首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The mechanisms of protective effect of N-methyl-D-aspartate (NMDA) receptor stimulation on apoptosis of neurons at their early stage of development are poorly understood. In the present study, we investigated the effects of NMDA on staurosporine (St)- and low-potassium (LP)-evoked apoptotic cell death in primary cerebellar granule cell (CGC) cultures at 7 days in vitro (DIV). We found that NMDA (200 μM) attenuated the St (0.5 μM)- and LP (5 mM KCl)-induced neuronal cell death in 7 but not 12 DIV CGC as confirmed by LDH release and MTT reduction assays. Moreover, NMDA attenuated St-and LP-evoked DNA fragmentation and cytosolic apoptosis inducing factor (AIF) protein level but not caspase-3 activation induced by both pro-apoptotic factors. Neuroprotective effects of NMDA on St-induced apoptosis in CGC were attenuated by inhibitors of ERK/MAPK-signaling, PD 98059 and U0126 but not by NMDA receptor antagonists, AP-5 (100 μM) and MK-801 (1 μM) or by inhibitors of PI3-K/Akt pathway (LY 294002 and wortmannin). In contrast to staurosporine model of apoptosis, AP-5 and MK-801 but not inhibitors of PI3-K/Akt and MAPK/ERK1/2 prevented the NMDA-mediated neuroprotection in LP-induced apoptosis of CGC. In separate experiments, we observed also the anti-apoptotic action of NMDA on St (0.5 μM)- and salsolinol (250 μM)-evoked cell death in human neuroblastoma SH-SY5Y cells without its influence on caspase-3 activity, induced by these pro-apoptotic factors. These data indicate that neuroprotection evoked by NMDA in CGC strongly depends on used pro-apoptotic agent and could engage NMDA channel function or be connected with the activation of pro-survival MAPK/ERK1/2 pathway. It is also suggested that anti-apoptotic effects of NMDA is connected with inhibition of fragmentation of DNA via caspase-3-independent mechanism.  相似文献   

2.
3.
N-methyl-D-aspartate receptor (NMDAR) activity plays a key role in cerebral ischemia. Although NMDAR is also expressed in cardiomyocytes, little research has been performed on NMDAR activity in myocardial ischemia. Here, using an in vitro oxygen-glucose deprivation (OGD) cardiomyocyte model, we evaluated the effects of NMDAR activity upon calcium influx, viability, apoptosis, and investigated the roles of several key mitogen-activated protein kinases (MAPKs). Primary human neonatal cardiomyocytes were cultured under OGD conditions to mimic in vivo ischemic conditions. Enhancing NMDAR activity via NMDA significantly promoted calcium influx, decreased cell viability, increased apoptosis, and enhanced p38 MAPK phosphorylation in OGD cardiomyocytes (all P < 0.05). These effects were rescued by several calcium-channel blockers (ie, MK-801, La3+, Gap26 peptide, 18β-glycyrrhetinic acid) but most potently rescued via the NMDAR-specific antagonist MK-801 or removal of extracellular free calcium (all P < 0.05). Knocking-down p38 MAPK activity by small-molecule inhibition or genetic methods significantly increased cell viability and reduced apoptosis (all P < 0.05). Enhancing p38 MAPK activity abolished MK-801′s apoptosis-reducing effects in a p38 MAPK-dependent manner. In conclusion, NMDAR-driven calcium influx promotes apoptosis in ischemic human cardiomyocytes, an effect which can be attributed to enhanced p38 MAPK activity.  相似文献   

