共查询到20条相似文献,搜索用时 0 毫秒
1.
Real-time monitoring full length bid interacting with Bax during TNF-α-induced apoptosis 总被引:2,自引:0,他引:2
Pei Y Xing D Gao X Liu L Chen T 《Apoptosis : an international journal on programmed cell death》2007,12(9):1681-1690
Bid, a member of the pro-apoptotic Bcl-2 protein family, is activated through caspase-8-mediated cleavage into a truncated
form (p15 tBid) during TNF-α(tumor necrosis factor α)-induced apoptosis. Activated tBid can induce Bax oligomerization and
translocation to mitochondria, triggering the release of cytochrome c, caspase-3 activation and cell apoptosis. However, it
is debatable that whether Bid and tBid can interact directly with Bax in living cells. In this study, we used confocal fluorescence
microscope, combined with both FRET (fluorescence resonance energy transfer) and acceptor photobleaching techniques, to study
the dynamic interaction between Bid and Bax during TNF-α-induced apoptosis in single living cell. In ASTC-a-1 cells, full
length Bid induced Bax translocation to mitochondria by directly interacting with Bax transiently in response to TNF-α treatment
before cell shrinkage. Next, we demonstrated that, in both ASTC-a-1 and HeLa cells, Bid was not cleaved before cell shrinkage
even under the condition that caspase-8 had been activated, but in MCF-7 cells Bid was cleaved. In addition, in ASTC-a-1 cells,
caspase-3 activation was a biphasic process and Bid was cleaved after the second activation of caspase-3. In summary, these
findings indicate that, FL-Bid (full length-Bid) directly regulated the activation of Bax during TNF-α-induced apoptosis in
ASTC-a-1 cells and that the cleavage of Bid occurred in advanced apoptosis. 相似文献
2.
3.
《Cell cycle (Georgetown, Tex.)》2013,12(17):2821-2822
Comment on: Geering B, et al. Blood 2011; 117:5953-62. 相似文献
4.
In this study, we show that atraxia telangiectasia mutated kinase (ATM) activity is generally upregulated by different apoptotic stimuli, i.e. TNF-α, TRAIL, paclitaxel, or UV. Apoptotic progression is markedly attenuated by siATM-RNA through down regulation of caspase-8 and caspase-9 in parallel with decreases in FLIP-S (short form of cellular FLICE inhibitory protein) protein levels and Bid cleavage. In addition, ATM activity is upregulated through t-Cdc6 while caspase-8 and caspase-9 activities increase. Taken together, we suggest that ATM regulates caspase-8 activation by influencing levels of FLIP-S, ATM kinase activity is upregulated by t-Cdc6, and increased ATM activity plays an essential role in the amplification of apoptosis in TNF-α-stimulated HeLa cells. 相似文献
5.
BackgroundC1q/tumour necrosis factor-related protein 3 (CTRP3) plays important roles in metabolism and inflammatory responses in various cells and tissues. However, the expression and function of CTRP3 in salivary glands have not been explored.MethodsThe expression and distribution of CTRP3 were detected by western blot, polymerase chain reaction, immunohistochemical and immunofluorescence staining. The effects of CTRP3 on tumour necrosis factor (TNF)-α-induced apoptosis and barrier dysfunction were detected by flow cytometry, western blot, co-immunoprecipitation, and measurement of transepithelial resistance and paracellular tracer flux.ResultsCTRP3 was distributed in both acinar and ductal cells of human submandibular gland (SMG) and was primarily located in the ducts of rat and mouse SMGs. TNF-α increased the apoptotic rate, elevated expression of cleaved caspase 3 and cytochrome C, and reduced B cell lymphoma-2 (Bcl-2) levels in cultured human SMG tissue and SMG-C6 cells, and CTRP3 further enhanced TNF-α-induced apoptosis response. Additionally, CTRP3 aggravated TNF-α-increased paracellular permeability. Mechanistically, CTRP3 promoted TNF-α-enhanced TNF type I receptor (TNFR1) expression, inhibited the expression of cellular Fas-associated death domain (FADD)-like interleukin-1β converting enzyme inhibitory protein (c-FLIP), and increased the recruitment of FADD with receptor-interacting protein kinase 1 and caspase 8. Moreover, CTRP3 was significantly increased in the labial gland of Sjögren's syndrome patients and in the serum and SMG of nonobese diabetic mice.ConclusionsThese findings suggest that the salivary glands are a novel source of CTRP3 synthesis and secretion. CTRP3 might promote TNF-α-induced cell apoptosis through the TNFR1-mediated complex II pathway. 相似文献
6.
