首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Crosses between male sterile L. corniculatus (2n=4x=24) and L. tenuis (2n=2x=12) plants were performed in order to verify the presence of 2n gametes in L. tenuis. All but one of the plants from these crosses had 2n=4x=24 and the L. corniculatus phenotype; this plant had 2n=2x=12 and the L. tenuis phenotype. The plants also showed good quantity of pollen at tripping, good pollen fertility and good percentage of seed setting in the backcross to L. corniculatus. On the whole, both cytological and morphological observations, showing that all but one of the plants from L. corniculatus x L. tenuis were normal tetraploids, suggest the existence of diploandrous gametes in L. tenuis. On the other hand, haploid parthenogenesis probably gave origin to the dihaploid plant 2n=2x=12.  相似文献   

2.
Summary The occurrence of 2n pollen-producing plants was investigated in 187 plant introductions (PIs) of 38 wild species of tuber-bearing Solanum. These 2x, 4x, and 6x species are from Mexico, and Central and South America. The determination of 2n pollen-producing plants was conducted using acetocarmine glycerol. Plants with more than 1% large-size pollen were regarded as 2n pollen-producing plants. 2n pollen-producing plants were identified in the following species: 10 out of 12 Mexican 2x species, seven of nine South American 2x species, seven of seven Mexican and Central American 4x species, five of five South American 4x species, and five of five Mexican 6x species. The frequency of 2n pollen-producing plants varied among species at the same ploidy level, but the range of frequency, generally between 2 and 10% among species, was similar over different ploidy levels. The general occurrence of 2n pollen in both 2x and polyploid species, which are evolutionarily related, is evidence that the mode of polyploidization in tuber-bearing Solanums is sexual polyploidization. Furthermore, the frequencies of 2n pollen-producing plants in autogamous disomic polyploid species were not markably different from those of their related diploid species. It is thought that the frequent occurrence of 2n gametes with autogamy tends to disturb the fertility and consequently reduce fitness of polyploids. Thus, we propose that the breeding behavior of polyploids and the occurrence of 2n gametes may be genetically balanced in order to conserve high fitness in polyploid species in tuberbearing Solanum.Paper No. 3114 from the Laboratory of Genetics. Research supported by the College of Agriculture and Life Sciences; International Potato Center; USDA, SEA, CGRO 84-CRCR-1-1389; and Frito Lay, Inc.  相似文献   

3.
The aim of the study was to characterize genomic relationships among cultivated tomato (Lycopersicon esculentum Mill.) (2n=2x=24) and diploid (2n=2x=24) non-tuberous wild Solanum species (S. etuberosum Lindl.). Using genomic in situ hybridization (GISH) of mitotic and meiotic chromosomes, we analyzed intergeneric somatic hybrids between tomato and S. etuberosum. Of the five somatic hybrids, two plants were amphidiploids (2n=4x=48) mostly forming intragenomic bivalents in their microsporocytes, with a very low frequency of multivalents involving the chromosomes of tomato and S. etuberosum (less than 0.2 per meiocyte). Tomato chromosomes showed preferential elimination during subsequent meiotic divisions of the amphidiploids. Transmission of the parental chromosomes into microspores was also evaluated by GISH analysis of androgenic plants produced by direct embryogenesis from the amphidiploid somatic hybrids. Of the four androgenic regenerants, three were diploids (2n=2x=24 or 2n=2x+1=25) derived from reduced male gametes of the somatic hybrids, and one plant was a hypertetraploid (2n=4x+4=52). GISH revealed that each anther-derived plant had a unique chromosome composition. The prospects for introgression of desirable traits from S. etuberosum into the gene pool of cultivated tomato are discussed. Received: 2 August 2000 / Accepted: 4 December 2000  相似文献   

