首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multifunctional type II transmembrane glycoprotein, dipeptidyl peptidase IV (DPPIV, EC 3.4.14.5), is expressed by almost all mammalian cells and is identical to the adenosine deaminase binding protein CD26 on lymphocytes. The extracellular part of rat DPPIV can be divided into three domains the middle part of which harbors 10 of the 12 highly conserved cysteine residues. The cysteine-rich domain is responsible for DPPIV-binding to collagen I and to extracellular ADA. The participation of distinct cysteines in disulfide bridges is not yet known. Titration experiments have shown the presence of six free cysteines and three disulfide bridges in native rat DPPIV. To investigate the role of distinct cysteines in the structure-function relationships of rat DPPIV we constructed 12 different cysteine point mutations (C299, C326, C383, C455, C650 mutated to G; C337, C395, C445, C448, C473, C552, C763 mutated to S). Intracellular translocation to the cell surface of stable transfected Chinese hamster ovary cells was examined with antibodies against different epitopes of DPPIV. Surface expression of mutants C326G, C445S and C448S is inhibited totally; mutants C337S, C455G, C473S and C552S show weak expression only. In parallel, the half-life of these mutants is reduced to < 10% compared with wild-type enzyme. We were able to show that the specific peptidase activity of the mutant protein depends on cell-surface expression, dimerization and the existence of a 150-kDa form demonstrable by nondenaturing SDS/PAGE. We conclude that cysteine residues 326, 337, 445, 448, 455, 473 and 552 in rat DPPIV are essential for the correct folding and intracellular trafficking of this glycoprotein, and therefore for its normal biological properties.  相似文献   

2.
Dipeptidyl peptidase IV (DPPIV, EC 3.4.14.5) is a serine type protease with an important modulatory activity on a number of chemokines, neuropeptides and peptide hormones. It is also known as CD26 or adenosine deaminase (ADA; EC 3.5.4.4) binding protein. DPPIV has been demonstrated on the plasmamembranes of T cells and activated natural killer or B cells as well as on a number of endothelial and differentiated epithelial cells. A soluble form of CD26/DPPIV has been described in serum. Over the past few years, several related enzymes with similar dipeptidyl peptidase activity have been discovered, raising questions on the molecular origin(s) of serum dipeptidyl peptidase activity. Among them attractin, the human orthologue of the mouse mahogany protein, was postulated to be responsible for the majority of the DPPIV-like activity in serum. Using ADA-affinity chromatography, it is shown here that 95% of the serum dipeptidyl peptidase activity is associated with a protein with ADA-binding properties. The natural protein was purified in milligram quantities, allowing molecular characterization (N-terminal sequence, glycosylation type, CD-spectrum, pH and thermal stability) and comparison with CD26/DPPIV from other sources. The purified serum enzyme was confirmed as CD26.  相似文献   

3.
Dipeptidyl peptidase IV (DPPIV) is an atypical serine protease that modifies the biological activities of certain chemokines and neuropeptides. In addition, human DPPIV, also known as the T-cell activation antigen CD26, binds adenosine deaminase (ADA) to the T-cell surface, thus protecting the T-cell from adenosine-mediated inhibition of proliferation. Mutations were engineered into DPPIV (five point, 16 single point and six deletion mutations) to examine the binding of ADA and 19 monoclonal antibodies. Deletions of C-terminal residues from the 738-residue extracellular portion of DPPIV showed that the 214 residues C-terminal to Ser552 were not required for ADA binding and that peptidase activity could be ablated by deletion of 20 residues from the C-terminus. Point mutations at either of two locations, Leu294 and Val341, ablated ADA binding. Binding by six anti-DPPIV antibodies that inhibited ADA binding was found to require Leu340 to Arg343 and Thr440/Lys441 but not the 214 residues C-terminal to Ser552. The 13 other antibodies studied bound to a truncated DPPIV consisting of amino acids 1-356. Therefore, the binding sites on DPPIV of ADA and antibodies that inhibit ADA binding are discontinuous and overlapping. Moreover, the 47 and 97 residue spacing of amino acids in these binding sites concords with their location on a beta propeller fold consisting of repeated beta sheets of about 50 amino acids.  相似文献   

