella. A significantly positive correlation was observed between the adult rotifer body size and their egg size.  相似文献   

14.
Zooxanthellae mitotic index (MI) and expulsion rates were measured in the facultatively symbiotic scleractinian Astrangia poculata during winter and summer off the southern New England coast, USA. While MI was significantly higher in summer than in winter, mean expulsion rates were comparable between seasons. Corals therefore appear to allow increases in symbiont density when symbiosis is advantageous during the warm season, followed by a net reduction during the cold season when zooxanthellae may draw resources from the coral. Given previous reports that photosynthesis in A. poculata symbionts does not occur below approximately 6°C, considerable zooxanthellae division at 3°C and in darkness suggests that zooxanthellae are heterotrophic at low seasonal temperatures. Finally, examination of expulsion as a function of zooxanthellae density revealed that corals with very low zooxanthellae densities export a significantly greater proportion of their symbionts, apparently allowing them to persist in a stable azooxanthellate state.  相似文献   

15.
Cells of the green paramecium, Paramecium bursaria, contain several hundred endosymbiont cells. The properties of the symbionts are considered to vary depending on the collection site of the host. Difficulties in achieving axenic cells and maintenance of axenic strains for long periods have been reported for symbiotic algae from P. bursaria isolated in Japan. To establish axenic algal strains from such Japanese P. bursaria, symbionts were isolated carefully, and isolated axenic strains were grown on an agar medium containing organic nitrogen compounds. Symbiotic algal strains were obtained from three Japanese P. bursaria strains and their axenicity was confirmed by DAPI staining, cultural tests of bacterial contamination, and DGGE-PCR. These axenic strains have been maintained for over 2 years. Utilization of carbohydrates and nitrogen compounds by symbionts was examined. Monosaccharides (glucose and fructose) increased the growth of the symbiont but disaccharides (maltose and sucrose) did not. Japanese axenic symbionts were able to use ammonia and amino acids, but not nitrate or nitrite. While potent nitrite reductase activity was stimulated by nitrate induction, nitrate reductase activity was not. Nitrate utilization of Japanese symbionts differed from that reported for European and American symbionts.  相似文献   

16.
小圆胸小蠹是蛀干为害的食菌小蠹,与其伴生菌构成虫菌共生体,称方胸小蠹—镰孢菌共生体,造成寄主机械损伤、枝干枯死和木材腐烂。在全球范围内寄主达63科342种,对果树、森林及城市景观等造成严重威胁,被国家林业局定为国际重大林木害虫。国外最新的分子学研究显示,方胸小蠹—镰孢菌共生体以种团形式出现,由至少5个形态上无法区分的小蠹种及其伴生菌构成,每一个小蠹种携带1或2种镰孢菌。该种团中的某些种及其伴生菌已经成为入侵物种,攻击并感染健康树木,造成了严重威胁。综述了该种团的生物学及生态学、伴生菌及寄主选择研究进展,以及食菌小蠹的控制途径,指出了我国有分布的该种分类地位急需确定,我国云南分布的该小蠹可能对我国更多地区城市阔叶树种构成威胁,对针叶树也可能构成潜在威胁。当前迫切需要在通过分子学手段澄清其分类地位基础上,深入开展种群生物学及生态学研究,以及伴生菌及寄主选择研究,揭示其成灾机制,为其有效控制提供技术支撑,以遏制其扩散蔓延的势头。  相似文献   

17.
In most symbioses between animals and luminous bacteria it has been assumed that the bacterial symbionts luminesce continuously, and that the control of luminescent output by the animal is mediated through elaborate accessory structures, such as chromatophores and muscular shutters that surround the host light organ. However, we have found that while in the light organ of the sepiolid squid Euprymna scolopes, symbiotic cells of Vibrio fischeri do not produce a continuously uniform level of luminescence, but instead exhibit predictable cyclic fluctuations in the amount of light emitted per cell. This daily biological rhythm exhibits many features of a circadian pattern, and produces an elevated intensity of symbiont luminescence in juvenile animals during the hours preceding the onset of ambient darkness. Comparisons of the specific luminescence of bacteria in the intact light organ with that of newly released bacteria support the existence of a direct host regulation of the specific activity of symbiont luminescence that does not require the intervention of accessory tissues. A model encompassing the currently available evidence is proposed for the control of growth and luminescence activity in the E. scolopes/V. fischeri light organ symbiosis.Abbreviations CFU colony-forming-unit - LD light-dark  相似文献   

