首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ATAD3 (ATPase family AAA Domain-containing protein 3) is a mitochondrial membrane bound ATPase whose function has not yet been discovered but its role is essential for embryonic development. The ATAD3 gene has existed since the pluri-cellular organisms with specialized tissues and has remained unique until vertebrates. In primates and human, two other genes have appeared (called ATAD3B and ATAD3C versus ATAD3A the ancestral gene). ATAD3 knock-down in different non-transformed cell lines is associated with drastic changes in the mitochondrial network, inhibition of proliferation and modification of the functional interactions between mitochondria and endoplasmic reticulum. However, the analysis of the cellular properties of ATAD3A and ATAD3B in different human cancer cell lines shows on the contrary that they can present anti-proliferative and chemoresistant properties. ATAD3 may therefore be implicated in an unknown but essential and growth-linked mitochondrial function existing since pluri-cellular organization and involved in tumorigenesis.  相似文献   

2.
3.
4.
ATAD3 (ATPase family AAA domain-containing protein 3) is a mitochondrial membrane bound ATPase whose function has not yet been discovered but its role is essential for the embryonic development. The ATAD3 gene exists since the pluri-cellular organisms with specialized tissues and remains unique until vertebrates. In primates and humans, two other genes have appeared (called ATAD3B and ATAD3C versus ATAD3A the ancestral gene). ATAD3 knock down in different non-transformed cell lines is associated with drastic changes in the mitochondrial network, inhibition of proliferation and modification of the functional interactions between mitochondria and endoplasmic reticulum. However, the analysis of the functions of ATAD3A and ATAD3B in different human cancer cell lines shows on the contrary that they can have anti-proliferative effects and induce chemoresistant properties. ATAD3 may therefore be implicated in an unknown but essential and growth-linked mitochondrial function existing since pluri-cellular -organization and involved in tumorigenesis.  相似文献   

5.
Atm1p, a mitochondrial half-type ATP-binding cassette (ABC) protein in Saccharomyces cerevisiae, transports a precursor of the iron-sulfur (Fe/S) cluster from mitochondria to the cytosol. We have identified a novel half-type human ABC protein, designating it MTABC3 (mammalian mitochondrial ABC protein 3). MTABC3 mRNA is ubiquitously expressed in all of the rat and human tissues examined. MTABC3 protein is shown to be present in the mitochondria, as assessed by immunoblot analysis and confocal microscopic analysis of subcellular fractions of Chinese hamster ovary cells stably expressing MTABC3. Accumulation of iron in the mitochondria, mitochondrial DNA damage, and respiratory dysfunction in the yeast ATM1 mutant strain (atm1-1 mutant cells) were almost fully reversed by expressing MTABC3 in these mutant cells. These results indicate that MTABC3 is a novel ortholog of the yeast and suggest an important role in mitochondrial function. Interestingly, the human MTABC3 gene has been mapped to chromosome 2q36, a region within the candidate locus for lethal neonatal metabolic syndrome, a disorder of the mitochondrial function associated with iron metabolism, indicating that MTABC3 is a candidate gene for this disorder.  相似文献   

6.
7.
8.
The past decade has seen the determination of complete mitochondrial genome sequences from a taxonomically diverse set of organisms. These data have allowed an unprecedented understanding of the evolution of the mitochondrial genome in terms of gene content and order, as well as genome size and structure. In addition, phylogenetic reconstructions based on mitochondrial DNA (mtDNA)-encoded protein sequences have firmly established the identities of protistan relatives of the animal, fungal and plant lineages. Analysis of the mtDNAs of these protists has provided insight into the structure of the mitochondrial genome at the origin of these three, mainly multicellular, eukaryotic groups. Further research into mtDNAs of taxa ancestral and intermediate to currently characterized organisms will help to refine pathways and modes of mtDNA evolution, as well as provide valuable phylogenetic characters to assist in unraveling the deep branching order of all eukaryotes.  相似文献   

