首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 为了进一步研究φX174噬菌体A基因蛋白的复制功能与其所识别的30核苷酸保守序列的关系,我们采用寡聚核苷酸诱导的定点突变法成功地改造了这30核苷酸保守序列。将此保守序列重组到M_(13)mp9噬菌体后,以其单链为模板,在14或16寡聚核苷酸的诱导下,合成共价闭环DNA。经转化到E.coli JM103菌株,用点印迹(Dot blot)杂交法筛选,得到两种重组突变株。一种突变株其30核苷酸保守序列正链的第22碱基由A改为G。另一突变株为其第10碱基A改为C,第11碱基T改为A。突变效率约为5%。制备了此突变株单链及双链DNA,分别做了双脱氧末端终止法及Maxam和Gilbert法序列分析鉴定。  相似文献   

2.
Correction of heteroduplex DNA obtained by hybridization of uracil-containing single-stranded M13mp18 phage DNA and "mutant" synthetic oligonucleotide with deletion of cytosine in SalGI site was studied in ung+ and ung- E. coli strains. Uracil-containing DNA was prepared after growth of phage in an E. coli strain dut- ung-. The DNA was hybridized with "mutant" oligonucleotide then complementary DNA chain was synthesized by T4 DNA polymerase. Ung+ and ung- E. coli cells were transformed by DNA. In all experiments mutation frequency in ung+ was higher than in ung- cells (approximately 6-fold) and reached 11-50%. Absolute number of mutants was higher in ung+ cells. The results indicate that high level of mutagenesis depends on uracil repair system polarizing the correction of heteroduplex DNA.  相似文献   

3.
Organic synthesis and recombinant DNA techniques have been used to situate a single 1,N6-ethenoadenine (epsilon Ade) DNA adduct at an amber codon in the genome of an M13mp19 phage derivative. The deoxyhexanucleotide d[GCT(epsilon A)GC] was chemically synthesized by the phosphotriester method. Mild nonaqueous conditions were employed for deprotection because of the unstable nature of the epsilon Ade adduct in aqueous basic milieu. Physical studies involving fluorescence, circular dichroism, and 1H NMR indicated epsilon Ade to be very efficiently stacked in the hexamer, especially with the 5'-thymine. Melting profile and circular dichroism studies provided evidence of the loss of base-pairing capabilities attendant with formation of the etheno ring. The modified hexanucleotide was incorporated into a six-base gap formed in the genome of an M13mp19 insertion mutant; the latter was constructed by blunt-end ligation of d(GCTAGC) in the center of the unique SmaI site of M13mp19. Phage of the insertion mutant, M13mp19-NheI, produced light blue plaques on SupE strains because of the introduced amber codon. Formation of a hybrid between the single-strand DNA (plus strand) of M13mp19-NheI with SmaI-linearized M13mp19 replicative form produced a heteroduplex with a six-base gap in the minus strand. The modified hexamer [5'-32P]d-[GCT(epsilon A)GC], after 5'-phosphorylation, was ligated into this gap by using bacteriophage T4 DNA ligase to generate a singly adducted genome with epsilon Ade at minus strand position 6274. Introduction of the radiolabel provided a useful marker for characterization of the singly adducted genome, and indeed the label appeared in the anticipated fragments when digested by several restriction endonucleases. Evidence that ligation occurred on both 5' and 3' sides of the oligonucleotide also was obtained. The adduct was introduced into a unique NheI site, and it was observed that this restriction endonuclease was able to cleave the adducted genome, albeit at a lower rate compared to unmodified DNA. The M13mp19-NheI genome containing epsilon Ade will be used as a probe for studying mutagenesis and repair of this DNA adduct in Escherichia coli.  相似文献   

