首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amyloid beta-peptide (Abeta)(1-42) oligomers have recently been discussed as intermediate toxic species in Alzheimer's disease (AD) pathology. Here we describe a new and highly stable Abeta(1-42) oligomer species which can easily be prepared in vitro and is present in the brains of patients with AD and Abeta(1-42)-overproducing transgenic mice. Physicochemical characterization reveals a pure, highly water-soluble globular 60-kDa oligomer which we named 'Abeta(1-42) globulomer'. Our data indicate that Abeta(1-42) globulomer is a persistent structural entity formed independently of the fibrillar aggregation pathway. It is a potent antigen in mice and rabbits eliciting generation of Abeta(1-42) globulomer-specific antibodies that do not cross-react with amyloid precursor protein, Abeta(1-40) and Abeta(1-42) monomers and Abeta fibrils. Abeta(1-42) globulomer binds specifically to dendritic processes of neurons but not glia in hippocampal cell cultures and completely blocks long-term potentiation in rat hippocampal slices. Our data suggest that Abeta(1-42) globulomer represents a basic pathogenic structural principle also present to a minor extent in previously described oligomer preparations and that its formation is an early pathological event in AD. Selective neutralization of the Abeta globulomer structure epitope is expected to have a high potential for treatment of AD.  相似文献   

2.
Soluble oligomers and protofibrils are widely thought to be the toxic forms of the Abeta42 peptide associated with Alzheimer's disease. We have investigated the structure and formation of these assemblies using a new approach in atomic force microscopy (AFM) that yields high-resolution images of hydrated proteins and allows the structure of the smallest molecular weight (MW) oligomers to be observed and characterized. AFM images of monomers, dimers and other low MW oligomers at early incubation times (< 1h) are consistent with a hairpin structure for the monomeric Abeta42 peptide. The low MW oligomers are relatively compact and have significant order. The most constant dimension of these oligomers is their height (approximately 1-3 nm) above the mica surface; their lateral dimensions (width and length) vary between 5 nm and 10nm. Flat nascent protofibrils with lengths of over 40 nm are observed at short incubation times (< or = 3h); their lateral dimensions of 6-8 nm are consistent with a mass-per-length of 9 kDa/nm previously predicted for the elementary fibril subunit. High MW oligomers with lateral dimensions of 15-25 nm and heights ranging from 2-8 nm are common at high concentrations of Abeta. We show that an inhibitor designed to block the sheet-to-sheet packing in Abeta fibrils is able to cap the heights of these oligomers at approximately 4 nm. The observation of fine structure in the high MW oligomers suggests that they are able to nucleate fibril formation. AFM images obtained as a function of incubation time reveal a sequence of assembly from monomers to soluble oligomers and protofibrils.  相似文献   

3.
Alzheimer's disease (AD) is characterized by the aggregation and subsequent deposition of misfolded beta-amyloid (Abeta) peptide. Previous studies show that aggregated Abeta is more toxic in oligomeric than in fibrillar form, and that each aggregation form activates specific molecular pathways in the cell. We hypothesize that these differences between oligomers and fibrils are related to their different accessibility to the intracellular space. To this end we used fluorescently labelled Abeta1-42 and demonstrate that Abeta1-42 oligomers readily enter both HeLa and differentiated SKNSH cells whereas fibrillar Abeta1-42 is not internalized. Oligomeric Abeta1-42 is internalized by an endocytic process and is transported to the lysosomes. Inhibition of uptake specifically inhibits oligomer but not fibril toxicity. Our study indicates that selective uptake of oligomers is a determinant of oligomer specific Abeta toxicity.  相似文献   