9.
The nuclear gene for mitochondrial ribosomal protein YmL9 (MRP-L9) of yeast has been cloned and sequenced. The deduced amino acid sequence characterizes YmL9 as a basic (net charge + 30) protein of 27.5 kDa with a putative signal peptide for mitochondrial import of 19 amino acid residues. The intact MRP-L9 gene is essential for mitochondrial function and is located on chromosome XV or VII. YmL9 shows significant sequence similarities to Escherichia coli ribosomal protein L3 and related proteins from various organisms of all three natural kingdoms as well as photosynthetic organelles (cyanelles). The observed structural conservation is located mostly in the C-terminal half and is independent of the intracellular location of the corresponding genes [Graack, H.-R., Grohmann, L. & Kitakawa, M. (1990) Biol. Chem. Hoppe Seyler 371, 787-788]. YmL9 shows the highest degree of sequence similarity to its eubacterial and cyanelle homologues and is less related to the archaebacterial or eukaryotic cytoplasmic ribosomal proteins. Due to their high sequence similarity to the YmL9 protein two mammalian cytoplasmic ribosomal proteins [MRL3 human and rat; Ou, J.-H., Yen, T. S. B., Wang, Y.-F., Kam, W. K. & Rutter, W. J. (1987) Nucleic Acids Res. 15, 8919-8934] are postulated to be true nucleus-encoded mitochondrial ribosomal proteins.  相似文献   

10.
Frataxin, a nuclear-encoded mitochondrial protein, has been proposed to participate in Fe-S cluster assembly, mitochondrial energy metabolism, respiration, and iron homeostasis. However, its precise function remains elusive. Frataxin is highly conserved in living organisms with no major structural changes, in particular at the C-terminal protein domain, suggesting that it plays a key function in all organisms. Recently, a plant gene, AtFH, with significant homology to other members of the frataxin family has been described. To gain insight on the frataxin role in plants, the frataxin domain was expressed in Escherichia coli BL21-codonPlus (DE3)-RIL cells and purified using a Ni-chelating column. The purified protein, added to a mixture containing Fe(II) and H2O2, attenuates the Fenton reaction indicating that the recombinant plant frataxin is functional. The procedure described here produced high yield of 99% pure protein through only one chromatographic step, suitable for further structure-function studies.  相似文献   

11.
MOTIVATION: There has been an explosion of interest in the role of mitochondria in programmed cell death and other fundamental pathological processes underlying the development of human diseases. Nevertheless, the inventory of mitochondrial proteins encoded in the nuclear genome remains incomplete, providing an impediment to mitochondrial research at the interface with systems biology. We created the MiGenes database to further define the scope of the mitochondrial proteome in humans and model organisms including mice, rats, flies and worms as well as budding and fission yeasts. MiGenes is intended to stimulate mitochondrial research using model organisms. SUMMARY: MiGenes is a large-scale relational database that is automatically updated to keep pace with advances in mitochondrial proteomics and is curated to assure that the designation of proteins as mitochondrial reflects gene ontology (GO) annotations supported by high-quality evidence codes. A set of postulates is proposed to help define which proteins are authentic components of mitochondria. MiGenes incorporates >1160 new GO annotations to human, mouse and rat protein records, 370 of which represent the first GO annotation reflecting a mitochondrial localization. MiGenes employs a flexible search interface that permits batchwise accession number searches to support high-throughput proteomic studies. A web interface is provided to permit members of the mitochondrial research community to suggest modifications in protein annotations or mitochondrial status.  相似文献   

12.
Nonneutral Mitochondrial DNA Variation in Humans and Chimpanzees   总被引:25,自引:4,他引:21       下载免费PDF全文
We sequenced the NADH dehydrogenase subunit 3 (ND3) gene from a sample of 61 humans, five common chimpanzees, and one gorilla to test whether patterns of mitochondrial DNA (mtDNA) variation are consistent with a neutral model of molecular evolution. Within humans and within chimpanzees, the ratio of replacement to silent nucleotide substitutions was higher than observed in comparisons between species, contrary to neutral expectations. To test the generality of this result, we reanalyzed published human RFLP data from the entire mitochondrial genome. Gains of restriction sites relative to a known human mtDNA sequence were used to infer unambiguous nucleotide substitutions. We also compared the complete mtDNA sequences of three humans. Both the RFLP data and the sequence data reveal a higher ratio of replacement to silent nucleotide substitutions within humans than is seen between species. This pattern is observed at most or all human mitochondrial genes and is inconsistent with a strictly neutral model. These data suggest that many mitochondrial protein polymorphisms are slightly deleterious, consistent with studies of human mitochondrial diseases.  相似文献   

