首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Simple models of molecular evolution assume that sequences evolve by a Poisson process in which nucleotide or amino acid substitutions occur as rare independent events. In these models, the expected ratio of the variance to the mean of substitution counts equals 1, and substitution processes with a ratio greater than 1 are called overdispersed. Comparing the genomes of 10 closely related species of Drosophila, we extend earlier evidence for overdispersion in amino acid replacements as well as in four-fold synonymous substitutions. The observed deviation from the Poisson expectation can be described as a linear function of the rate at which substitutions occur on a phylogeny, which implies that deviations from the Poisson expectation arise from gene-specific temporal variation in substitution rates. Amino acid sequences show greater temporal variation in substitution rates than do four-fold synonymous sequences. Our findings provide a general phenomenological framework for understanding overdispersion in the molecular clock. Also, the presence of substantial variation in gene-specific substitution rates has broad implications for work in phylogeny reconstruction and evolutionary rate estimation.  相似文献   

2.
Photic entrainment of the circadian clock: from Drosophila to mammals.   总被引:2,自引:0,他引:2  
Entrainment is as fundamental to an organism's circadian timing as are the molecular mechanisms involved in the functioning of the intracellular clock oscillator. In nature, one of the principle, although not the only, circadian entraining stimulus (Zeitgeber) is provided by the daily light--dark cycles. In animals, the visual processing apparatus alone is inadequate to accomplish the task of transducing circadian photic signals to the clockwork machinery. In fact, it is ever more appreciated by circadian biologists that organisms as divergent as plants and mammals have evolved a wonderfully complex array of partly redundant specializations which can guarantee the precise alignment of biological and environmental time. Research in circadian biology is cruising at such a rate that attempts to review the state of the art can only hope, at best, to provide a snapshot of the speeding cruiser from its wake. This paper will hopefully provide a reasonably sharp portrayal of what is at hand.  相似文献   

3.
生物钟广泛存在于各种生物体中,是生命体的一种内源调节机制。哺乳动物生物钟系统与机体营养代谢和能量平衡有着密切的关系。概述了生物钟系统通过营养途径、限速酶途径、核受体途径对哺乳动物机体代谢活动和能量平衡的调控,以及哺乳动物代谢稳态对生物钟系统的影响,从而为从生物钟调控的角度治疗和防控代谢综合征提供新的思路。  相似文献   

4.
We have previously demonstrated that firefly luciferase can be imported into peroxisomes of both insect and mammalian cells. To determine whether the process of protein transport into the peroxisome is functionally similar in more widely divergent eukaryotes, the cDNA encoding firefly luciferase was expressed in both yeast and plant cells. Luciferase was translocated into peroxisomes in each type of organism. Experiments were also performed to determine whether a yeast peroxisomal protein could be transported to peroxisomes in mammalian cells. We observed that a C-terminal segment of the yeast (Candida boidinii) peroxisomal protein PMP20 could act as a peroxisomal targeting signal in mammalian cells. These results suggest that at least one mechanism of protein translocation into peroxisomes has been conserved throughout eukaryotic evolution.  相似文献   

5.
6.
7.
Summary Nucleotide substitutions in the form of transitions (purine-purine or pyrimidine-pyrimidine interchanges) and transversions (purine-pyrimidine interchanges) occur during evolution and may be complied by aligning the sequences of homologous genes. Referring to the genetic code tables, silent transitions take place in third positions of codons in family boxes and two-codon sets. Silent transversions in third positions occur only in family boxes, except for AC transversions between AGR and CGR arginine codons (R=A or G). Comparisons of several protein genes have been made, and various subclasses of transitional and transversional nucleotide substitutions have been compiled. Considerable variations occur among the relative proportions of transitions and transversions. Such variations could possibly be caused by mutator genes, favoring either transitions or, conversely, transversions, during DNA replication. At earlier stages of evolutionary divergence, transitions are usually more frequent, but there are exceptions. No indication was found that transversions usually originate from multiple substitutions in transitions.  相似文献   