4.
Previous studies based on the use of serum as a source of C have shown that fibrils of beta-amyloid peptides that accumulate in the brain of patients with Alzheimer's disease have the ability to bind C1q and activate the classical C pathway. The objective of the present work was to test the ability of fibrils of peptide Abeta1-42 to trigger direct activation of the C1 complex and to carry out further investigations on the site(s) of C1q involved in the interaction with Abeta1-42. Using C1 reconstituted from purified C1q, C1r, and C1s, it was shown that Abeta1-42 fibrils trigger direct C1 activation both in the absence of C1 inhibitor and at C1 inhibitor:C1 ratios up to 8:0, i.e., under conditions consistent with the physiological context in serum. The truncated peptide Abeta12-42 and the double mutant (D7N, E11Q) of Abeta1-42 did not yield C1 activation, providing further evidence that the C1 binding site of beta-amyloid fibrils is located in the acidic N-terminal 1-11 region of the Abeta1-42 peptide. Binding studies performed using a solid phase assay provided strong evidence that C1q interacts with Abeta1-42 fibrils through its C-terminal globular regions. In contrast to previous studies based on a different experimental design, no significant involvement of the C1q collagen-like domain was detected. These findings were confirmed by additional experiments based on C1 activation and C4 consumption assays. These observations provide direct evidence of the ability of beta-amyloid fibrils to trigger activation of the classical C pathway and further support the hypothesis that C activation may be a component of the pathogenesis of Alzheimer's disease.  相似文献   

5.
beta-Amyloid protein (Abeta) is the major component of senile plaques found in the brains of Alzheimer's patients. A novel ELISA has been developed which probes the early stages of oligomerization of Abeta. Incubation of Abeta solutions at 37 degrees C and pH 7.4 produces soluble oligomers in a concentration-dependent manner. Fresh Abeta42 solutions rapidly form soluble oligomers, whereas Abeta40 solutions require prolonged incubation to produce oligomers. Fresh Abeta42 solutions are more toxic to human neuroblastoma SH-SY5Y cells than Abeta40 solutions, possibly mediated by soluble oligomers. The differences between Abeta42 and Abeta40 could explain the association of the longer form with familial early-onset Alzheimer's disease. We also report a new strategy for solid-phase synthesis of Abeta peptides which gives high yield and purity of the initial crude preparation.  相似文献   

6.
Abeta40 and Abeta42 are the major forms of amyloid beta peptides (Abeta) in the brain. Although Abeta42 differs from Abeta40 by only two residues, Abeta42 is much more prone to aggregation and more toxic to neurons than Abeta40. To probe whether dynamics contribute to such dramatic difference in function, backbone ps-ns dynamics of native Abeta monomers were characterized by 15N spin relaxation at 273.3 K and 800 MHz. Abeta42 aggregates much faster than Abeta40 in the NMR tube. The effect of Abeta aggregation was removed from the relaxation measurement by interleaved data collection. R1, R2 and nuclear Overhauser enhancement (NOE) values are similar in Abeta40 and Abeta42, except at the C terminus, indicating Abeta42 and Abeta40 monomers have identical global motions. Comparisons of the spectral density function J(0.87omegaH) and order parameters (S2) indicate that the Abeta42 C terminus is more rigid than the Abeta40 C terminus. At 280.4 K and 287.6 K, the Abeta42 C terminus remains more rigid than the Abeta40 C terminus, suggesting such a dynamical difference is likely present at the physiological temperature. The Abeta42 monomer likely has less configurational entropy due to restricted motion in the C terminus and may pay a smaller entropic price to form fibrils than the Abeta40 monomer. We hypothesize that the entropic difference between Abeta40 and Abeta42 monomers might partly account for the fact that Abeta42 is the major Abeta species in parenchymal senile plaques in most Alzheimer's diseased brains in spite of the predominance of Abeta40 in plasma. The increased rigidity of the Abeta42 C terminus is likely due to its pre-ordering for beta-conformation present in soluble oligomers and fibrils. The Abeta42 C terminus may therefore serve as an internal seed for aggregation.  相似文献   