4.
N-methyl-D-aspartate (NMDA) receptors, whose activation requires glycine site stimulation, play crucial roles in various physiological and pathological conditions in the brain. We investigated the regulatory roles of potential endogenous glycine site agonists, glycine and d-serine, in excitotoxic and ischemic cell death in the cerebral cortex. Cytotoxicity of NMDA on rat cerebrocortical slice cultures was potentiated by addition of glycine or d-serine. In contrast, cell death induced by oxygen/glucose deprivation (OGD) was not affected by exogenous glycine or d-serine, although blockade of NMDA receptors by MK-801 abolished cell death. In addition, higher concentrations of 2,7-dichlorokynurenic acid (DCKA), a competitive glycine site antagonist, were required to suppress OGD-induced cell death than those to suppress NMDA cytotoxicity. We also found that OGD triggered a robust increase in extracellular glycine. A glycine transporter blocker ALX 5407 increased the extracellular level of glycine, and the protective effect of DCKA against NMDA cytotoxicity was diminished in the presence of ALX 5407. Sensitivity of NMDA cytotoxicity to DCKA was also diminished by l-serine that increased the extracellular level of d-serine. These results indicate that both glycine and d-serine can act as endogenous ligands for NMDA receptor glycine site in the cerebral cortex, and that endogenous glycine may saturate the glycine site under ischemic conditions. The present findings are important for the interpretation of the mechanisms of NMDA and OGD cytotoxicity.  相似文献   

5.
Maintenance of low extracellular glutamate ([Glu](O)) preventing excitotoxic cell death requires fast removal of glutamate from the synaptic cleft. This clearance is mainly provided by high affinity sodium-dependent glutamate transporters. These transporters can, however, also be reversed and release glutamate to the extracellular space in situations with energy failure. In this study the cellular localisation of the glutamate transporters GLAST and GLT-1 in organotypic hippocampal slice cultures was studied by immunofluorescence confocal microscopy, under normal culture conditions, and after a simulated ischemic insult, achieved by oxygen and glucose deprivation (OGD). In accordance with in vivo findings, GLAST and GLT-1 were primarily expressed by astrocytes under normal culture conditions, but after OGD some damaged neurons also expressed GLAST and GLT-1. The potential damaging effect of inhibition of the glutamate transporters by DL-threo-beta-benzyloxyaspartate (DL-TBOA) was studied using cellular uptake of propidium iodide (PI) as a quantitative marker for the cell death. Addition of DL-TBOA for 48 h was found to induce significant cell death in all hippocampal regions, with EC(50) values ranging from 38 to 48 microM for the different hippocampal subregions. The cell death was prevented by addition of the glutamate receptor antagonists NBQX and MK-801, together with an otherwise saturating concentration of DL-TBOA (100 microM). Finally, the effect of inhibition of glutamate release, via reverse operating transporters during OGD, was investigated. Addition of a sub-toxic (10 microM) dose of DL-TBOA during OGD, but not during the subsequent 48 h recovery period, significantly reduced the OGD-induced PI uptake. It is concluded: (1) that the cellular expression of the glutamate transporters GLAST and GLT-1 in hippocampal slice cultures in general corresponds to the expression in vivo, (2) that inhibition of the glutamate transporters induces cell death in the slice cultures, and (3) that partial inhibition during simulation of ischemia by OGD protects against the induced PI uptake, most likely by blocking the reverse operating transporters otherwise triggered by the energy failure.  相似文献   

6.
Characterisation of the expression of NMDA receptors in human astrocytes   总被引:1,自引:0,他引:1  
Lee MC  Ting KK  Adams S  Brew BJ  Chung R  Guillemin GJ 《PloS one》2010,5(11):e14123
Astrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS). However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to characterise the expression of NMDA receptors (NMDARs) in primary human astrocytes, and investigate their response to physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid (QUIN). Primary cultures of human astrocytes were used to examine expression of these receptors at the mRNA level using RT-PCR and qPCR, and at the protein level using immunocytochemistry. The functionality role of the receptors was assessed using intracellular calcium influx experiments and measuring extracellular lactate dehydrogenase (LDH) activity in primary cultures of human astrocytes treated with glutamate and QUIN. We found that all seven currently known NMDAR subunits (NR1, NR2A, NR2B, NR2C, NR2D, NR3A and NR3B) are expressed in astrocytes, but at different levels. Calcium influx studies revealed that both glutamate and QUIN could activate astrocytic NMDARs, which stimulates Ca2+ influx into the cell and can result in dysfunction and death of astrocytes. Our data also show that the NMDAR ion channel blockers, MK801, and memantine can attenuate glutamate and QUIN mediated cell excitotoxicity. This suggests that the mechanism of glutamate and QUIN gliotoxicity is at least partially mediated by excessive stimulation of NMDARs. The present study is the first to provide definitive evidence for the existence of functional NMDAR expression in human primary astrocytes. This discovery has significant implications for redefining the cellular interaction between glia and neurons in both physiological processes and pathological conditions.  相似文献   