4.
N Tsurushita  H Maki  L J Korn 《Gene》1988,62(1):135-139
Escherichia coli DNA polymerase III holoenzyme was used to synthesize double-stranded DNA from M13 single-stranded DNA hybridized to a phosphorylated synthetic oligodeoxynucleotide containing a nucleotide substitution. The resulting DNA was transfected into E. coli JM101 without further treatment. Sequence analysis of randomly chosen phage clones revealed that the efficiency of mutagenesis was nearly 50%, which is the theoretical maximum. Treatment with DNA ligase after DNA synthesis was not necessary to obtain high efficiency of mutagenesis. Thus, use of DNA polymerase III holoenzyme provides a simple and efficient procedure for site-directed mutagenesis.  相似文献   

5.
Summary In vitro photosensitization by visible light in the presence of methylene blue (MB-light) produces lesions in M13mpl8 lacZ phage DNA, the lethal and mutagenic potential of which was analyzed after transfection into various bacterial hosts. Mutagenesis was determined with a forward mutation assay using the lacZ gene of M13mp18 as a target. When, MB-light-treated double-stranded (ds) M13mp18 DNA was used to transfect wild-type cells which were not induced for SOS functions, a fivefold increase in mutation frequency was observed at 10% survival compared to that observed with untreated DNA. Mutation frequency obtained with MB-light-treated ds M13mp18 DNA was greater when transfected into the uvrA fpg-1 double mutant than that seen in uvrA, fpg-1, or umuC single mutants or in the wild-type. Sequence analysis shows that in the wild-type strain, MB-light treatment of ds M13mp18 DNA results mostly in single base substitutions. The most frequent base change is the GCTA transversion. MB-light treatment of single-stranded (ss) M13mp18 DNA also results in an increased mutation frequency after transfection into the wild-type strain, yielding mostly GT transversions. Our results show that MB-light-induced mutagenesis is at least partially independent of the induction of SOS functions in Escherichia coli. The mutation spectra suggest that 8-oxo-7,8-dihydroguanine is the major promutagenic lesion in DNA.  相似文献   

6.
The nucleotide sequence coding for human angiogenin has been deduced from the published amino acid sequence with the use of codons preferentially utilized in highly expressed E. coli genes. It was divided into forty-three oligonucleotides, which were synthesized by automatic gene assembler and then joined by DNA ligase into three double-stranded blocks, the blocks were consequently cloned and ligated in M13mp8 phage, and the resultant 389-bp DNA sequence coding for human angiogenin was analysed by chain-terminator sequencing technique.  相似文献   

7.
The technique of site-directed mutagenesis has been used to investigate the mutagenicity of O6-methylguanine (O6-MeG) or hypoxanthine introduced as a single lesion at a specific locus in an M13mp9 RF molecule constructed in vitro. Following transformation of O6-MeG-containing RF molecules into E. coli JM101, mutant progeny phage were produced at a frequency not significantly different from that observed with wild-type M13mp9 RF. The mutant yield was greatly enhanced by exhausting cellular O6-MeG DNA-methyltransferase before transformation. In contrast, hypoxanthine exhibited miscoding mutagenesis in the absence of interference with cellular repair mechanisms. This indicates that cellular hypoxanthine-DNA glycosylase acts inefficiently in the removal of hypoxanthine from DNA in vivo. The precise mutational changes induced by hypoxanthine were determined by DNA sequence analysis.  相似文献   

8.
T Kodadek  H Gamper 《Biochemistry》1988,27(9):3210-3215
We report a simple method for the in vitro synthesis of large quantities of site specifically modified DNA. The protocol involves extension of an oligonucleotide primer annealed to M13 single-stranded DNA using part of the T4 DNA polymerase holoenzyme. The resulting nicked double-stranded circles are ligated and supercoiled in the same tube, producing good yields of form I DNA. When the oligonucleotide primer is chemically modified, the resultant product contains a site-specific lesion. In this study, we report the synthesis of an M13 mp19 form I DNA which contains a psoralen monoadduct or cross-link at the KpnI site. We demonstrate the utility of these modified substrates by assessing the ability of the bacteriophage T4 DNA replication complex to bypass the damage and show that the psoralen monoadduct poses a severe block to the holoenzyme when attached to the template strand.  相似文献   