4.
Summary Tetraploid (2n=4x=48) 2EBN Mexican wild species in the series Longipedicellata, which consists of Solanum fendleri, S. hjertingii, S. papita, S. polytrichon, and S. stoloniferum, were crossed with two 2EBN cultivated diploid (2n=2x=24) clones. The resulting triploid hybrids (2n=3x=36) produced 2n pollen (triplandroids) by the mechanism of parallel orientation of anaphase II spindles. The percentage of stainable pollen in 520 triploids ranged between 0 and 23.5%, with a mean of 2.7%. Triploids producing between 13.0 and 23.5% stainable pollen were crossed as staminate parents to the tetraploid cultivars, resulting in abundant pentaploid (2n=5x=60) and near-pentaploid hybrid progeny. Crosses of triploids with lower percentage of stainable pollen as pollen parent to the tetraploid cultivars did not yield fruit, unless rescue pollen from a tetraploid cultivar was added 2 days later. Pentaploid hybrids were selected among selfed tetraploid progenies using morphological and isoxyme markers transmitted from their cultivated diploid parents. These pentaploid hybrids were vigorous and had uniformly sterile pollen. They were female fertile and were crossed with tetraploid cultivars, yielding an average of 19 seeds per fruit. Triplandroids provide the opportunity of transferring 2EBN tetraploid Mexican wild species in the series Longipedicellata germ plasm into the 4EBN cultivated potatoes.Cooperative investigations of the ARS, USDA, and the Washington State University Agricultural Research Center, Prosser, WA 99350, USA. H/LA Paper No. 90-03, College of Agriculture and Home Economies Research Center, Washington State University, Pullman, WA 99164, USA  相似文献   

5.
Summary The gene frequency for parallel spindles (ps) was estimated from the frequency of plants producing 2n pollen in three cultivated groups: 2x Phureja (phu), 2x Stenotomum (stn), and 4x Andigena (adg), as well as in four related wild taxa: 2x Solanum brevicaule (brc), 2x S. sparsipilum (spl), 4x S. gourlayi (grl) and 4x S. gourlayi-S. infundibuliforme hybrids (grl-ifd). Plants with more than 1% large pollen were considered as 2n pollen producers. Observations of meiosis in a sample of 2n pollen-producing plants indicated that parallel spindles is the mechanism of 2n pollen formation. The number of plants with 2n pollen among the total examined was 228 plants (15.5%) of 1,473 in 2x spl, 31 (26.7%) of 116 in 2x brc, 92 (17.4%) of 528 in 2x stn, 665 (22.1%) of 3,008 in 2x phu, 731 (51.4%) of 1,421 in 4x adg, 591 (41.2%) of 1,436 in 4x grl, and 36 (64.3%) out of 56 in 4x grl-ifd. The ps gene frequencies assuming Hardy-Weinberg equilibrium were: 0.393 for 2x spl, 0.462 for 2x brc, 0.417 for 2x stn, 0.470 for 2x phu, 0.847 for 4x adg, 0.801 for 4x grl, and 0.895 for 4x grl-ifd. Twenty-five adg clones were randomly selected from a large population and were crossed with 2x clone W5295.7, which produces 2n pollen by parallel spindles (ps). The 4x progenies from 4x×2x crosses were used to determine the genotypes at the ps locus by screening 10–20 plants in each family for 2n pollen. Based on chromosome segregation at the ps locus, 9, 14, 1, and 1 clones were nulliplex, simplex, simplex or duplex, and duplex, respectively. The frequency of the ps gene in the adg population was estimated to be 0.825 and 0.815 for chromosome and chromatid segregation, respectively. The high frequencies of 2n pollen and the ps gene in cultivated 2x and 4x groups, and in wild taxa closely related to them, provide evidence for sexual polyploidization in the tuber-bearing Solanums.Paper No. 3032 from the Laboratory of Genetics. Research supported by the College of Agriculture and Life Sciences; International Potato Center; USDA, SEA, CGRO 84-CRCR-1-1389; and Frito Lay, Inc.  相似文献   