7.
In recent studies of transgenic models of Alzheimer's disease (AD), it has been reported that antibodies to aged beta amyloid peptide 1-42 (Abeta(1-42)) solutions (mixtures of Abeta monomers, oligomers and amyloid fibrils) cause conspicuous reduction of amyloid plaques and neurological improvement. In some cases, however, neurological improvement has been independent of obvious plaque reduction, and it has been suggested that immunization might neutralize soluble, non-fibrillar forms of Abeta. It is now known that Abeta toxicity resides not only in fibrils, but also in soluble protofibrils and oligomers. The current study has investigated the immune response to low doses of Abeta(1-42) oligomers and the characteristics of the antibodies they induce. Rabbits that were injected with Abeta(1-42) solutions containing only monomers and oligomers produced antibodies that preferentially bound to assembled forms of Abeta in immunoblots and in physiological solutions. The antibodies have proven useful for assays that can detect inhibitors of oligomer formation, for immunofluorescence localization of cell-attached oligomers to receptor-like puncta, and for immunoblots that show the presence of SDS-stable oligomers in Alzheimer's brain tissue. The antibodies, moreover, were found to neutralize the toxicity of soluble oligomers in cell culture. Results support the hypothesis that immunizations of transgenic mice derive therapeutic benefit from the immuno-neutralization of soluble Abeta-derived toxins. Analogous immuno-neutralization of oligomers in humans may be a key in AD vaccines.  相似文献   

8.
Amyloid beta (Abeta) immunotherapy for Alzheimer's disease has shown initial success in mouse models of Alzheimer's disease and in human patients. However, because of meningoencephalitis in clinical trials of active vaccination, approaches using therapeutic antibodies may be preferred. As a novel antigen to generate monoclonal antibodies, the current study has used Abeta oligomers (amyloid beta-derived diffusible ligands, ADDLs), pathological assemblies known to accumulate in Alzheimer's disease brain. Clones were selected for the ability to discriminate Alzheimer's disease from control brains in extracts and tissue sections. These antibodies recognized Abeta oligomers and fibrils but not the physiologically prevalent Abeta monomer. Discrimination derived from an epitope found in assemblies of Abeta1-28 and ADDLs but not in other sequences, including Abeta1-40. Immunoneutralization experiments showed that toxicity and attachment of ADDLs to synapses in culture could be prevented. ADDL-induced reactive oxygen species (ROS) generation was also inhibited, establishing this response to be oligomer-dependent. Inhibition occurred whether ADDLs were prepared in vitro or obtained from Alzheimer's disease brain. As conformationally sensitive monoclonal antibodies that selectively immunoneutralize binding and function of pathological Abeta assemblies, these antibodies provide tools by which pathological Abeta assemblies from Alzheimer's disease brain might be isolated and evaluated, as well as offering a valuable prototype for new antibodies useful for Alzheimer's disease therapeutics.  相似文献   

9.
beta-amyloid peptide (Abeta) is one of the main protein components of senile plaques associated with Alzheimer's disease (AD). Abeta readily aggregates to forms fibrils and other aggregated species that have been shown to be toxic in a number of studies. In particular, soluble oligomeric forms are closely related to neurotoxicity. However, the relationship between neurotoxicity and the size of Abeta aggregates or oligomers is still under investigation. In this article, we show that different Abeta incubation conditions in vitro can affect the rate of Abeta fibril formation, the conformation and stability of intermediates in the aggregation pathway, and toxicity of aggregated species formed. When gently agitated, Abeta aggregates faster than Abeta prepared under quiescent conditions, forming fibrils. The morphology of fibrils formed at the end of aggregation with or without agitation, as observed in electron micrographs, is somewhat different. Interestingly, intermediates or oligomers formed during Abeta aggregation differ greatly under agitated and quiescent conditions. Unfolding studies in guanidine hydrochloride indicate that fibrils formed under quiescent conditions are more stable to unfolding in detergent than aggregation associated oligomers or Abeta fibrils formed with agitation. In addition, Abeta fibrils formed under quiescent conditions were less toxic to differentiated SH-SY5Y cells than the Abeta aggregation associated oligomers or fibrils formed with agitation. These results highlight differences between Abeta aggregation intermediates formed under different conditions and provide insight into the structure and stability of toxic Abeta oligomers.  相似文献   