7.
Abstract: Primary cultures of cerebellar granule cells (CGCs) grown in high-K+ (25 mM; K25) medium progressively differentiate in vitro. Differentiation is noticeable after 3–4 days in vitro (DIV) and reach a mature stage after 8 DIV. Longer cultivation of CGCs (>13 DIV) triggers the processes of spontaneous cell death. However, if cultured in normal physiological K+ concentration (5 mM; K5), a significant proportion of the cells dies by the end of the first week in culture. To address the role of protein kinase C (PKC) in the development of CGCs, we measured the kinase activity as well as the protein level of the kinase isoforms. As the K25 CGC culture proceeded, the PKC activity time-dependently increased by 3.2-fold, reaching a steady state at 8 DIV. Western blot analysis using PKC isoform-specific antibodies revealed an increase in levels of PKC α, γ, μ, λ, and ι from 2 to 8 DIV. A slight increase or decrease at 4 DIV was observed for PKC ε and βII, respectively, whereas no significant change was observed for βI. The isoforms of δ, θ, η, and ζ were not detected. Comparing the 14 DIV cultures with the 10 DIV cultures, the immunoreactivities of PKC ι and ε were decreased, those of PKC α, βI, βII, γ, and λ were unchanged, whereas that of PKC μ was still increased. In K5 cultures, the immunoreactivity of each PKC isoform at 2–4 DIV was similar to that observed in K25 cells, although no remarkable differentiation features were observed. Coordinated with the appearance of cell death at 8 DIV in low-K+ cultures, levels of PKC α, μ, λ, and ι, but not the others, were markedly decreased. The NMDA receptor antagonists MK-801 and 2-amino-5-phosphopentanoic acid markedly prevented the age-induced apoptosis of CGCs, and the cells survived >18 DIV under these conditions. The cytoprotective effect of MK-801 was concomitant with the increases in levels of PKC γ, λ, ι, and μ at 10 and 14 DIV. In addition, the PKC ε level was increased at 14 DIV but decreased at early stages, whereas PKC α, βI, and βII levels were unchanged, as compared with K25 culture alone. Taken together, induction and up-regulation of PKC isoforms may play an important role in the maintenance of CGC survival by depolarization and MK-801.  相似文献   

8.
We investigated the involvement of N-methyl d-aspartate receptor (NMDAR) in neurogenesis of rat’s subventricular zone (SVZ). For this purpose, we determined expression of the NMDAR subunits NR1, NR2A, and NR2B in SVZ of the neonatal Sprague-Dawley rats using immunohistochemical techniques. All three NMDAR subunits were expressed during postnatal day (PND)-1 to PND-28 whereas each subunit showed a distinct expression pattern. We also examined the functional effect of this receptor on cell proliferation in this region and, in this regard, the animals received either intraperitoneal injection of NMDAR agonist NMDA (2 mg/kg/day) or selective non-competitive NMDAR antagonist MK-801 (10 mg/kg) or NR2B antagonist Ro25-6981 (40 mg/kg), respectively, at PND-3. A significant developmental increase of the total cell density was observed at PND-7 (P < 0.05) while proliferating cell nuclear antigen-positive cell density was significantly increased at PND-14 (P < 0.05) and at PND-28 (P < 0.05) in the SVZ after NMDA (2 mg/kg/day) injection. Our data show that the NMDAR activation promoted the cell proliferation in SVZ during the neonatal period. We, therefore, inferred that NMDAR is expressed in SVZ of the neonatal rat brain and can promote neurogenesis, as through cell proliferation process in that region, and can thus be used as a potential therapeutic target in neurodegenerative diseases.  相似文献   