9.
J W Taylor  J Ott    F Eckstein 《Nucleic acids research》1985,13(24):8765-8785
M13 RF IV DNA may be prepared in vitro to contain phosphorothioate-modified internucleotidic linkages in the (-)strand only. Certain restriction enzymes react with this modified DNA to hydrolyze the (+)strand exclusively when a phosphorothioate linkage occurs at the normal cleavage point in the (-)strand. The reaction of Pvu I with M13mp2 RF IV DNA containing dCMPS residues in the (-)strand is of this type, and is exploited to allow subsequent digestion with exonuclease III of a portion of the (+)strand opposite different mutagenic mismatched oligonucleotide primers. Two methods are described by which this approach has been used to produce mutations in M13mp2 phage DNA with high efficiency as a result of simple and rapid in vitro manipulations. Plaques containing mutant phage in a genetically-pure form are obtained at a frequency of 40-66%, allowing their characterisation directly by sequence analysis without prior screening and plaque purification. The wide applicability of this approach is discussed.  相似文献   

10.
In order to develop non-radioactive oligonucleotide derivatives and to examine their utility as a diagnostic tool, namely as DNA-probe, an enzyme-linked oligonucleotide was synthesized. Oligonucleotide complementary to M13mp8 phage DNA was linked to alkaline phosphatase via a crosslinker and a spacer. M13mp8 phage DNA (single strand) immobilized on the nitrocellulose membrane was hybridized with the enzyme-linked oligonucleotide. The hybrid was detected with three detection methods; (1)colorimetric detection in solution, (2)colorimetric one on membranes, and (3)fluorometric one in solution. Methods(2) and (3) gave high sensitivities to detect as low as several to several tens attomoles of DNA and it was found that those methods with enzyme-linked oligonucleotides are potent for DNA-probe methodology from the viewpoint of automation.  相似文献   

11.
以含有蛋白酶E基因(aprE)的单链M13mp18-aprE DNA为模板,合成的寡核苷酸5′-3′为诱变引物,用缺口双链法对aprE进行Met-222-Ala点突变。经菌落印迹杂交筛选,选出阳性噬斑。用SaⅡ酶解M13mp18-aprE得到aprE,将它和pPZW103重组,转化中性、碱性蛋白酶缺失宿主菌DB104。经含卡那霉素和脱脂奶粉板筛选和比较aprE限制性内切酶NcoⅠ和SacⅡ水解电泳图谱分析,完成构建一个分泌抗氧化的枯草杆菌蛋白酶E的工程菌PW8888。  相似文献   

12.
The umuC product of Escherichia coli has been suggested to have a central role in SOS induced error prone replication of DNA (Kato and Shinoura 1977). To investigate this possibility, we examined the effect of umuC mutations on error prone repair of single and double-stranded DNA phages. No Weigle reactivation of M13 phage was detected in a umuC mutant. Reactivation of lambda phage was reduced but still evident. However mutagenesis occurred in both cases. These results suggest that induced error prone replication of phage DNA can occur via umuC dependent (transdimer synthesis) and umuC independent mechanisms.  相似文献   

13.
S Artz  D Holzschu  P Blum  R Shand 《Gene》1983,26(2-3):147-158
A restriction map was determined for a phi 80 lambda dhis transducing phage DNA carrying the Salmonella typhimurium histidine operon. DNA fragments containing the promoter/regulatory region and the first two structural genes of the histidine operon (hisOGD) were identified by their ability to direct regulated synthesis of histidinol dehydrogenase (product of hisD) in a coupled in vitro protein synthesizing system. A 3.1-kb SalI-EcoRI restriction fragment containing the hisOGD region, was subcloned into phage M13mp8 and M13mp9 RF DNAs. Methods are described for shuttling mutant and wild-type bacterial DNA sequences between the M13mp::his phage and host bacterial genomes. Of novel importance is the use of the phage M13 gene II amber mutation to obtain integration of the M13mp::his phage genome into the homologous his region of the bacterial chromosome following transduction of recipients lacking an amber suppressor. This method can be used to facilitate allele replacement with genes carried on M13 transducing phages.  相似文献   