10.
Inhibition of the accumulation of amyloid beta-peptide (Abeta) and the formation of beta-amyloid fibrils (fAbeta) from Abeta, as well as the degradation of pre-formed fAbeta in the CNS would be attractive therapeutic objectives for the treatment of Alzheimer's disease (AD). We previously reported that nordihydroguaiaretic acid (NDGA) inhibited fAbeta formation from Abeta(1-40) and Abeta(1-42) dose-dependently in the range of 10-30 micromin vitro. Utilizing fluorescence spectroscopic analysis with thioflavin T and electron microscopic study, we show here that NDGA dose-dependently breaks down fAbeta(1-40) and fAbeta(1-42) within a few hours at pH 7.5 at 37 degrees C. At 4 h, the fluorescence of fAbeta(1-40) and fAbeta(1-42) incubated with 50 microm NDGA was 5% and 10% of the initial fluorescence, respectively. The activity of NDGA to break down these fAbetas was observed even at a low concentration of 0.1 microm. At 1 h, many short, sheared fibrils were observed in the mixture incubated with 50 microm NDGA, and at 4 h, the number of fibrils reduced markedly, and small amorphous aggregates were observed. We next compared the activity of NDGA to break down fAbeta(1-40) and fAbeta(1-42), with other molecules reported to inhibit fAbeta formation from Abeta and/or to degrade pre-formed fAbeta both in vivo and in vitro. At a concentration of 50 microm, the overall activity of the molecules examined in this study was in the order of: NDGA > rifampicin = tetracycline > poly(vinylsulfonic acid, sodium salt) = 1,3-propanedisulfonic acid, disodium salt > beta-sheet breaker peptide (iAbeta5). In cell culture experiments, fAbeta disrupted by NDGA were less toxic than intact fAbeta, as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Although the mechanisms by which NDGA inhibits fAbeta formation from Abeta, as well as breaking down pre-formed fAbetain vitro, are still unclear, NDGA could be a key molecule for the development of therapeutics for AD.  相似文献   

11.
The aggregation of the beta-amyloid protein (Abeta) is an important step in the pathogenesis of Alzheimer's disease. There is increasing evidence that lower molecular weight oligomeric forms of Abeta may be the most toxic species in vivo. However, little is known about the structure of Abeta oligomers. In this study, scanning tunnelling microscopy (STM) was used to examine the structure of Abeta monomers, dimers and oligomers. Abeta1-40 was visualised by STM on a surface of atomically flat gold. At low concentrations (0.5 microM) small globular structures were observed. High resolution STM of these structures revealed them to be monomers of Abeta. The monomers measured approximately 3-4 nm in diameter. Internal structure was seen in many of the monomers consistent with a conformation in which the polypeptide chain is folded into 3 or 4 domains. Oligomers were seen after ageing the Abeta solution for 24 h. The oligomers were also 3-4 nm in width and appeared to be formed by the end-to-end association of monomers with the polypeptide chain oriented at 90 degrees to the axis of the oligomer. The results suggest that the oligomer formation can proceed through a mechanism involving the linear association of monomers.  相似文献   

12.
Alzheimer's disease (AD) is a neurodegenerative disorder whose hallmark is the presence of senile plaques and neurofibrillary tangles. Senile plaques are mainly composed of amyloid beta-peptide (Abeta) fibrils and several proteins including acetylcholinesterase (AChE). AChE has been previously shown to stimulate the aggregation of Abeta1-40 into amyloid fibrils. In the present work, the neurotoxicity of different amyloid aggregates formed in the absence or presence of AChE was evaluated in rat pheochromocytoma PC12 cells. Stable AChE-Abeta complexes were found to be more toxic than those formed without the enzyme, for Abeta1-40 and Abeta1-42, but not for amyloid fibrils formed with AbetaVal18-Ala, a synthetic variant of the Abeta1-40 peptide. Of all the AChE-Abeta complexes tested the one containing the Abeta1-40 peptide was the most toxic. When increasing concentrations of AChE were used to aggregate the Abeta1-40 peptide, the neurotoxicity of the complexes increased as a function of the amount of enzyme bound to each complex. Our results show that AChE-Abeta1-40 aggregates are more toxic than those of AChE-Abeta1-42 and that the neurotoxicity depends on the amount of AChE bound to the complexes, suggesting that AChE may play a key role in the neurodegeneration observed in Alzheimer brain.  相似文献   