4.
The cDNA coding for the human dipeptidyl peptidase IV (DPPIV) has been isolated and sequenced. The nucleotide sequence (3465 bp) of the cDNA contains an open reading frame encoding a polypeptide comprising 766 amino acids, one residue less than those of rat DPPIV. The predicted amino acid sequence exhibits 84.9% identity to that of the rat enzyme, and contains nine potential N-linked glycosylation sites, one site more than those in the rat enzyme. A putative catalytic triad for serine proteinases, serine, aspartic acid and histidine, are found in a completely conserved COOH-terminal region (positions 625-752).  相似文献   

5.
The human dipeptidyl peptidase IV/CD26 (DPPIV/CD26) is a multifunctional type-II membrane bound glycoprotein. As a receptor of collagen I and fibronectin it mediates cell-cell and cell-matrix adhesion, and by interacting with extracellular adenosine deaminase and CD45 it is involved in regulatory and costimulatory events in the immune system. DPPIV/CD26 has a very distinct substrate specificity, and is potentially capable of truncating many cytokines, chemokines, and peptide hormones. In this study, we describe the overexpression, purification, and characterization of human DPPIV/CD26 in Spodoptera frugiperda (Sf9) cells, using the baculovirus system. Overexpression of DPPIV/CD26 was confirmed by measurement of its peptidase specificity, SDS-PAGE, and Western blot analyses. Expression rates were between 6.4 and 17.6 mg protein per liter suspension culture (1.5 x 10(9)cells). The N-linked oligosaccharide composition was examined and compared with that of mammalian cell-expressed DPPIV/CD26. Two-step purification by immunoaffinity chromatography and size-exclusion fast protein liquid chromatography (SE-FPLC) led to highly stable protein with significant peptidase activity. A subsequent gel filtration step on a Superdex 200 column yielded 2mg homogeneous dimeric DPPIV/CD26 (per liter insect cell culture) for crystallographic studies. Protein homogeneity was confirmed by silver staining of non-denaturating PAGE gels and by MALDI-TOF analysis of tryptic peptides.  相似文献   

6.
The importance of ADA (adenosine deaminase) in the immune system and the role of its interaction with an ADA-binding cell membrane protein dipeptidyl peptidase IV (DPPIV), identical to the activated immune cell antigen, CD26, has attracted the interest of researchers for many years. To investigate the specific properties in the structure-function relationship of the ADA/DPPIV-CD26 complex, its soluble form, identical to large ADA (LADA), was isolated from human blood serum, human pleural fluid and bovine kidney cortex. The kinetic constants (Km and Vmax) of LADA and of small ADA (SADA), purified from bovine lung and spleen, were compared using adenosine (Ado) and 2'-deoxyadenosine (2'-dAdo) as substrates. The Michaelis constant, Km, evidences a higher affinity of both substrates (in particular of more toxic 2'-dAdo) for LADA and proves the modulation of toxic nucleoside neutralization in the extracellular medium due to complex formation between ADA and DPPIV-CD26. The values of Vmax are significantly higher for SADA, but the efficiency, Vmax/Km, in LADA-catalyzed 2'-dAdo deamination is higher than that in Ado deamination. The interaction of all enzyme preparations with derivatives of adenosine and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) was studied. 1-DeazaEHNA and 3-deazaEHNA demonstrate stronger inhibiting activity towards LADA, the DPPIV-CD26-bound form of ADA. The observed differences between the properties of the two ADA isoforms may be considered as a consequence of SADA binding with DPPIV-CD26. Both SADA and LADA indicated a similar pH-profile of adenosine deamination reaction with the optimum at pHs 6.5-7.5, while the pH-profile of dipeptidyl peptidase activity of the ADA/DPPIV-CD26 complex appeared in a more alkaline region.  相似文献   