13.
14.
A catalog of all human protein-protein interactions would provide scientists with a framework to study protein deregulation in complex diseases such as cancer. Here we demonstrate that a probabilistic analysis integrating model organism interactome data, protein domain data, genome-wide gene expression data and functional annotation data predicts nearly 40,000 protein-protein interactions in humans-a result comparable to those obtained with experimental and computational approaches in model organisms. We validated the accuracy of the predictive model on an independent test set of known interactions and also experimentally confirmed two predicted interactions relevant to human cancer, implicating uncharacterized proteins into definitive pathways. We also applied the human interactome network to cancer genomics data and identified several interaction subnetworks activated in cancer. This integrative analysis provides a comprehensive framework for exploring the human protein interaction network.  相似文献   

15.
16.
We report here the identification and characterization of mouse GTPBP3 encoding a mitochondrial GTPase. A full-length GTPBP3 cDNA has been isolated and the genomic organization of GTPBP3 has been elucidated. The mouse GTPBP3 gene containing 9 exons encodes a 486 residue protein with a strong homology to the GTPBP3-like proteins of bacteria, yeast, and other homologs, related to tRNA modification. The mouse GTPBP3 is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, and brain. Surprisingly, this gene, unlike its human homolog, exhibited a low expression in skeletal muscle. Furthermore, immunofluorescence analysis of NIH3T3 cells expressing GTPBP3-GFP fusion protein demonstrated that the mouse Gtpbp3 localizes in mitochondrion. These observations suggest that the mouse Gtpbp3 is an evolutionarily conserved mitochondrial GTP-binding protein involved in the tRNA modification. Thus, it may modulate the translational efficiency and accuracy of codon-anticodon base pairings on the decoding region of mitochondrial ribosomes.  相似文献   

17.
自噬是细胞重要的代谢途径,ATG8在自噬体形成过程中起着重要的作用。对ATG8蛋白进行生物信息学分析研究十分必要。本研究以NCBI中人ATG8同源蛋白序列数据为研究材料,分析其与10种模式生物间基因拷贝数、氨基酸序列、蛋白质保守位点相关性。结果表明,人6种ATG8同源蛋白分别定位于5条染色体上,均有泛素样GABARAP结构域。并且,所有模式生物的ATG8同源蛋白中N-端氨基酸序列保守性强于C-端序列。本研究构建的ATG8同源蛋白系统发育树显示,人的ATG8同源蛋白与脊椎动物(斑马鱼,爪蟾,小鼠,大鼠,牛)的ATG8蛋白亲缘关系更近,人的GABARAPs与酵母的ATG8蛋白与的亲缘关系较近。本研究为研究细胞自噬过程及机制提供了丰富的生物进化和生物信息数据支持。  相似文献   

18.

Background

Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64 complete mitochondrial genomes and then tested their efficacy.

Methodology/Principal Findings

A total of the 64 complete mitochondrial genome sequences representing all metazoan classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the complete metazoan mitochondrial genomes available in NCBI''s Organelle Genome Resources database were used to determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will amplify target sequences for many metazoans.

Conclusions/Significance

Newly designed 12S ribosomal DNA primers have considerable potential for metazoan metagenetic analysis because of their ability to amplify sequences from many metazoans.  相似文献   

19.
Toxoplasma gondii is an important human and veterinary pathogen. The induction of bradyzoite development in vitro has been linked to temperature, pH, mitochondrial inhibitors, sodium arsenite and many of the other stressors associated with heat shock protein induction. Heat shock or stress induced activation of a set of heat shock protein genes, is characteristic of almost all eukaryotic and prokaryotic cells. Studies in other organisms indicate that heat shock proteins are developmentally regulated. We have established that increases in the expression of bag1/hsp30 and hsp70 are associated with bradyzoite development. The T. gondii hsp70 gene locus was cloned and sequenced. The regulatory regions of this gene were analysed by deletion analysis using beta-galactosidase expression vectors transiently transfected into RH strain T. gondii. Expression was measured at pH 7.1 and 8.1 (i.e. pH shock) and compared to the expression obtained with similar constructs using BAG1 and SAG1 promoters. A pH-regulated region of the Tg-hsp70 gene locus was identified which has some similarities to heat shock elements described in other eukaryotic systems. Green fluorescent protein expression vectors driven by the Tg-hsp70 regulatory region were constructed and stably transfected into T. gondii. Expression of green fluorescent protein in these parasites was induced by pH shock in those lines carrying the Tg-hsp70 regulatory constructs. Gel shift analysis was carried out using oligomers corresponding to the pH-regulated region and a putative DNA binding protein was identified. These data support the identification of a pH responsive cis-regulatory element in the T. gondii hsp70 gene locus. A model of the interaction of hsp70 and small heat shock proteins (e.g. BAG1) in development is presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号