9.
The neurotoxic actions of polyamines such as spermine have been linked to their modulation of NMDA receptors, resulting in an excitotoxic cell death. Here, we demonstrate that chronic exposure to the polyamine spermine and acute exposure to the combination of spermine and glutamate result in significant toxicity to primary cultures of cerebellar granule neurons (CGNs). However, in both cases this cell death (a) lacks the characteristic cell swelling associated with the necrotic cell death induced by glutamate and (b) is characterized by the widespread formation of apoptotic nuclei. Whereas dizocilpine (MK-801) blocks the synergistic cell death resulting from acute exposure to spermine plus glutamate, neither MK-801 nor the calcium chelator EGTA appreciably attenuates CGN death resulting from chronic exposure to spermine. Consistent with previous reports, glutamate, both acute and chronic, causes CGN death that is characterized by cell swelling, sensitivity to MK-801 and EGTA, and only small numbers of apoptotic nuclei. Spermine-induced toxicity is not blocked by either the protein synthesis inhibitor cycloheximide or the pancaspase inhibitor tert-butoxycarbonyl-Asp-(O-methyl) fluoromethyl ketone. However, the antioxidant butylated hydroxyanisole is an effective blocker of spermine-induced CGN death, suggesting a free-radical component to this cell death. The intact spermine molecule, rather than a catabolic by-product, is required for cell death because the amine oxidase inhibitors N1,N2-bis(2,3-butadienyl)-1,4-butanediamine and aminoguanidine fail to block this toxicity. Thus, in CGNs, spermine-induced toxicity does not occur by its modulation of NMDA receptors, although, under some circumstances, NMDA receptor activation can modulate spermine-induced toxicity.  相似文献   

10.
Memantine, a clinically used NMDA receptor antagonist possesses neuroprotective properties, but the exact mechanisms of its beneficial action on neuronal survival are poorly recognized. In the present study, some intracellular mechanisms of memantine effects on staurosporine-evoked cell death were investigated in primary cortical neurons. Memantine (0.1–2 μM) suppressed neuronal apoptosis evoked by staurosporine in 7 DIV cortical neurons, whereas other antagonists of NMDA receptor, MK-801 (1 μM) and AP-5 (100 μM) were ineffective. The anti-apoptotic effects of memantine were not connected with any changes in cytoplasmic calcium concentration or reactive oxygen species level. The immunoblot analysis showed that the staurosporine induced a decrease in p-Akt protein kinase level and that this effect was reversed by memantine treatment. Moreover, the PI3-K inhibitors, wortmannin and LY 294002 attenuated the anti-apoptotic action of memantine on staurosporine-induced cell damage. Furthermore, the ELISA studies showed increased cellular and released BDNF protein level after combined treatment with memantine and staurosporine. There was no effect of memantine on the activation and expression of other protein kinases involved in the mechanism of cellular survival, i.e. ERK1/2, JNK and GSK3-β. The obtained data suggest an NMDAR-independent action of memantine in attenuation of neuronal apoptosis and point to the engagement of BDNF and PI3-K/Akt pathway in these processes.  相似文献   

11.
Overactivation of NMDA receptors is linked to cell death during neuronal insults. However the precise role of synaptic and extrasynaptic NMDA receptors remains to be further determined. In this study, we used the acute brain slice to examine the contributions of synaptic and extrasynaptic NMDA receptors to neuronal death. By activation of synaptic NMDA receptors with bath application of 100 μM bicuculline in acute brain slices, we observed a significant up-regulation in activation of neuronal survival-related signaling (p-CREB, p-ERK1/2 and p-AKT), without an obvious increase of LDH release and neuronal death. Interestingly, activation of extrasynaptic NMDA receptors alone by high dose of glutamate (200 μM) following blockade of synaptic NMDA receptors with co-application of 20 μM MK801 and 100 μM bicuculline, we failed to observe inhibition of neuronal survival signaling and neuronal damage. In contrast, co-activation of synaptic and extrasynaptic NMDA receptors by applying 200 μM glutamate or oxygen–glucose deprivation (OGD) to acute brain slices for 30 min, we observed a significant inhibition of CREB, ERK1/2 and AKT activation, an increase of LDH release and neuronal condensation. Together, co-activation of synaptic and extrasynaptic NMDA receptors by neuronal insults contributes to cell death in acute brain slice.  相似文献   