18.
纤毛虫与藻类的共生关系在水体环境中广泛存在并有着重要的生态功能。文章回顾了国内外纤毛虫与藻类共生研究的发展历程,主要介绍了纤毛虫与藻类共生的生态功能,以及显微观察与分子生物学技术在纤毛虫与藻类共生研究中的应用;阐述了包括草履虫与小球藻共生关系建立的4个过程及其互作机制、红色中缢虫与隐藻的共生关系、宿主与共生体之间的互作等内容;提出了纤毛虫与藻类共生研究中亟待解决的科学问题,包括草履虫食物泡膜(digestive vacuole, DV)与围藻膜(perialgal vacuole, PV)发挥作用的分子机制、红色中缢虫与隐藻共生关系的建立过程、红色中缢虫在共生过程中的功能作用等,并展望未来的研究方向。  相似文献   

19.
Kodama Y  Fujishima M 《Protoplasma》2007,231(1-2):55-63
Summary. Paramecium bursaria cells harbor several hundred symbiotic algae in their cytoplasm. Algae-free cells can be reinfected with algae isolated from algae-bearing cells or cultivated Chlorella species through the digestive vacuoles. To determine the relationship between the infectivity of various Chlorella species and the nature of their cell wall components, algae-free P. bursaria cells were mixed with 15 strains of cultivated Chlorella species and observed for the establishment of endosymbiosis at 1 h and 3 weeks after mixing. Only 2 free-living algal strains, C. sorokiniana C-212 and C. kessleri C-531, were maintained in the host cells, whereas free-living C. sorokiniana C-43, C. kessleri C-208, C. vulgaris C-27, C. ellipsoidea C-87 and C-542, C. saccharophila C-183 and C-169, C. fusca var. vacuolata C-104 and C-28, C. zofingiensis C-111, and C. protothecoides C-150 and C-206 and the cultivated symbiotic Chlorella sp. strain C-201 derived from Spongilla fluviatilis could not be maintained. These infection-incapable strains could escape from the host digestive vacuole but failed to localize beneath the host cell membrane and were eventually digested. Labeling of their cell walls with Alexa Fluor 488-conjugated wheat germ agglutinin, GS-II, or concanavalin A, with or without pretreatment with 0.4 N NaOH, showed no relationship between their infectivity and the stainability with these lectins. Our results indicate that the infectivity of Chlorella species for P. bursaria is not based on the sugar residues on their cell wall and on the alkali-insoluble part of the cell wall components, but on their ability to localize just beneath the host cell membrane after escaping from the host digestive vacuole. Correspondence and reprints: Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Japan.  相似文献   

20.
The growth, biochemical composition and fatty acid profiles of six Antarctic microalgae cultured at different temperatures, ranging from 4, 6, 9, 14, 20 to 30 C, were compared. The algae were isolated from seawater, freshwater, soil and snow samples collected during our recent expeditions to Casey, Antarctica, and are currently deposited in the University of Malaya Algae Culture Collection (UMACC). The algae chosen for the study were Chlamydomonas UMACC 229, Chlorella UMACC 234, Chlorella UMACC 237, Klebsormidium UMACC 227, Navicula UMACC 231 and Stichococcus UMACC 238. All the isolates could grow at temperatures up to 20 C; three isolates, namely Navicula UMACC 231 and the two Chlorella isolates (UMACC 234 and UMACC 237) grew even at 30 C. Both Chlorella UMACC 234 and Stichococcus UMACC 238 had broad optimal temperatures for growth, ranging from 6 to 20 C (μ = 0.19 – 0.22 day–1) and 4 to 14 C (μ = 0.13 – 0.16 day–1), respectively. In contrast, optimal growth temperatures for NaviculaUMACC 231 and Chlamydomonas UMACC 229 were 4 C (μ = 0.34 day–1) and 6–9 C (μ = 0.39 – 0.40 day–1), respectively. The protein content of the Antarctic algae was markedly affected by culture temperature. All except Navicula UMACC 231 and Stichococcus UMACC 238 contained higher amount of proteins when grown at low temperatures (6–9 C). The percentage of PUFA, especially 20:5 in Navicula UMACC 231 decreased with increasing culture temperature. However, the percentages of unsaturated fatty acids did not show consistent trend with culture temperature for the other algae studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号