6.
The ability of taxa to cross/hybridize is useful information for plant systematists and breeders. Crossability reflects reproductive isolation and the biological species concept stresses the need for reproductive isolation between species to maintain morphological distincness. For plant breeders knowledge on crossing ability facilitate selection of taxa for character improvement breeding. In this study, the crossing relationships and chromosome numbers within and among Ugandan species of Solanum sect. Solanum is studied by making 800 crosses involving 246 combinations. Less than half of these combinations were successful, producing F1 offspring. All studied accessions are self‐compatible and most accessions crossed readily with accessions of their own species. Interspecific crossings failed either to yield seeds, yielded F1 seeds that did not germinate, or resulted in F1s that did not have stainable pollen – implying a crossing barrier; or stainable pollen, but with chromosome numbers that indicated reproduction by apomixis. The results support the taxonomic treatment of Solanum based on classical, numerical and partly molecular evidences. The material studied represents eight Ugandan taxa: S. americanum, a diploid (2n = 2x = 24); five tetraploids (2n = 4x = 48) S. florulentum, S. memphiticum, S. tarderemotum, S. villosum ssp. villosum and S. villosum ssp. miniatum; and two hexaploids (2n = 6x = 72) S. scabrum subsp. scabrum and S. scabrum subsp. laevis. In addition to confirming the ploidy levels of the Ugandan accessions, the ploidy levels of S. florulentum, S. memphiticum and S. tarderemotum are reported for the first time. Non‐Ugandan material of Solanum sarrachoides was found to be diploid. Knowledge of the crossing behaviour and ploidy levels in Solanum will facilitate breeding for character improvement in these important species that are used commonly as food and/or medicine in eastern Africa.  相似文献   

7.
Summary A triploid hybrid (2n=3x=36) between a colchicine-induced 4x(2EBN) Solanum brevidens (a non-tuber-bearing species) and 2x(2EBN) S. chacoense (a tuber-bearing species) was used as a vehicle for germplasm transfer to S. tuberosum Group Tuberosum. The use of 2n gametes from the triploid allowed the unique opportunity for transferring exotic germplasm from Series Etuberosa to Gp. Tuberosum material. The triploid hybrid used had a pollen stainability of less than 0.1%. Observations of microsporogenesis revealed that metaphase I pairing configurations were primarily 12 bivalents and 12 univalents with occasional trivalents. Anaphase I separations were irregular, often with lagging univalents. Meiotic observations and pollen morphology suggest that the stainable pollen produced by the hybrid was 2n=3x=36. A single pentaploid hybrid (2n=5x=60) was produced by the fertilization of a rare 2n egg from the triploid with a normal male gamete from the clone Wis AG 231 (2n=4x=48). Limited crosses to other 1, 2 and 4EBN species and cultivars were unsuccessful. The pentaploid hybrid had a more regular meiosis than the triploid and dramatically improved pollen stainability (37% stainable pollen). Stylar blocks prevented estimates of male fertility in crosses. Female fertility in 47 crosses with nine cultivars averaged 19 seeds per fruit. Although S. brevidens is non-tuber-bearing, and the triploid produced only stolons, the pentaploid hybrid tuberized well under field conditions, despite being very late. Results suggest that the tuberization response is a dosage and/or threshold effect. This approach to the incorporation of 1EBN germplasm indicates the utility of the EBN concept coupled with 2n gametes. Further, it demonstrates a means for the introgression of 1EBN species genes into Gp. Tuberosum material.  相似文献   

8.
Summary The potential breeding value of 2n gametes from diploid alfalfa (2n = 2x = 16) was tested by comparing single cross alfalfa hybrids produced via 2n = 2x gametes from diploids versus n = 2x gametes from somatic-chromosome-doubled, tetraploid counterparts. Three diploid clones, designated 2x-(rprp), homozygous for the gene rp (conditions 2n gamete formation by a first division restitution mechanism) were colchicine-doubled to produce their tetraploid counterparts, designated 4x-(SCD). These six clones were crossed as males to the same cytoplasmic male sterile clone. Yield comparisons of progeny from the six clones demonstrated a significant yield increase of the hybrid progeny from 2n = 2x gametes from the diploids over the hybrid progeny from n = 2x gametes from the chromosome doubled tetraploid counterparts. The yield gain ranged from a 12% increase to a 32% increase. Theoretical comparisons indicated the 2n = 2x gametes from diploids would have 12.5 to 50% more heterozygous loci, on average, than the n = 2x gametes derived from somatic doubling. These results confirm the importance of heterozygosity on alfalfa yield, and the results demonstrate that 2n gametes formed by first division restitution offer a unique method for producing highly heterotic alfalfa hybrids.  相似文献   