12.
We have introduced a sensitive method for studying oxygen/glucose deprivation (OGD)-induced mitochondrial alterations in homogenates of organotypic hippocampal slice cultures (slices) by high-resolution respirometry. Using this approach, we tested the neuroprotective potential of the novel non-immunosuppressive cyclosporin (CsA) derivative Cs9 in comparison with CsA, the immunosuppressive CsA analog [D-Ser]8CsA, and MK 801, a N-methyl-d-aspartate (NMDA) receptor antagonist. OGD/reperfusion reduced the glutamate/malate dependent (and protein-related) state 3 respiration to 30% of its value under control conditions. All of the above drugs reversed this effect, with an increase to > 88% of the value for control slices not exposed to OGD. We conclude that Cs9, [D-Ser]8CsA, and MK 801, despite their different modes of action, protect mitochondria from OGD-induced damage.  相似文献   

13.
In the present study, we have examined the effects of prolonged (up to 72 h) inhibition of high-affinity glutamate reuptake by L-trans-pyrrolidine-2,4-dicarboxylate (PDC; 100 microM) on glutamate receptor functions in primary cultures of rat cerebellar granule neurons. This was done by comparing the effects of various glutamate receptor agonists on neuronal 45Ca2+ uptake, free cytoplasmic Ca2+ concentration ([Ca2+]i), and cell viability. We also determined the parameters of[3H]MK-801 binding as well as the expression of the NMDAR1 subunit protein in control and PDC-exposed cultures. The blockade of glutamate reuptake by PDC led to a gradual increase of ambient glutamate to concentrations that are neurotoxic when applied acutely to control cells. In PDC-exposed cells, however, the acute glutamate-induced NMDA receptor-mediated calcium fluxes were strongly diminished and no toxicity was observed. The down-regulation of the functional effects of glutamate was dependent on the duration of PDC exposure and was accompanied by a reduced NMDAR1 subunit expression and decreased [3H]MK-801 binding, indicative of a pronounced structural rearrangement of NMDA receptors. The possibility that the decrease of NMDA glutamate receptor sensitivity can be explained on the basis of a reduced density or altered subunit composition of NMDA receptors is discussed.  相似文献   

14.
Diacylglycerol kinase (DGK) plays a key role in pathophysiological cellular responses by regulating the levels of a lipid messenger diacylglycerol. Of DGK isozymes, DGKζ localizes to the nucleus in various cells such as neurons. We previously reported that DGKζ translocates from the nucleus to the cytoplasm in hippocampal CA1 pyramidal neurons after 20 min of transient forebrain ischemia. In this study, we examined the underlying mechanism of DGKζ translocation using hippocampal slices exposed to oxygen-glucose deprivation (OGD) to simulate an ischemic model of the brain. DGKζ-immunoreactivity gradually changed from the nucleus to the cytoplasm in CA1 pyramidal neurons after 20 min of OGD and was never detected in the nucleus after reoxygenation. Intriguingly, DGKζ was detected in the nucleus at 10 min OGD whereas the following 60 min reoxygenation induced complete cytoplasmic translocation of DGKζ. Morphometric analysis revealed that DGKζ cytoplasmic translocation correlated with nuclear shrinkage indicative of an early process of neuronal degeneration. The translocation under OGD conditions was blocked by NMDA receptor (NMDAR) inhibitor, and was induced by activation of NMDAR. Chelation of the extracellular Ca2+ blocked the translocation under OGD conditions. These results show that DGKζ cytoplasmic translocation is triggered by activation of NMDAR with subsequent extracellular Ca2+ influx. Furthermore, inhibition of PKC activity under OGD conditions led to nuclear retention of DGKζ in about one-third of the neurons, suggesting that PKC activity partially regulates DGKζ cytoplasmic translocation. These findings provide clues to guide further investigation of glutamate excitotoxicity mechanisms in hippocampal neurons.  相似文献   