13.
Antzutkin ON  Leapman RD  Balbach JJ  Tycko R 《Biochemistry》2002,41(51):15436-15450
We describe electron microscopy (EM), scanning transmission electron microscopy (STEM), and solid-state nuclear magnetic resonance (NMR) measurements on amyloid fibrils formed by the 42-residue beta-amyloid peptide associated with Alzheimer's disease (Abeta(1)(-)(42)) and by residues 10-35 of the full-length peptide (Abeta(10)(-)(35)). These measurements place constraints on the supramolecular structure of the amyloid fibrils, especially the type of beta-sheets present in the characteristic amyloid cross-beta structural motif and the assembly of these beta-sheets into a fibril. EM images of negatively stained Abeta(10)(-)(35) fibrils and measurements of fibril mass per length (MPL) by STEM show a strong dependence of fibril morphology and MPL on pH. Abeta(10)(-)(35) fibrils formed at pH 3.7 are single "protofilaments" with MPL equal to twice the value expected for a single cross-beta layer. Abeta(10)(-)(35) fibrils formed at pH 7.4 are apparently pairs of protofilaments or higher order bundles. EM and STEM data for Abeta(1)(-)(42) fibrils indicate that protofilaments with MPL equal to twice the value expected for a single cross-beta layer are also formed by Abeta(1)(-)(42) and that these protofilaments exist singly and in pairs at pH 7.4. Solid-state NMR measurements of intermolecular distances in Abeta(10)(-)(35) fibrils, using multiple-quantum (13)C NMR, (13)C-(13)C dipolar recoupling, and (15)N-(13)C dipolar recoupling techniques, support the in-register parallel beta-sheet organization previously established by Lynn, Meredith, Botto, and co-workers [Benzinger et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 13407-13412; Benzinger et al. (2000) Biochemistry 39, 3491-3499] and show that this beta-sheet organization is present at pH 3.7 as well as pH 7.4 despite the differences in fibril morphology and MPL. Solid-state NMR measurements of intermolecular distances in Abeta(1)(-)(42) fibrils, which represent the first NMR data on Abeta(1)(-)(42) fibrils, also indicate an in-register parallel beta-sheet organization. These results, along with previously reported data on Abeta(1)(-)(40) fibrils, suggest that the supramolecular structures of Abeta(10)(-)(35), Abeta(1)(-)(40), and Abeta(1)(-)(42) fibrils are quite similar. A schematic structural model of these fibrils, consistent with known experimental EM, STEM, and solid-state NMR data, is presented.  相似文献   

14.
Abeta40 protects non-toxic Abeta42 monomer from aggregation   总被引:1,自引:0,他引:1  
Abeta40 and Abeta42 are the predominant Abeta species in the human body. Toxic Abeta42 oligomers and fibrils are believed to play a key role in causing Alzheimer's disease (AD). However, the role of Abeta40 in AD pathogenesis is not well established. Emerging evidence indicates a protective role for Abeta40 in AD pathogenesis. Although Abeta40 is known to inhibit Abeta42 fibril formation, it is not clear whether the inhibition acts on the non-toxic monomer or acts on the toxic Abeta42 oligomers. In contrast to conventional methods that detect the appearance of fibrils, in our study Abeta42 aggregation was monitored by the decreasing NMR signals from Abeta42 monomers. In addition, differential NMR isotope labelling enabled the selective observation of Abeta42 aggregation in a mixture of Abeta42 and Abeta40. We found Abeta40 monomers inhibit the aggregation of non-toxic Abeta42 monomers, in an Abeta42/Abeta40 ratio-dependent manner. NMR titration revealed that Abeta40 monomers bind to Abeta42 aggregates with higher affinity than Abeta42 monomers. Abeta40 can also release Abeta42 monomers from Abeta42 aggregates. Thus, Abeta40 likely protects Abeta42 monomers by competing for the binding sites on pre-existing Abeta42 aggregates. Combining our data with growing evidence from transgenic mice and human genetics, we propose that Abeta40 plays a critical, protective role in Alzheimer's by inhibiting the aggregation of Abeta42 monomer. Abeta40 itself, a peptide already present in the human body, may therefore be useful for AD prevention and therapy.  相似文献   