9.
Summary Preliminary results from a large number of reciprocal crosses between the closely related sympatric species S. gourlayi Hawkes (2n=4x=48) and S. oplocense Hawkes (2n=6x=72) indicated that they are difficult to hybridize. Pollen-pistil incompatibility barriers were detected via fluorescent microscopy. The cross incompatibility reaction occurred at three sites in 6x×4x crosses; on the stigma, in the first one-third of the style, and in the first two-thirds of the style. In the reciprocal 4x×6x crosses the incompatibility reaction invariably occurred in the ovary. Backcrosses of interspecific pentaploid hybrids (that were occasionally formed) to both parental populations were fully compatible, partially compatible, and fully incompatible with three sites of cross-incompatibility reaction similar to those observed in 6x×4x crosses, respectively. Both polyploid species were found to be selfcompatible, whereas their F1 hybrids were found to be self-incompatible. An hypothesis based on interactions of dominant cross-incompatibility (CI) genes in pistils and dominant specific complementary genes in pollen grains is postulated to explain these observations. The cross-incompatibility system that appears to be operating in nature between 4x S. gourlayi and 6x S. oplocense provides a way for gene exchange between sympatric populations without threatening the identity of either species.  相似文献   

10.
The chromosome numbers of the 24 species of sect.Pelargonium were determined from field collected and cultivated plants of known localities in S. Africa. Twelve species are diploid (2n = 22), eight tetraploid (2n = 44), one hexaploid (2n = 66), and three octoploid (2n = 88). The chromosome numbers correlate well with the proposed subdivision of sect.Pelargonium. Its chromosomes are relatively small (1.0–1.5 µm) in comparison to most of the other sections, and its diploid karyotype is considered to be primitive. The occurrence of the basic number x = 11 in this section, in other sections of the genus, and in related genera (Monsonia, Sarcocaulon) leads to the conclusion that x = 11 probably is basic for the whole genus. — The pollen meiosis, microsporogenesis and pollen fertility of the diploid species is normal, with the exception of one, possibly young taxon from the Greyton Nature Reserve. The tetraploid species could be of autoploid origin, the higher polyploids exhibit a mixed auto-alloploid nature. — The 20 diploid and tetraploid species have a relatively small distribution range, most of them occur in the SW. Cape Province of South Africa. This area may therefore be considered as the centre of origin of the genus. Three of the four high polyploid species occupy rather large areas.
Untersuchungen zur Karyologie und Mikrosporogenese der GattungPelargonium, 1.  相似文献   

11.
Summary Parthenogenetic seed induction was performed on one clone of Solanum tuberosum subspecies andigena (2n=4x=48) using S. phureja (2n=2x=24) marker inducer clones. The parthenogenetic population when grown was found to contain both diploid and tetraploid individuals presumably arising from reduced and unreduced gametes, respectively. Variation patterns in the diploid and tetraploid sub-populations, as well as a population obtained by selfing the parental clone, were compared to try and elucidate the origin of the tetraploid parthenotes. From the results of this one generation it appeared that the tetraploid parthenogenetic plants had been produced by a mechanism equivalent to second division restitution (SDR).  相似文献   