7.
Tumor necrosis factor superfamily 15 (TNFSF15) suppresses angiogenesis by specifically inducing apoptosis in proliferating endothelial cells. Death receptor 3 (DR3), a member of the TNF receptor superfamily (TNFRSF25), has been identified as a receptor for TNFSF15 to activate T cells. It is unclear, however, whether DR3 mediates TNFSF15 activity on endothelial cells. Here we show that siRNA-mediated knockdown of DR3 in an in vivo Matrigel angiogenesis assay, or in adult bovine aortic endothelial (ABAE) cell cultures, leads to resistance of endothelial cells to TNFSF15-induced apoptosis. Interestingly, DR3-depleted cells also exhibited markedly diminished responsiveness to TNFα cytotoxicity, even though DR3 is not a receptor for TNFα. Treatment of the cells with either TNFSF15 siRNA or a TNFSF15-neutralizing antibody, 4-3H, also results in a significant inhibition of TNFα-induced apoptosis. Mechanistically, DR3 siRNA treatment gives rise to an increase of ERK1/2 MAPK activity, and up-regulation of the anti-apoptotic proteins c-FLIP and Bcl-2, thus strengthening apoptosis-resisting potential in the cells. These findings indicate that DR3 mediates TNFSF15-induced endothelial cell apoptosis, and that up-regulation of TNFSF15 expression stimulated by TNFα is partly but significantly responsible for TNFα-induced apoptosis in endothelial cells. 相似文献
8.
9.
Death associated protein kinase (DAPK) is a positive regulator in tumor necrosis factor α (TNFα)‐induced apoptotic pathway, and DAPK expression is lost in cancer cells. In the vasculature, misdirected apoptosis in endothelial cells leads to pathological conditions such as inflammation and physiological shear stress is protective against apoptosis. Using bovine aortic endothelial cells, we found that DAPK expression increased, while the auto‐inhibitory phosphorylation of serine 308 decreased with shear stress at 12 dynes/cm2 for 6 h. Quantitative RT‐PCR revealed a corresponding increase in DAPK mRNA [P < 0.01]. We found that after 18‐h TNFα induction, shearing cells for another 6 h significantly reduced apoptosis based on TUNEL staining [P < 0.05], although cell necrosis was not affected. Under the same conditions, we observed significantly decreased overall DAPK, as well as phospho‐serine 308 DAPK [P < 0.05] compared to TNFα treatment alone. Caspase‐3 and ‐7 activities downstream of DAPK were also attenuated. Shearing cells alone resulted in enhanced apoptosis, likely due to increased DAPK activity. Our findings were further supported by DAPK siRNA, which yielded contrary results. We present conclusive evidence for the first time that shear stress of up to 6 h up‐regulates DAPK expression and activation. However, in the presence of apoptotic stimuli such as TNFα, shear stress caused decrease in DAPK activity. In fact, long‐term shear stress of 24 h significantly reduced overall DAPK expression. Our findings strongly support a novel role for DAPK in mediating effects of shear stress in suppressing cytokine‐activated apoptosis. J. Cell. Physiol. 227: 2398–2411, 2012. © 2011 Wiley Periodicals, Inc. 相似文献
10.