15.
Dopamine D1 receptor (D1R) ligands may directly interact with the NMDA receptor (NMDAR), but detailed knowledge about this effect is lacking. Here we identify D1R ligands that directly modulate NMDARs and examine the contributions of NR2A and NR2B subunits to these interactions. Binding of the open channel blocker [(3)H]MK-801 in membrane preparations from rat- and mouse brain was used as a biochemical measure of the functional state of the NMDAR channel. We show that both D1R agonist A-68930 and dopamine receptor D2 antagonist haloperidol can decrease [(3)H]MK-801 binding with increased potency in membranes from the NR2A(-/-) mice (i.e. in membranes containing NR2B only), as compared to the inhibition obtained in wild-type membranes. Further, a wide range of D1R agonists such as A-68930, SKF-83959, SKF-83822, SKF-38393 and dihydrexidine were able to decrease [(3)H]MK-801 binding, all showing half maximal inhibitory concentrations ~20 μM, and with significant effects occurring at or above 1 μM. With membranes from D1R(-/-) mice, we demonstrate that these effects occurred through a D1R-independent mechanism. Our results demonstrate that dopamine receptor ligands can selectively influence NR2B containing NMDARs, and we characterize direct inhibitory NMDAR effects by different D1R ligands.  相似文献   

16.
Although large quantities of glutamate are found in the carotid body, to date this excitatory neurotransmitter has not been assigned a role in chemoreception. To examine the possibility that glutamate and its N-methyl-d-aspartate (NMDA) receptors play a role in acclimatization after exposure to cyclic intermittent hypoxia (CIH), we exposed male Sprague-Dawley rats to cyclic hypoxia or to room air sham (Sham) for 8 h/day for 3 wk. Using RT-PCR, Western blot analysis, and immunohistochemistry, we found that ionotropic NMDA receptors, including NMDAR1, NMDAR2A, NMDAR2A/2B, are strongly expressed in the carotid body and colocalize with tyrosine hydroxylase in glomus cells. CIH exposure enhanced the expression of NMDAR1 and NMDAR2A/2B but did not substantially change the level of NMDAR2A. We assessed in vivo carotid sinus nerve activity (CSNA) at baseline, in response to acute hypoxia, in response to infused NMDA, and in response to infused endothelin-1 (ET-1) with and without MK-801, an NMDA receptor blocker. Infusion of NMDA augmented CSNA in CIH rats (124.61 +/- 2.64% of baseline) but not in sham-exposed rats. Administration of MK-801 did not alter baseline activity or response to acute hypoxia, in either CIH or sham animals but did reduce the effect of ET-1 infusion on CSNA (CSNA after ET-1 = 160.96 +/- 8.05% of baseline; ET-1 after MK-801 = 118.56 +/- 9.12%). We conclude that 3-wk CIH exposure increases expression of NMDA functional receptors in rats, suggesting glutamate and its receptors may play a role in hypoxic acclimatization to CIH.  相似文献   