12.
Sexual polyploidization has both a theoretical as well as an applied significance. Morphological screening for large pollen grains and shape of pollen produced by the individual, cytological investigation of hybrid progeny, and unbalanced separation of chromosomes at anaphase I in pollen mother cells were used to detect the gametes with somatic chromosome number in Fuchsia. The interspecific hybrids of F. fulgens (sect. Ellobium) × F. magellanica (sect. Quelusia), F. fulgens (sect. Ellobium) × F. splendens (sect. Ellobium), and F. triphylla (sect. Fuchsia) × F. splendens (sect. Ellobium) produced at the University of Auckland, New Zealand, showed both large and normal pollen grains in the same anther indicating the presence of unreduced gametes. Cytological investigation carried out on the hybrid progeny of F. fulgens (diploid, 2n=22, sect. Ellobium) × F. magellanica (tetraploid, 2n=44, sect. Quelusia) and F. triphylla (diploid, sect. Fuchsia) × F. arborescens (diploid, sect. Schufia) revealed unexpected chromosome numbers of 2n=44 and 2n=33, respectively. In general, the hybrids showed low fertility caused by genetically unbalanced gametes resulted from random disjunction of chromosomes at anaphase I. Studies on meiosis together with the presence of different shapes and sizes of pollen grains in Fuchsia proved indirectly that unreduced gametes are the products of first division meiotic nuclear restitution. These unreduced gametes were viable irrespective of pollen shape, their predominance in the hybrids, nuclear DNA amount and species phylogenetic position.  相似文献   

13.
Summary In the genus Medicago, it is known that 2n gametes have been important in the evolution and breeding of cultivated alfalfa, which is a natural polysomic polyploid (2n=4x=32), however little is known on the frequency of male and female 2n gametes in diploid relatives of alfalfa. To obtain data on the frequency of 2n gametes, more than 12,000 2x–4x and 4x–2x crosses were made in 1982 at Madison (USA). Diploid parents in crosses were from four populations of M. coerulea, two of M. falcata and one diploid population of cultivated M. sativa which was derived by haploidy. The tetraploid seed parent in the crosses was a male-sterile M. sativa clone and vigorous tetraploid M. sativa plants were used as pollen parents. Each of 274 diploid plants was utilized both as male and as female. Of the 548 cross combinations, 266 crosses produced variable quantities of seeds which were sown in 1983 in a greenhouse at Perugia (Italy); the plants were subsequently space transplanted in the field in 1984. The identification of ploidy level of these genotypes was made on the basis of morphological characters, plant fertility, pollen stainability and chromosome counts.Of the 515 plants analyzed, the majority behaved as normal tetraploids indicating that many diploid plants produced 2n gametes. Diplogynous and diplandrous gamete production was not correlated with each other, which indicated a different genetic control of 2n sporogenesis in the 2 sexes. Only 4 F1 triploid plants confirmed the presence of a very effective triploid block in alfalfa. In consequence, bilateral sexual polyploidization is a more likely alternative for the origin of tetraploid alfalfa than triploid bridges. The present study showed that it is possible to efficiently identify genotypes able to produce high frequencies of 2n gametes within natural populations of diploids Medicago that are useful in alfalfa breeding.Part of this study was conducted at the Agronomy Department, University of Wisconsin, Madison, Wis, USA, while one of us (F. Veronesi) was in receipt of financial assistance provided by the National Research Council of Italy; part was conducted at Centro di Studio per il Miglioramento Genetico delie Piante Foraggere, C.N.R., Perugia, Italy. The paper was presented at the Eucarpia Fodder Crops Section Meeting, Svalöv, Sweden, 16–19th September 1985  相似文献   

14.
Summary The karyotype of the dihaploid SVP1 line of S. tuberosum (2n=2x=24) showed two nucleolar chromosomes with differently sized satellites. The diploid SVP5 line (2n=2x=24) and tetraploid regenerants of S. phureja had larger but similar satellites. Somatic hybrids between the diploid lines of these potato species with genome combinations 4 tub + 2 ph (plants 1–3), 2 tub + 4 ph (plants 4–7) and 4 tub + 4 ph (plant 8) had lost 2 phureja nucleolar chromosomes if 4 phureja genomes were present. One phureja nucleolar chromosome of plants 1–3 and both of plants 5 and 7 had rearranged satellites. Elimination of the two nucleolar chromosomes occurred preferentially, was under genetic control, and probably took place during early callus development. NOR activity resulting in rear-rangements between NORs may have caused the elimination.  相似文献   