15.
Polymerization of the amyloid beta (Abeta) peptide into protease-resistant fibrils is a significant step in the pathogenesis of Alzheimer's disease. It has not been possible to obtain detailed structural information about this process with conventional techniques because the peptide has limited solubility and does not form crystals. In this work, we present experimental results leading to a molecular level model for fibril formation. Systematically selected Abeta-fragments containing the Abeta16-20 sequence, previously shown essential for Abeta-Abeta binding, were incubated in a physiological buffer. Electron microscopy revealed that the shortest fibril-forming sequence was Abeta14-23. Substitutions in this decapeptide impaired fibril formation and deletion of the decapeptide from Abeta1-42 inhibited fibril formation completely. All studied peptides that formed fibrils also formed stable dimers and/or tetramers. Molecular modeling of Abeta14-23 oligomers in an antiparallel beta-sheet conformation displayed favorable hydrophobic interactions stabilized by salt bridges between all charged residues. We propose that this decapeptide sequence forms the core of Abeta-fibrils, with the hydrophobic C terminus folding over this core. The identification of this fundamental sequence and the implied molecular model could facilitate the design of potential inhibitors of amyloidogenesis.  相似文献   

16.
Ikeda K  Okada T  Sawada S  Akiyoshi K  Matsuzaki K 《FEBS letters》2006,580(28-29):6587-6595
The formation of fibrils by amyloid beta-protein (Abeta) is considered as a key step in the pathology of Alzheimer's disease (AD). Inhibiting the aggregation of Abeta is a promising approach for AD therapy. In this study, we used biocompatible nanogels composed of a polysaccharide pullulan backbone with hydrophobic cholesterol moieties (cholesterol-bearing pullulan, CHP) as artificial chaperones to inhibit the formation of Abeta-(1-42) fibrils with marked amyloidgenic activity and cytotoxicity. The CHP-nanogels incorporated up to 6-8 Abeta-(1-42) molecules per particle and induced a change in the conformation of Abeta from a random coil to alpha-helix- or beta-sheet-rich structure. This structure was stable even after a 24-h incubation at 37 degrees C and the aggregation of Abeta-(1-42) was suppressed. Furthermore, the dissociation of the nanogels caused by the addition of methyl-beta-cyclodextrin released monomeric Abeta molecules. Nanogels composed of amino-group-modified CHP (CHPNH(2)) with positive charges under physiological conditions had a greater inhibitory effect than CHP-nanogels, suggesting the importance of electrostatic interactions between CHPNH(2) and Abeta for inhibiting the formation of fibrils. In addition, CHPNH(2) nanogels protected PC12 cells from Abeta toxicity.  相似文献   

17.
The concentration of beta-amyloid peptide (Abeta), x-42 or x-40 amino acids long, increases in brain with the progression Alzheimer's disease (AD). These peptides are deposited extracellularly as highly insoluble fibrils that form densities of amyloid plaques. Abeta fibrillization is a complex polymerization process preceded by the formation of oligomeric and prefibrillar Abeta intermediates. In some of our in vitro studies, in which the kinetics of intermediate steps of fibril formation were examined, we used concentrations of synthetic Abeta that exceed what is normally employed in fibrillization studies, 300-600 microM. At these concentrations, in a cell free system and under physiological conditions, Abeta 1-40 peptide (Abeta40) forms fibrils that spontaneously assemble into clearly defined spheres, "betaamy balls", with diameters of approximately 20-200 microm. These supramolecular structures show weak birefringence with Congo red staining and high stability with prolonged incubation times (at least 2 weeks) at 30 degrees C, freezing, and dilution in H(2)O. At 600 microM, they are detected after incubation for approximately 20 h. Abeta peptide 1-42 (Abeta42) lacks the ability to form betaamy balls but accelerates Abeta40 betaamy ball formation at low stoichiometric levels (1:20 Abeta42:Abeta40 ratio). Abeta42 levels above this (=10-50% w/w) impede Abeta40 betaamy ball formation. Using light (LM) and electron microscopy (EM), this study examines the gross morphology and ultrastructure of Abeta40 betaamy balls and their time course of formation, in the absence and presence of Abeta42, along with some stability measures. As spheres of a misfolded protein, betaamy balls resemble both AD Abeta senile plaques and neuronal inclusion bodies associated with other neurodegenerative diseases.  相似文献   