8.
Molecular machinery of the circadian clock in mammals   总被引:11,自引:0,他引:11  
  相似文献   

9.
Recombination and the molecular clock   总被引:7,自引:0,他引:7  
  相似文献   

10.
Bone remodeling, energy metabolism, and the molecular clock   总被引:4,自引:0,他引:4  
The adult skeleton is constantly renewed through bone remodeling. Four recent papers (Baldock et al., 2007; Lee et al., 2007; Lundberg et al., 2007; Sato et al., 2007) provide new insights into central and peripheral control of this remodeling sequence. Two of the studies add to our knowledge of the complex hypothalamic modulation of bone turnover mediated by NMU and NPY via the sympathetic nervous system, while the other two focus on the peripheral neural target, the osteoblast, and its regulation by neuropeptides and osteocalcin. These findings support a new paradigm concerning the regulation of bone remodeling and provide a foundation for novel approaches to preventing osteoporosis.  相似文献   

11.
Yamada H  Yamamoto MT 《PloS one》2011,6(12):e27493
Diapause is an adaptive response triggered by seasonal photoperiodicity to overcome unfavorable seasons. The photoperiodic clock is a system that controls seasonal physiological processes, but our knowledge about its physiological mechanisms and genetic architecture remains incomplete. The circadian clock is another system that controls daily rhythmic physiological phenomena. It has been argued that there is a connection between the two clocks. To examine the genetic connection between them, we analyzed the associations of five circadian clock genes (period, timeless, Clock, cycle and cryptochrome) with the occurrence of diapause in Drosophila triauraria, which shows a robust reproductive diapause with clear photoperiodicity. Non-diapause strains found in low latitudes were compared in genetic crosses with the diapause strain, in which the diapause trait is clearly dominant. Single nucleotide polymorphism and deletion analyses of the five circadian clock genes in backcross progeny revealed that allelic differences in timeless and cryptochrome between the strains were additively associated with the differences in the incidence of diapause. This suggests that there is a molecular link between certain circadian clock genes and the occurrence of diapause.  相似文献   

12.
The circadian master clocks in the brains of mammals and insects are compared in respect to location, organization and function. They show astonishing similarities. Both clocks are anatomically and functionally connected to the optic system and possess multiple output pathways allowing synchronization with the environmental light-dark cycles as well as the control of diverse endocrine, autonomic and behavioral functions. Both circadian master clocks are composed of multiple neurons, which are organized in populations with different morphology, physiology and neurotransmitter content and appear to subserve different functions. In the hamster and in the cockroach, the master clock consists of a core region that gets input from the eyes, and a shell region from which the majority of output projections originate. Communication between core and shell, between all other populations of clock neurons as well as between the master clocks of both brain hemispheres is a prerequisite of normal rhythmic function. Phenomena like rhythm splitting and internal desynchronization can be observed under constant light conditions and are caused by the uncoupling of the master clocks of both brain hemispheres.  相似文献   

13.
BACKGROUND: Circadian clocks are synchronized by both light:dark cycles and by temperature fluctuations. Although it has long been known that temperature cycles can robustly entrain Drosophila locomotor rhythms, nothing is known about the molecular mechanisms involved. RESULTS: We show here that temperature cycles induce synchronized behavioral rhythms and oscillations of the clock proteins PERIOD and TIMELESS in constant light, a situation that normally leads to molecular and behavioral arrhythmicity. We show that expression of the Drosophila clock gene period can be entrained by temperature cycles in cultured body parts and isolated brains. Further, we show that the phospholipase C encoded by the norpA gene contributes to thermal entrainment, suggesting that a receptor-coupled transduction cascade signals temperature changes to the circadian clock. We initiated the further genetic dissection of temperature-entrainment and isolated the novel Drosophila mutation nocte, which is defective in molecular and behavioral entrainment by temperature cycles but synchronizes normally to light:dark cycles. CONCLUSIONS: We conclude that temperature synchronization of the circadian clock is a tissue-autonomous process that is able to override the arrhythmia-inducing effects of constant light. Our data suggest that it involves a cell-autonomous signal-transduction cascade from a thermal receptor to the circadian clock. This process includes the function of phospholipase C and the product specified by the novel mutation nocte.  相似文献   