7.
Dipeptidyl-peptidase IV (DPPIV or CD26) is a homodimeric type II membrane glycoprotein in which the two monomers are subdivided into a beta-propeller domain and an alpha/beta-hydrolase domain. As dipeptidase, DPPIV modulates the activity of various biologically important peptides and, in addition, DPPIV acts as a receptor for adenosine deaminase (ADA), thereby mediating co-stimulatory signals in T-lymphocytes. The 3.0-A resolution crystal structure of the complex formed between human DPPIV and bovine ADA presented here shows that each beta-propeller domain of the DPPIV dimer binds one ADA. At the binding interface, two hydrophobic loops protruding from the beta-propeller domain of DPPIV interact with two hydrophilic and heavily charged alpha-helices of ADA, giving rise to the highest percentage of charged residues involved in a protein-protein contact reported thus far. Additionally, four glycosides linked to Asn229 of DPPIV bind to ADA. In the crystal structure of porcine DPPIV, the observed tetramer formation was suggested to mediate epithelial and lymphocyte cell-cell adhesion. ADA binding to DPPIV could regulate this adhesion, as it would abolish tetramerization.  相似文献   

8.
The specific binding of adenosine deaminase to the multifunctional membrane glycoprotein dipeptidyl peptidase IV is thought to be immunologically relevant for certain regulatory and co-stimulatory processes. In this study we present the 3D structure of the complete CD26-ADA complex obtained by single particle cryo-EM at 22A resolution. ADA binding occurs at the outer edges of the beta-propeller of CD26. Docking calculations of available CD26 and ADA crystal data into the obtained EM density map revealed that the ADA-binding site is stretched across CD26 beta-propeller blades 4 and 5 involving the outermost distal hydrophobic amino acids L294 and V341 but not T440 and K441 as suggested by antibody binding. Though the docking of the ADA orientation appears less significant due to the lack of distinct surface features, non-ambiguous conclusions can be drawn in the combination with earlier indirect non-imaging methods affirming the crucial role of the ADA alpha2-helix for binding.  相似文献   

9.
Dipeptidyl peptidase (DPP) IV has roles in T-cell costimulation, chemokine biology, type-II diabetes and tumor biology. Fibroblast activation protein (FAP) has been implicated in tumor growth and cirrhosis. Here we describe DPP8, a novel human postproline dipeptidyl aminopeptidase that is homologous to DPPIV and FAP. Northern-blot hybridization showed that the tissue expression of DPP8 mRNA is ubiquitous, similar to that of DPPIV. The DPP8 gene was localized to chromosome 15q22, distinct from a closely related gene at 19p13.3 which we named DPP9. The full-length DPP8 cDNA codes for an 882-amino-acid protein that has about 27% identity and 51% similarity to DPPIV and FAP, but no transmembrane domain and no N-linked or O-linked glycosylation. Western blots and confocal microscopy of transfected COS-7 cells showed DPP8 to be a 100-kDa monomeric protein expressed in the cytoplasm. Purified recombinant DPP8 hydrolyzed the DPPIV substrates Ala-Pro, Arg-Pro and Gly-Pro. Thus recombinant DPP8 shares a postproline dipeptidyl aminopeptidase activity with DPPIV and FAP. DPP8 enzyme activity had a neutral pH optimum consistent with it being nonlysosomal. The similarities between DPP8 and DPPIV in tissue expression pattern and substrates suggests a potential role for DPP8 in T-cell activation and immune function.  相似文献   