14.
An efficient method to obtain the mutant genes for human leucocyte alpha 2-interferon (IFN) has been elaborated.The technique includes the following main stages: cloning of interferon gene in M13mp8 DNA; isolation of double-stranded hybrid DNA complex, containing IFN gene as a single-stranded fragment; selective modification of a single-stranded hybrid DNA by sodium bisulphite; the repair of hybrid DNA by DNA polymerase I from Escherichia coli, transformation of Escherichia coli JN103 cells by double-stranded circular DNA, containing the selectively modified gene IFN. The technique is based on the protection of bacteriophage M13 genome from mutagen induced damage by means of converting phage DNA into the double-stranded structure leaving the single-stranded fragment to be mutagenized prone to mutagen action. This is achieved by reannealing of single-stranded M13mpB DNA hydrolyzed by restriction endonuclease BamHI. The technique preserves the infectiousness of vector DNA under the conditions permitting modification of up to 10% cytosine residues in IFN gene. Every clone resulting from transformation of Escherichia coli by modified DNA carried mutations in IFN gene, identified by sequencing after Sanger.  相似文献   

15.
The SOS hypothesis postulated that the mutator effect on undameged DNA that generates phage-untargeted mutagenesis (UTM) results directly from the mechanism of targeted mutagenesis. RecA protein, which stimulates the cleavage of both the LexA repressor and UmuD protein, and the UmuDC gene products are required for UV-induced targeted mutagenesis. The use of phage λ for analyzing UV-induced mutagenesis has permitted a distinction to be made between the mechanisms of targeted and untargeted mutagenesis, in that the two processes differ with respect to their genetic requirements for recA+ and umuDC+ genes. In this paper, we show thet (i) proficiency for excision repair is required for UTM in double-stranded DNA phage but not in single-stranded DNA phage; (ii) the umuC function, which is not required for UTM of the double-stranded DNA phage λ, is necessary for untargeted mutagenesis of the single-stranded DNA phages M13 and φX174; (iii) for both single-stranded and double-stranded DNA phage, UV irradiation of the host increases the level of recA730-induced UTM. Our results are also consistent with the interpretation that the expression of untargeted mutagenesis in phage λ and in M13 depends on the polymerase and to a lesser extent on the exonuclease 5′ → 3′, activities of Po1I. These results suggest that the involvement of the RecA and UmuDC proteins may be related to more than the presence of base damage in the DNA substrate.  相似文献   

16.
Analysis of 2-amino-N6-hydroxyadenine-induced mutagenesis in phage M13mp2   总被引:1,自引:0,他引:1  
The mechanism of mutagenesis induced by 2-amino-N6-hydroxyadenine (AHA) and its deoxyriboside (AHAdR) was studied by determining the nucleotide sequences of phage M13mp2 mutant DNA samples. Mutations in the lac promoter-lacZ alpha region of the phage were induced by addition of this agent to culture media in which the phage was growing inside the host bacteria. The spectrum of spontaneous mutation was also investigated. The induced sequence changes were mostly base transitions (80% with AHA and 90% with AHAdR). A few single-base deletions and additions were detected, but they were ascribable to spontaneous mutations. These results are consistent with the incorporation type mechanism proposed by Janion (this issue). In the Ames Salmonella assay, both AHA and AHAdR showed strong mutagenicity in strain TA100 but no activity in TA98.  相似文献   