TNFα signaling can promote apoptosis or a regulated form of necrosis. ARC (apoptosis repressor with CARD (caspase recruitment domain)) is an endogenous inhibitor of apoptosis that antagonizes both the extrinsic (death receptor) and intrinsic (mitochondrial/ER) apoptosis pathways. We discovered that ARC blocks not only apoptosis but also necrosis. TNFα-induced necrosis was abrogated by overexpression of wild-type ARC but not by a CARD mutant that is also defective for inhibition of apoptosis. Conversely, knockdown of ARC exacerbated TNFα-induced necrosis, an effect that was rescued by reconstitution with wild-type, but not CARD-defective, ARC. Similarly, depletion of ARC in vivo exacerbated necrosis caused by infection with vaccinia virus, which elicits severe tissue damage through this pathway, and sensitized mice to TNFα-induced systemic inflammatory response syndrome. The mechanism underlying these effects is an interaction of ARC with TNF receptor 1 that interferes with recruitment of RIP1, a critical mediator of TNFα-induced regulated necrosis. These findings extend the role of ARC from an apoptosis inhibitor to a regulator of the TNFα pathway and an inhibitor of TNFα-mediated regulated necrosis. 相似文献
11.
Background
We have already reported that TNF-α increases cardiomyocyte apoptosis and IL-10 treatment prevented these effects of TNF-α. Present study investigates the role of Akt and Jak/Stat pathway in the IL-10 modulation of TNF-α induced cardiomyocyte apoptosis.Methodology/Principal findings
Cardiomyocytes isolated from adult Sprague Dawley rats were exposed to TNF-α (10 ng/ml), IL-10 (10 ng/ml) and TNF-α+IL-10 (ratio 1) for 4 h. Exposure to TNF-α resulted in an increase in cardiomyocyte apoptosis as measured by flow cytometry and TUNEL assay. IL-10 by itself had no effect, but it prevented TNF-α induced apoptosis. IL-10 treatment increased Akt levels within cardiomyocytes and this change was associated with an increase in Jak1 and Stat3 phosphorylation. Pre-exposure of cells to Akt inhibitor prevented IL-10 induced Stat3 phosphorylation. Furthermore, in the presence of Akt or Stat3 inhibitor, IL-10 treatment was unable to block TNF-α induced cardiomyocyte apoptosis.Conclusion
It is suggested that IL-10 modulation of TNF-α induced cardiomyocyte apoptosis is mediated by Akt via Stat3 activation. 相似文献12.
Death receptor-induced programmed necrosis is regarded as a secondary death mechanism dominating only in cells that cannot properly induce caspase-dependent apoptosis. Here, we show that in cells lacking TGFβ-activated Kinase-1 (TAK1) expression, catalytically active Receptor Interacting Protein 1 (RIP1)-dependent programmed necrosis overrides apoptotic processes following Tumor Necrosis Factor-α (TNFα) stimulation and results in rapid cell death. Importantly, the activation of the caspase cascade and caspase-8-mediated RIP1 cleavage in TNFα-stimulated TAK1 deficient cells is not sufficient to prevent RIP1-dependent necrosome formation and subsequent programmed necrosis. Our results demonstrate that TAK1 acts independently of its kinase activity to prevent the premature dissociation of ubiquitinated-RIP1 from TNFα-stimulated TNF-receptor I and also to inhibit the formation of TNFα-induced necrosome complex consisting of RIP1, RIP3, FADD, caspase-8 and cFLIP(L). The surprising prevalence of catalytically active RIP1-dependent programmed necrosis over apoptosis despite ongoing caspase activity implicates a complex regulatory mechanism governing the decision between both cell death pathways following death receptor stimulation. 相似文献
13.