10.
Human adenosine deaminase (ADA) occurs as a 41-kDa soluble monomer in all cells. On epithelia and lymphoid cells of humans, but not mice, ADA also occurs bound to the membrane glycoprotein CD26/dipeptidyl peptidase IV. This "ecto-ADA" has been postulated to regulate extracellular Ado levels, and also the function of CD26 as a co-stimulator of activated T cells. The CD26-binding site of human ADA has been localized by homolog scanning to the peripheral alpha2-helix (amino acids 126-143). Among the 5 non-conserved residues within this segment, Arg-142 in human and Gln-142 in mouse ADA largely determined the capacity for stable binding to CD26 (Richard, E., Arredondo-Vega, F. X., Santisteban, I., Kelly, S. J., Patel, D. D., and Hershfield, M. S. (2000) J. Exp. Med. 192, 1223-1235). We have now mutagenized conserved alpha2-helix residues in human and mouse ADA and used surface plasmon resonance to evaluate binding kinetics to immobilized rabbit CD26. In addition to Arg-142, we found that Glu-139 and Asp-143 of human ADA are also important for CD26 binding. Mutating these residues to alanine increased dissociation rates 6-11-fold and the apparent dissociation constant K(D) for wild type human ADA from 17 to 112-160 nm, changing binding free energy by 1.1-1.3 kcal/mol. This cluster of 3 charged residues appears to be a "functional epitope" that accounts for about half of the difference between human and mouse ADA in free energy of binding to CD26.  相似文献   

11.
CD26 or dipeptidyl-peptidase IV (DPPIV) is engaged in immune functions by co-stimulatory effects on activation and proliferation of T lymphocytes, binding to adenosine deaminase, and regulation of various chemokines and cytokines. DPPIV peptidase activity is inhibited by both Tat protein from human immunodeficiency virus (HIV)-1 and its N-terminal nonapeptide Tat-(1-9) with amino acid sequence MDPVDPNIE, suggesting that DPPIV mediates immunosuppressive effects of Tat protein. The 2.0- and 3.15-A resolution crystal structures of the binary complex between human DPPIV and nonapeptide Tat-(1-9) and the ternary complex between the variant MWPVDPNIE, called Trp(2)-Tat-(1-9), and DPPIV bound to adenosine deaminase show that Tat-(1-9) and Trp(2)-Tat-(1-9) are located in the active site of DPPIV. The interaction pattern of DPPIV with Trp(2)-Tat-(1-9) is tighter than that with Tat-(1-9), in agreement with inhibition constants (K(i)) of 2 x 10(-6) and 250 x 10(-6) m, respectively. Both peptides cannot be cleaved by DPPIV because the binding pockets of the N-terminal 2 residues are interchanged compared with natural substrates: the N-terminal methionine occupies the hydrophobic S1 pocket of DPPIV that normally accounts for substrate specificity by binding the penultimate residue. Because the N-terminal sequence of the thromboxane A2 receptor resembles the Trp(2)-Tat-(1-9) peptide, a possible interaction with DPPIV is postulated.  相似文献   

12.
The temporal association between O-glycosylation and processing of N-linked glycans in the Golgi apparatus as well as the implication of these events in the polarized sorting of three brush border proteins has been the subject of the current investigation. O-Glycosylation of pro-sucrase-isomaltase (pro-SI), aminopeptidase N (ApN), and dipeptidyl peptidase IV (DPPIV) is drastically reduced when processing of the mannose-rich N-linked glycans is blocked by deoxymannojirimycin, an inhibitor of the Golgi-located mannosidase I. By contrast, O-glycosylation is not affected in the presence of swainsonine, an inhibitor of Golgi mannosidase II. The results indicate that removal of the outermost mannose residues by mannosidase I from the mannose-rich N-linked glycans is required before O-glycosylation can ensue. On the other hand, subsequent mannose residues in the core chain impose no sterical constraints on the progression of O-glycosylation. Reduction or modification of N- and O-glycosylation do not affect the transport of pro-SI, ApN, or DPPIV to the cell surface per se. However, the polarized sorting of two of these proteins, pro-SI and DPPIV, to the apical membrane is substantially altered when O-glycans are not completely processed, while the sorting of ApN is not affected. The processing of N-linked glycans, on the other hand, has no influence on sorting of all three proteins. The results indicate that O-linked carbohydrates are at least a part of the sorting mechanism of pro-SI and DPPIV. The sorting of ApN implicates neither O-linked nor N-linked glycans and is driven most likely by carbohydrate-independent mechanisms.  相似文献   