17.
Padlock oligonucleotides as a tool for labeling superhelical DNA   总被引:2,自引:1,他引:1       下载免费PDF全文
Labeling of a covalently closed circular double-stranded DNA was achieved using a so-called ‘padlock oligonucleotide’. The oligonucleotide was targeted to a sequence which is present in the replication origin of phage f1 and thus in numerous commonly used plasmids. After winding around the double-stranded target DNA sequence by ligand-induced triple helix formation, a biotinylated oligonucleotide was circularized using T4 DNA ligase and in this way became catenated to the plasmid. A gel shift assay was developed to measure the extent of plasmid modification by the padlock oligonucleotide. A similar assay showed that a modified supercoiled plasmid was capable of binding one streptavidin molecule thanks to the biotinylated oligonucleotide and that this binding was quantitative. The catenated complex was visualized by electron and atomic force microscopies using streptavidin conjugates or single strand-binding proteins as protein tags for the padlock oligonucleotide. This method provides a versatile tool for plasmid functionalization which offers new perspectives in the physical study of supercoiled DNA and in the development of improved vectors for gene therapy.  相似文献   

18.
M Méchali  R M Harland 《Cell》1982,30(1):93-101
We describe a eucaryotic in vitro system for DNA replication derived from Xenopus eggs. In this system, priming and elongation of DNA chains occurs with unusually high efficiency on single-stranded circular DNA templates. Up to 1.5 micrograms M13 DNA can be converted to a completely double-stranded form by 100 microliters egg extract in 1 hr at 22 degrees C, a rate of synthesis comparable with the fastest rates of chromosomal DNA synthesis in early embryogenesis. Initiation of DNA synthesis on double-stranded circular DNA templates was undetectable however. The enzymatic events responsible for complementary-strand synthesis in vitro resemble those presumed to act at the lagging strand of the eucaryotic replication fork in vivo in three ways. First, inhibitor studies indicate that DNA polymerase alpha is required. Second, priming of DNA synthesis by oligoribonucleotides is strongly supported by the complete dependence on ribonucleoside triphosphates in the assay, and the detection of an oligoribonucleotide terminus of 9 or possibly 10 nucleotides associated with nascent DNA chains. Third, the priming reaction is resistant to alpha-amanitin.  相似文献   

19.
Sequence analysis of ultraviolet-induced mutations in M13lacZ hybrid phage DNA   总被引:28,自引:0,他引:28  
We have studied the specificity of ultraviolet (u.v.) mutagenesis in single-stranded DNA phage by analyzing u.v.-induced forward mutations in the lac insert of M13mp2 hybrid phage. Sequence analysis of 114 lac mutants derived from u.v.-irradiated phage grown in u.v.-irradiated cells showed that ultraviolet induces mainly single-nucleotide substitutions and deletions in progeny phage DNA. A total of 74% of the single-base substitution mutations occurred at sites of adjacent pyrimidines in the single-stranded DNA, with both T----C and C----T transitions predominating in the u.v. spectrum. Single-nucleotide deletion mutations occurred preferentially in tracts of repeated pyrimidine nucleotides. Tandem, double-base substitutions did not represent a major class of u.v.-induced mutations, but nearly 10% of mutant clones contained multiple, non-tandem nucleotide changes.  相似文献   

20.
17- and 20-mer oligodeoxyribonucleotides and their analogues, containing one to four phosphate groups esterified with ethyl alcohol in different positions of oligonucleotide chain, were synthesized by modified triester method. Ethylated di- and trinucleotide blocks were prepared by transesterification method from chlorophenyl derivatives. The structures of the oligonucleotides were confirmed by Maxam-Gilbert sequencing method. Oligonucleotides were not totally complementary to the N-terminal region of lac Z'gene (coding for N-terminal fragment of beta-galactosidase) of phage M13mpB DNA and induced the formation of the proposed deletion mutant DNA M13mp1 delta T. Phosphotriester analogues were more effective mutagens as compared to phosphodiester oligonucleotides due to their stability to nucleases. The use of E. coli DNA-polymerase I provided the increase in the mutant yields in case of the phosphotriester analogues. The stability of the analogues to 5'----3'----5'-endonuclease action, the specificity of oligonucleotide: DNA binding and the structure of mutant DNA were studied by the Sanger sequencing method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号