Latchoumycandane C Marathe GK Zhang R McIntyre TM 《The Journal of biological chemistry》2012,287(21):17693-17705
TNFα generates reactive oxygen species (ROS) at the cell surface that induce cell death, but how ROS communicate to mitochondria and their specific apoptotic action(s) are both undefined. ROS oxidize phospholipids to hydroperoxides that are friable and fragment adjacent to the (hydro)peroxide function, forming truncated phospholipids, such as azelaoyl phosphatidylcholine (Az-PC). Az-PC is relatively soluble, and exogenous Az-PC rapidly enters cells to damage mitochondrial integrity and initiate intrinsic apoptosis. We determined whether this toxic phospholipid is formed within cells during TNFα stimulation in sufficient quantities to induce apoptosis and if they are essential in TNFα-induced cytotoxicity. We found that TNFα induced ROS formation and phospholipid peroxidation in Jurkat cells, and either chemical interference with NADPH oxidase activity or siRNA suppression of the NADPH oxidase-4 subunit blocked ROS accumulation and phospholipid peroxidation. Mass spectrometry showed that phospholipid peroxides and then Az-PC increased after TNFα exposure, whereas ROS inhibition abolished Az-PC accumulation and TNFα-induced cell death. Glutathione peroxidase-4 (GPx4), which specifically metabolizes lipid hydroperoxides, fell in TNFα-stimulated cells prior to death. Ectopic GPx4 overcame this, reduced peroxidized phospholipid accumulation, blocked Az-PC accumulation, and prevented death. Conversely, GPx4 siRNA knockdown enhanced phospholipid peroxidation, increasing TNFα-stimulated Az-PC formation and apoptosis. Truncated phospholipids were essential elements of TNFα-induced apoptosis because overexpression of PAFAH2 (a phospholipase A(2) that selectively hydrolyzes truncated phospholipids) blocked TNFα-induced Az-PC accumulation without affecting phospholipid peroxidation. PAFAH2 also abolished apoptosis. Thus, phospholipid oxidation and truncation to apoptotic phospholipids comprise an essential element connecting TNFα receptor signaling to mitochondrial damage and apoptotic death. 相似文献
14.
I. I. Galkin O. Yu. Pletjushkina R. A. Zinovkin V. V. Zakharova I. S. Birjukov B. V. Chernyak E. N. Popova 《Biochemistry. Biokhimii?a》2014,79(2):124-130
Increased serum level of tumor necrosis factor α (TNFα) causes endothelial dysfunction and leads to serious vascular pathologies. TNFα signaling is known to involve reactive oxygen species (ROS). Using mitochondria-targeted antioxidant SkQR1, we studied the role of mitochondrial ROS in TNFα-induced apoptosis of human endothelial cell line EAhy926. We found that 0.2 nM SkQR1 prevents TNFα-induced apoptosis. SkQR1 has no influence on TNFα-dependent proteolytic activation of caspase-8 and Bid, but it inhibits cytochrome c release from mitochondria and cleavage of caspase-3 and its substrate PARP. SkQ analogs lacking the antioxidant moieties do not prevent TNFα-induced apoptosis. The antiapoptotic action of SkQR1 may be related to other observations made in these experiments, namely SkQR1-induced increase in Bcl-2 and corresponding decrease in Bax as well as p53. These results indicate that mitochondrial ROS production is involved in TNFα-initiated endothelial cell death, and they suggest the potential of mitochondria-targeted antioxidants as vasoprotectors. 相似文献
15.
16.
17.