15.
Chloroplast DNA restriction site analysis has been used to test Hawkes's phylogenetic interpretations of the genomic data in Solanum sect. Petota. Hawkes hypothesized a diploid (2n = 24) origin of the tuber-bearing members of this group (subsection Potatoe) in Mexico and Central America (as a B genome) with later migrations and evolution to an A genome in South America, later followed by a return migration of the A genome to Mexico and Central America with A × B hybridizations and polyploidizations to produce ser. Longipedicellata (4x) and Demissa (6x). Our results provide partial support for this hypothesis by demonstrating the paraphyletic and primitive nature of the B genome species group, and the monophyletic and derived nature of all A genome and A × B genome species, including S. verrucosum, a hypothesized A genome progenitor of ser. Demissa. Thus, the Mexican and Central American polyploid species must have obtained their cytoplasm from the A genome. However, our results question the Stellata/Rotata hypothesis of Hawkes and the taxonomic placement of S. chomatophilum in ser. Conicibaccata.  相似文献   

16.
The significance of 2N gametes in potato breeding   总被引:7,自引:0,他引:7  
Summary Phureja-haploid Tuberosum hybrids, which produce 2n gametes in addition to n gametes, were used to obtain diploid progenies in 2x – 2x matings, and tetraploid progeny in 4x – 2x matings. Seven of these diploid clones were intermated in a modified diallel design, and also crossed to seven cultivars, to obtain 21, 16-clone diploid; and 49 (35, 2x X 4x and 14, 4x X 2x) 24-clone tetraploid families, respectively. These progenies were included together with the 14 parental clones, in a tuber yield trial conducted in two locations in Wisconsin. Heterotic responses were striking in 4x X 2x progenies. Three of these entries had mean yields of 5.0, 5.0 and 5.2 lbs/hill, for 24 unselected clones, thus outyielding not only the mid-parent but also the best tetraploid cultivars in the experiment, which are highly selected; Wis 643 (4.8 lbs/hill), and Kennebec (4.8 lbs/hill). As a group, the 14, 4x X 2x families averaged 4.4 lbs/hill, while the mean of all seven cultivars was 4.0 lbs/hill, and the mid-parent was at 3.4 lbs/hill. This unusually high mean performance of 336 unselected clones represented in the 14, 4x X 2x progenies, is interpreted as a manifestation of the capacity of 2n pollen, formed by first meiotic division restitution (FDR), to pass onto the progeny the already heterotic diploid genotype in a largely intact array. Beneficial intra and inter-locus interactions are presumably compounded upon syngamy with an unrelated n egg from the tetraploid parent. -The performance of 2x X 4x progenies was at or below that of the midparent. The failure of these families to perform as well as 4x X 2x families may be a reflection of the incapacity of 2n megasporogenesis to avoid meiotic reassortment as efficiently as FDR does, which would result in inbred 2n gametes. However, the method of 2n megasporogenesis is not known.Hereditary variances were large, both within and among families, and indicated considerable nonadditivity in the action of genes affecting tuber yield at both levels of ploidy. Inbreeding was strongly depressing at both ploidy levels.  相似文献   

17.
Hybridization between two diploid (2n = 2x = 16) species ofBrassicaceae, Cardamine rivularis andC. amara, at Urnerboden, Central Switzerland, resulted in the rather unusual triploid hybridC. insueta (2n = 3x = 24), and later on in the amphiploidC. schulzii (2n = 6x = 48). The hybrid and the neopolyploid species colonized successfully some man-made biotopes. Plants ofC. insueta are mostly functional females with non-dehiscent anthers, but true hermaphrodite individuals with partly sterile pollen grains also occur within the population. Analyses of cpDNA and nuclear DNA permitted to establish the parentage of the hybrid: the maternal parent which contributed unreduced egg cells proved to beC. rivularis whereas the normally reduced pollen originated fromC. amara. The pronounced genetic variability inC. insueta revealed by isozyme and RAPD analyses, at variance with the polarized segregation, heterogamy and strong vegetative reproduction of the hybrid, is possibly influenced by recurrent formation ofC. insueta which party results from backcrosses betweenC. insueta andC. rivularis but may also proceed by other pathways. The amphiploidCardamine schulzii has normally developed anthers but its pollen is sometimes highly sterile. The surprisingly uniform genetic make-up of the new amphiploid species might be related to its possible monotopic origin and/or young phylogenetic age but should be further assessed. Site management seems to be very important to a further development of hybridogenous populations and their parent species. In conclusion, the evolution at Urnerboden is discussed in the context of the traditional concept of multiple plant origins.  相似文献   