13.
The apical sorting of human intestinal dipeptidyl peptidase IV (DPPIV) occurs through complex N-linked and O-linked carbohydrates. Inhibition of O-linked glycosylation by benzyl-N-acetyl-alpha-d-galactosaminide affects significantly the sorting behavior of DPPIV in intestinal Caco-2 and HT-29 cells. However, random delivery to the apical and basolateral membranes and hence a more drastic effect on the sorting of DPPIV in both cell types is only observed when, in addition to O-glycans, the processing of N-glycans is affected by swainsonine, an inhibitor of mannosidase II. Together the data indicate that both types of glycosylation are critical components of the apical sorting signal of DPPIV. The sorting mechanism of DPPIV implicates its association with detergent-insoluble membrane microdomains containing cholesterol and sphingolipids, whereas an efficient association largely depends on the presence of a fully complex N- and O-linked glycosylated DPPIV. Interestingly, cholesterol is a more critical component in this context than sphingolipids, because cholesterol depletion by beta-cyclodextrin affects the detergent solubility and the sorting behavior of DPPIV more strongly than fumonisin, an inhibitor of sphingolipid synthesis.  相似文献   

14.
15.
Dipeptidyl peptidase II (DPPII) from bovine kidney cortex and lung was purified to the electrophoretically homogeneous state. The molecular and catalytic characteristics of the enzyme were determined. It was revealed that DPPII preparations possess adenosine deaminase (ADA) activity at all purification steps. For the first time, the ADA-binding ability of DPPII has been shown similar to the well-known ADA-binding enzyme, DPPIV. The dissociation constant of the DPPII-ADA complex was estimated using a resonant mirror biosensor (80 nM), fluorescence polarization (60 nM), and differential spectroscopy (36 nM) techniques. The data demonstrate that DPPII can form a complex with ADA, but with one order of magnitude higher dissociation constant than that of DPPIV (7.8 nM).  相似文献   

16.
The multifunctional cell-surface protein dipeptidyl peptidase IV (DPPIV/CD26) is aberrantly expressed in many cancers and plays a key role in tumorigenesis and metastasis. Its diverse cellular roles include modulation of chemokine activity by cleaving dipeptides from the chemokine NH(2)-terminus, perturbation of extracellular nucleoside metabolism by binding the ecto-enzyme adenosine deaminase, and interaction with the extracellular matrix by binding proteins such as collagen and fibronectin. We have recently shown that DPPIV can be downregulated from the cell surface of HT-29 colorectal carcinoma cells by adenosine, which is a metabolite that becomes concentrated in the extracellular fluid of hypoxic solid tumors. Most of the known responses to adenosine are mediated through four different subtypes of G protein-coupled adenosine receptors: A(1), A(2A), A(2B), and A(3). We report here that adenosine downregulation of DPPIV from the surface of HT-29 cells occurs independently of these classic receptor subtypes, and is mediated by a novel cell-surface mechanism that induces an increase in protein tyrosine phosphatase activity. The increase in protein tyrosine phosphatase activity leads to a decrease in the tyrosine phosphorylation of ERK1/2 MAP kinase that in turn links to the decline in DPPIV mRNA and protein. The downregulation of DPPIV occurs independently of changes in the activities of protein kinases A or C, phosphatidylinositol 3-kinase, other serine/threonine phosphatases, or the p38 or JNK MAP kinases. This novel action of adenosine has implications for our ability to manipulate adenosine-dependent events within the solid tumor microenvironment.  相似文献   

17.
Middle East respiratory syndrome coronavirus (MERS-CoV) replicates in cells of different species using dipeptidyl peptidase 4 (DPP4) as a functional receptor. Here we show the resistance of ferrets to MERS-CoV infection and inability of ferret DDP4 to bind MERS-CoV. Site-directed mutagenesis of amino acids variable in ferret DPP4 thus revealed the functional human DPP4 virus binding site. Adenosine deaminase (ADA), a DPP4 binding protein, competed for virus binding, acting as a natural antagonist for MERS-CoV infection.  相似文献   