18.
Immunotherapy against the amyloid-beta (Abeta) peptide is a valuable potential treatment for Alzheimer disease (AD). An ideal antigen should be soluble and nontoxic, avoid the C-terminally located T-cell epitope of Abeta, and yet be capable of eliciting antibodies that recognize Abeta fibrils and neurotoxic Abeta oligomers but not the physiological monomeric species of Abeta. We have described here the construction and immunological characterization of a recombinant antigen with these features obtained by tandem multimerization of the immunodominant B-cell epitope peptide Abeta1-15 (Abeta15) within the active site loop of bacterial thioredoxin (Trx). Chimeric Trx(Abeta15)n polypeptides bearing one, four, or eight copies of Abeta15 were constructed and injected into mice in combination with alum, an adjuvant approved for human use. All three polypeptides were found to be immunogenic, yet eliciting antibodies with distinct recognition specificities. The anti-Trx(Abeta15)4 antibody, in particular, recognized Abeta42 fibrils and oligomers but not monomers and exhibited the same kind of conformational selectivity against transthyretin, an amyloidogenic protein unrelated in sequence to Abeta. We have also demonstrated that anti-Trx(Abeta15)4, which binds to human AD plaques, markedly reduces Abeta pathology in transgenic AD mice. The data indicate that a conformational epitope shared by oligomers and fibrils can be mimicked by a thioredoxin-constrained Abeta fragment repeat and identify Trx(Abeta15)4 as a promising new tool for AD immunotherapy.  相似文献   

19.
Inhibition of the accumulation of amyloid beta-peptide (Abeta) and the formation of beta-amyloid fibrils (fAbeta) from Abeta, as well as the destabilization of preformed fAbeta in the CNS would be attractive therapeutic targets for the treatment of Alzheimer's disease (AD). We previously reported that nordihydroguaiaretic acid (NDGA) and wine-related polyphenols inhibit fAbeta formation from Abeta(1-40) and Abeta(1-42) as well as destabilizing preformed fAbeta(1-40) and fAbeta(1-42) dose-dependently in vitro. Using fluorescence spectroscopic analysis with thioflavin T and electron microscopic studies, we examined the effects of polymeric polyphenol, tannic acid (TA) on the formation, extension, and destabilization of fAbeta(1-40) and fAbeta(1-42) at pH 7.5 at 37 degrees C in vitro. We next compared the anti-amyloidogenic activities of TA with myricetin, rifampicin, tetracycline, and NDGA. TA dose-dependently inhibited fAbeta formation from Abeta(1-40) and Abeta(1-42), as well as their extension. Moreover, it dose-dependently destabilized preformed fAbetas. The effective concentrations (EC50) of TA for the formation, extension and destabilization of fAbetas were in the order of 0-0.1 microM. Although the mechanism by which TA inhibits fAbeta formation from Abeta as well as destabilizes preformed fAbeta in vitro is still unclear, it could be a key molecule for the development of therapeutics for AD.  相似文献   

20.
The underlying cause of Alzheimer's disease is thought to be the aggregation of monomeric beta-amyloid (Abeta), through a series of toxic oligomers, which forms the mature amyloid fibrils that accumulate at the center of senile plaques. It has been reported that L-(-)-nicotine prevents Abeta aggregation and toxicity, and inhibits senile plaque formation. Previous NMR studies have suggested that this could be due to the specific binding of L-(-)-nicotine to histidine residues (His6, His13, and His14) in the peptide. Here, we have looked at the effects of both of the L-(-) and D-(+) optical enantiomers of nicotine on the aggregation and cytotoxicity of Abeta(1-40). Surprisingly, both enantiomers inhibited aggregation of the peptide and reduced the toxic effects of the peptide on cells. In NMR studies with Abeta(1-40), both enantiomers of nicotine were seen to interact with the three histidine residues. Overall, our data indicate that nicotine can delay Abeta fibril formation and maintain a population of less toxic Abeta species. This effect cannot be due to a highly specific binding interaction between nicotine and Abeta, as previously thought, but could be due instead to weaker, relatively nonspecific binding, or to the antioxidant or metal chelating properties of nicotine. D-(+)-nicotine, being biologically much less active than L-(-)-nicotine, might be a useful therapeutic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号