Xiaoyu Liu Linqing Feng Ming Yan Kedi Xu Yu Yu Xiaoxiang Zheng 《Molecular and cellular biochemistry》2010,344(1-2):277-284
Changes in mitochondrial morphology and dynamics influence mitochondrial function and ultimately damage neurons in Alzheimer’s disease (AD). Amyloid β (Aβ) is a major factor in the pathogenesis of AD. Although it has been proved that Aβ can affect the dynamics of mitochondria, there is little known on the precise dynamic process. Thus, MTT, Hoechst 33342, and Annexin V/PI analysis were used to study Aβ25–35 neurotoxity on PC12 cells, live cell station and image processing were applied to study the moving parameters and characters of mitochondria. We also studied changes of mitochondrial membrane potential and reactive oxygen species production. The results showed that long-term exposure of PC12 cells to Aβ25–35 resulted in increase of mitochondrial number and decrease of mitochondrial length and size, which presented fluctuated during early time and dramatic changes occurred after 6 h. Low concentration exposure caused little mitochondrial changes before 24 h while short time exposure induced mitochondrial fragmentation that could be recovered to normal. Mitochondrial membrane potential dissipation and reactive oxygen species production were observed, as well as apparent cell apoptosis with significant morphological changes. These data suggest that mitochondrial fission can be reversed during Aβ25–35-induced PC12 cell apoptosis, depending on the concentration and exposure time of Aβ25–35, which may be helpful in AD prevention and therapy. 相似文献
18.
Vasili Stegajev Vesa-Petteri Kouri Abdelhakim Salem Stanislav Rozov Holger Stark Dan C. E. Nordström Yrjö T. Konttinen 《Apoptosis : an international journal on programmed cell death》2014,19(12):1702-1711
Apoptosis is involved in the pathogenesis of Sjögren’s syndrome (SS), an autoimmune disease affecting exocrine glands. Our recent studies revealed diminished histamine H4 receptor (H4R) expression and impaired histamine transport in the salivary gland epithelial cells in SS. The aim was now to test if nanomolar histamine and high-affinity H4R signaling affect apoptosis of human salivary gland epithelial cell. Simian virus 40-immortalized acinar NS-SV-AC cells were cultured in serum-free keratinocyte medium ± histamine H4R agonist HST-10. Expression and internalization of H4R were studied by immunofluorescence staining ± clathrin inhibitor methyl-β-cyclodextrin (MβCD). Apoptosis induced using tumor necrosis factor-α with nuclear factor-κB inhibitor IMD-0354 was studied using phase contrast microscopy, Western blot, flow cytometry and polymerase chain reaction (qRT-PCR). HST-10-stimulated H4R internalization was inhibited by MβCD. Western blotting revealed diminished phosphorylated c-Jun N-terminal kinase JNK, but unchanged levels of phosphorylated extracellular signal regulated kinase pERK1/2 in H4R-stimulated samples compared to controls. qRT-PCR showed up-regulated expression of anti-apoptotic B cell lymphoma-extra large/Bcl-xL mRNAs and proteins, whereas pro-apoptotic Bcl-2-associated X protein/BAX remained unchanged in H4R-stimulated samples. H4R stimulation diminished cleavage of PARP and flow cytometry showed significant dose-dependent inhibitory effect of H4R stimulation on apoptosis. As far as we know this is the first study showing inhibitory effect of H4R activation on apoptosis of human salivary gland cells. Diminished H4R-mediated activation may contribute to loss of immune tolerance in autoimmune diseases and in SS in particular. 相似文献
19.
20.
EVER1 and 2 confer resistance to cutaneous oncogenic human papillomavirus infections by downregulating the activating protein 1 (AP-1) signaling pathway. Defects in their expression are associated with susceptibility to epidermodysplasia verruciformis, which is characterized by persistent β-HPV infection, tumor necrosis factor alpha (TNF-α) overproduction in keratinocytes and the development of skin cancers. TNF-α-induced apoptosis is a key defense strategy, preventing the persistence of the virus within cells, but the role of EVER proteins in this cell death mechanism triggered by extrinsic stimuli is unknown. We show here that EVER2 induces TNF-α- and TRAIL-dependant apoptosis. It interacts with the N-terminal domain of TRADD, impairs the recruitment of TRAF2 and RIPK1 and promotes apoptosis. The skin cancer-associated EVER2 I306 allele results in an impaired TRADD–EVER2 interaction, with lower levels of cell death following treatment with TNF-α. These data highlight a new, critical function of EVER2 in controlling cell survival in response to death stimuli. 相似文献