18.
Adenosine deaminase (ADA) is expressed intracellularly by all cells, but in some tissues, it is also associated with the cell surface multifunctional glycoprotein CD26/dipeptidyl peptidase IV. By modulating extracellular adenosine, this "ecto-ADA" may regulate adenosine receptor signaling implicated in various cellular functions. CD26 is expressed on the surface of human prostate cancer 1-LN cells acting as a receptor for plasminogen (Pg). Since ADA and Pg bind to CD26 at distinct but nearby sites, we investigated a possible interaction between these two proteins on the surface of 1-LN cells. Human ADA binds to CD26 on the surface 1-LN cells and immobilized CD26 isolated from the same cells with similar affinity. In both cases, ADA binding is diminished by mutation of ADA residues known to interact with CD26. ADA was also found to bind Pg 2 in the absence of CD26 via the Pg kringle 4 (K4) domain. In the presence of 1-LN cells or immobilized CD26, exogenous ADA enhances conversion of Pg 2 to plasmin by 1-LN endogenous urinary plasminogen activator (u-PA), as well as by added tissue Pg Activator (t-PA), suggesting that ADA and Pg bind simultaneously to CD26 in a ternary complex that stimulates the Pg activation by its physiologic activators. Consistent with this, in melanoma A375 cells that bind Pg, but do not express CD26, the rate of Pg activation was not affected by ADA. Thus, ADA may be a factor regulating events in prostate cancer cells that occur when Pg binds to the cell surface and is activated.  相似文献   

19.
The molecular mechanism controlling the variable activity of the malignancy marker adenosine deaminase (ADA) is enigmatic. ADA activity was found to be modulated by the membrane-bound adenosine deaminase complexing protein (CP=DPPIV=CD26). The role of lipid-protein interactions in this modulation was sought. While direct solubilization of ADA in vesicles resulted in loss of ADA activity, the binding of ADA to CP reconstituted in vesicles restored the specific activity. The activity of ADA, free or bound to CP in solution, resulted in continuous linear Arrhenius plots. However, ADA bound to reconstituted CP exhibited two breaks associated with approximately 30% increased activity, at 25 and 13 degrees C, yielding three lines with similar apparent activation energies (E(a)). Continuum solvent model calculations of the free energy of transfer of the transmembrane helix of CP from the aqueous phase into membranes of various widths show that the most favorable orientations of the helix above and below the main phase transition may be different. We suggest that the 20% change in the thickness of the bilayer below and above the main phase transition may modify the orientation of CP in the membrane, thereby affecting substrate accessibility of ADA. This could account for ADA's reduced activity associated with increased membrane fluidity in transformed vs. normal fibroblasts.  相似文献   

20.
Immune response and inflammation were suggested to play certain roles in the development and complications of type 2 diabetes mellitus. The main objective of this study was to investigate the CD26 expression and its relationship with adenosine deaminase (ADA), dipeptidyl peptidase IV (DPP-IV), γ-glutamyltransferase (GGT), and N-acetyl-β-glucosaminidase (NAG) activities in lymphocytes of type 2 diabetics (T2DM) patients. These parameters were assessed in 25 T2DM patients and 20 control subjects. We observed a decrease in CD26 expression and a significant increase in the ADA activity in T2DM patients when compared with control subjects. There were no differences between activities of DPP-IV, NAG, and GGT in lymphocytes of T2DM patients and control subjects. Meanwhile, a significant negative correlation was observed between CD26 expression and DPP-IV activity in lymphocytes of T2DM patients. Moreover, a positive correlation was found between DPPIV and ADA activities. The results suggest that the reduction of CD26 expression may be associated in the regulation of DPP-IV in T2DM patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号