14.
Summary A few years ago we presented a stationary Markov model of gene evolution according to which only homologous genes from not too divergent species obeying the condition of being stationary may behave as reliable molecular clocks. A compartmentalized model of the nuclear genome in which the genes are distributed in compartments, the isochores, defined by their G+C content has been proposed recently. We have found that only homologous gene pairs that are stationary, and belong to the same isochore, can be used consistently for the determination of phylogeny and base substitution rate. In particular, for the rodent-human couple, only about half of the homologous gene pairs are stationary. Stationary genes evolve at the third silent codon position with the same velocity independent of the genes and base composition. By contrast, nonstationary genes display apparent rate values (pseudovelocities) that are significantly higher. Our results cast doubt upon recent claims of a large acceleration in the rate of molecular evolution in rodents.  相似文献   

15.
16.
DNA turnover and the molecular clock   总被引:7,自引:0,他引:7  
Summary Many detailed studies on the mechanisms by which different components of eukaryotic nuclear genomes have diverged reveal that the majority of sequences are seemingly not passively accumulating base substitutions in a clocklike manner solely determined by laws of diffusion at the population level. It appears that variation in the rates, units, biases, and gradients of several DNA turnover mechanisms are contributing to the course of DNA divergence. Turnover mechanisms have the potential to retard, maintain, or accelerate the rate of DNA differentiation between populations. Furthermore, examples are known of coding and noncoding DNA subject to the simultaneous operation of several turnover mechanisms leading to complex patterns of fine-scale restructuring and divergence, generally uninterpretable using selection and/or neutral drift arguments in isolation. Constancy in the rate of divergence, where observed over defined periods of time, could be a reflection of constancy in the rates and units of turnover. However, a consideration of the generally large disparity between rates of turnover and mutation reveals that DNA clocks, which would be independently driven by turnover in separate genomic components, would tend to be episodic. The utility of any given DNA sequence for measuring time and species relationships, like individual proteins, is proportional to the extent to which all contributing forces to the evolution of the sequence, internal and external, are understood.  相似文献   

17.
Natural selection and the molecular clock   总被引:12,自引:1,他引:12  
  相似文献   

18.
Drosophila melanogaster has been used as a genetic model, especially in the past decade, to examine normative biological processes and disease conditions very effectively. These span a wide range of major issues such as aging, cancer, embryogenesis, neural development, apoptosis, and alcohol intoxication. Here, we detail how the Drosophila melanogaster can be used as a genetic model to study the molecular and genetic underpinnings of the response to hypoxia. In our study of the basis of anoxia tolerance, one of the potent approaches that we use is a mutagenesis screen to identify loss-of-function mutants that are anoxia sensitive. The major advantage of this approach is that it is not biased for any particular gene or gene product. Although our screen is in progress, we already have evidence that this approach is useful.  相似文献   

19.
Cutler DJ 《Genetics》2000,154(3):1403-1417
Rates of molecular evolution at some protein-encoding loci are more irregular than expected under a simple neutral model of molecular evolution. This pattern of excessive irregularity in protein substitutions is often called the "overdispersed molecular clock" and is characterized by an index of dispersion, R(T) > 1. Assuming infinite sites, no recombination model of the gene R(T) is given for a general stationary model of molecular evolution. R(T) is shown to be affected by only three things: fluctuations that occur on a very slow time scale, advantageous or deleterious mutations, and interactions between mutations. In the absence of interactions, advantageous mutations are shown to lower R(T); deleterious mutations are shown to raise it. Previously described models for the overdispersed molecular clock are analyzed in terms of this work as are a few very simple new models. A model of deleterious mutations is shown to be sufficient to explain the observed values of R(T). Our current best estimates of R(T) suggest that either most mutations are deleterious or some key population parameter changes on a very slow time scale. No other interpretations seem plausible. Finally, a comment is made on how R(T) might be used to distinguish selective sweeps from background selection.  相似文献   

20.
On the molecular evolutionary clock   总被引:1,自引:0,他引:1  
Summary The conceptual framework surrounding the origin of the molecular evolutionary clock and circumstances of this origin are described. In regard to the quest for the best available molecular clocks, a return to protein clocks is conditionally recommended. On the basis of recent data and certain considerations, it is pointed out that the realm of neutrality in evolution is probably less extensive than is now commonly thought, in the three distinct senses of the term neutrality—neutrality as nonfunctionality of mutations, neutrality as equifunctionality of mutations, and neutrality as a mode of fixation of mutations. The possibility is raised that complex sets of interacting components forming a system that is bounded with respect to its environment may quite generally display an intrinsic trend to a quasi-clockwise evolutionary behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号