18.
MnNC-1008(NN) (referred to as MN-1008) is a tetraploid alfalfa mutant with two recessive genes (nn 1 and nn 2 )conditioning the non-nodulating trait. The tetraploid level (2n=4x=32) of this Medicago sativa germ plasm was reduced to the diploid (2n=2x=16) level using the 4x-2x genetic cross originally described as a workable method for the induction of haploidy in alfalfa by T. E. Bingham. In our experiments more than 7000 emasculated flowers of a single non-nodulating MN-1008 mutant alfalfa plant with purple petals were cross-pollinated with pollen from a single, diploid, yellow-flowered alfalfa plant. Mature seeds from these crosses were collected and germinated, after which the plants were subjected to morphological and cytogenetic analyses as well as to DNA fingerprinting. Out of 26 viable progeny, 6 were hybrid plants, 19 proved to be self-mated derivatives of MN-1008, while one descendant turned out to be a diploid (2n=2x=16), purple flowered, non-nodulating plant denoted as M. sativa DN-1008. This diploid, non-nodulating alfalfa plant can serve as starting material to facilitate the comprehensive morphological, physiological and genetic analysis (gene mapping and cloning) of nodulation in order to learn more about the biology of the symbiotic root nodule development. To produce diploid, nodulating hybrid F1 plants, DN-1008 was crossed with a diploid, yellow-flowered M. sativa ssp. quasifalcata plant. An F2 population segregating the nn 1 and nn 2 genes in a diploid manner, in which the genetic analysis is more simple than in a tetraploid population, can be established by self-mating of the F1 plants.  相似文献   

19.
We have characterized female gametophyte (megagametophyte) development and the kinetics of pollen tube growth in self-pollinated diploid genotypes (2n=2x=24) of Solanum cardiophyllum Lindl. that show normal seed formation. In this species megasporogenesis and megagametogenesis give rise to a female gametophyte of the Polygonum type composed of two synergids, an egg cell, a binucleated central cell and three antipodals; however, asynchronous abnormalities resembling mechanisms that prevail during the formation of second division restitution gametes were observed. In self-pollinated pistils at least 1–2% of germinating pollen tubes were able to reach the megagametophyte 60–84 hours after pollination (hap). Although the egg cell acquired a zygote-like morphology 60–84 hap, division of the primary endosperm nucleus was only observed 84 hap. The analysis of genetic variability in full-sib progeny confirmed that seeds are derived from sexual reproduction. These observations suggest that diploid genotypes of S. cardiophyllum can serve as an ideal system to genetically investigate true seed formation in a tuber-bearing Solanum species.  相似文献   

20.
Two dihaploid Rosa hybrida L. genotypes, derived through parthenogenesis by using irradiated pollen, were crossed with clonally propagated plants of the diploid species Rosa rugosa Thunb. and Rosa wichuraiana Crép., respectively. Three progeny groups were obtained which contained numerous polyploids, as determined by flow cytometry. Production of fertile 2n female gametes is apparently very common in one of these R. hybrida dihaploid derivatives, whereas the other one is able to produce fertile 2n pollen. Hence, an amplified fragment length polymorphism (AFLP) study was performed on the parental plants and the resulting hybrid offspring in order to estimate (1) the respective genomic parental contributions, and (2) the level of heterozygosity transmitted by the 2n unreduced gametes. Comparison of the levels of transmitted parental heterozygosity revealed that two types of 2n gametes were produced simultaneously, presumably resulting from restitution at the first and at the second meiotic division, respectively. Received: 15 February 2001 / Accepted: 22 May 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号