17.
Jakobsen B  Tasker A  Zimmer J 《Amino acids》2002,23(1-3):37-44
Summary.  The neurotoxicity of domoic acid was studied in 2–3 week old rat hippocampal slice cultures, derived from 7 day old rat pups. Domoic acid 0.1–100 μM was added to the culture medium for 48 hrs, alone or together with the glutamate receptor antagonists NS-102 (5-Nitro-6,7,8,9-tetrahydrobenzo[G]indole-2,3-dione-3-oxime), NBQX (2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline) or MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine hydrogen maleate), followed by transfer of the cultures to normal medium for additional 48 hrs. Neuronal degeneration in the fascia dentata (FD), CA3 and CA1 hippocampal subfields was monitored and EC50 values estimated by densitometric measurements of the cellular uptake of propidium iodide (PI). The CA1 region was most sensitive to domoic acid, with an EC50 value of 6 μM domoic acid, estimated from the PI-uptake at 72 hrs. Protective effects of 10 μM NBQX against 3 and 10 μM domoic acid were observed for both dentate granule cells and CA1 and CA3c pyramidal cells. NS102 and MK 801 only displayed protective effects when combined with NBQX. MK801 significantly increased the combined neuroprotective effect of NBQX and NS102 against 10 μM domoic acid in both CA1 and FD, but not in CA3. We conclude, that domoic acid neurotoxicity in CA3 and in hippocampal slice cultures in general primarily involves AMPA/kainate receptors. At high concentrations (10 μM domic acid) NMDA receptors are, however, also involved in the toxicity in CA1 and FD. Received June 29, 2001 Accepted August 6, 2001 Published online June 3, 2002  相似文献   

18.
Hu M  Sun YJ  Zhou QG  Chen L  Hu Y  Luo CX  Wu JY  Xu JS  Li LX  Zhu DY 《Journal of neurochemistry》2008,106(4):1900-1913
Several lines of evidence suggest involvement of NMDA receptors (NMDARs) in the regulation of neurogenesis in adults and the formation of spatial memory. Functional properties of NMDARs are strongly influenced by the type of NR2 subunits incorporated. In adult forebrain regions such as the hippocampus and cortex, only NR2A and NR2B subunits are available to form the receptor complex with NR1 subunit. NR2B is predominant NR2 subunit in any of rat or human neural stem cells (NSCs). Thus, we suppose that NR2B-containing NMDAR should be critical in regulating adult neurogenesis, and thereby playing a role in the formation of spatial memory. In the cultured NSCs derived from the embryonic brain of rats, NR2B subunit-specific NMDAR antagonist Ro25-6981 increased cell proliferation, whereas MK-801, non-selective open-channel blocker of NMDARs, inhibited cell proliferation. Blockade of NR2B-containing NMDAR stimulated neurogenesis in the adult hippocampus and facilitated the formation of spatial memory. The enhanced spatial memory dropped back to base level when the NR2B antagonist-induced neurogenesis was neutralized by 3'-azido-deoxythymidine, a telomerase inhibitor. In addition, blockade of NR2B inhibited neuronal nitric oxide synthase (nNOS) enzymatic activity. In null mutant mice lacking nNOS gene (nNOS−/−), the effects of NR2B antagonist on neurogenesis disappeared. Moreover, nitric oxide donor DETA/NONOate attenuated and nNOS inhibitor 7-nitroindazole enhanced the effect of Ro 25-6981 on NSCs proliferation. Our findings suggest that NR2B-containing NMDAR subtypes negatively regulate neurogenesis in the adult hippocampus by activating nNOS activity and thereby hinder the formation of spatial memory.  相似文献   

19.
Characterising the mechanisms of cell death following focal cerebral ischaemia has been hampered by a lack of an in vitro assay emulating both the apoptotic and necrotic features observed in vivo. The present study systematically characterised oxygen-glucose-deprivation (OGD) in primary rat cortical neurones to establish a reproducible model with components of both cell-death endpoints. OGD induced a time-dependent reduction in cell viability, with 80% cell death occurring 24 h after 3 h exposure to 0% O2 and 0.5 mM glucose. Indicative of a necrotic component to OGD-induced cell death, N-methyl-D-aspartate (NMDA) receptor inhibition with MK-801 attenuated neuronal loss by 60%.The lack of protection by the caspase inhibitors DEVD-CHO and z-VAD-fmk suggested that under these conditions neurones did not die by an apoptotic mechanism. Moderating the severity of the insult by decreasing OGD exposure to 60 min did not reduce the amount of necrosis, but did induce a small degree of apoptosis (a slight reduction in cell death was observed in the presence of 10 μM DEVD-CHO). In separate experiments purported to enhance the apoptotic component, cells were gradually deprived of 02, exposed to 4% 02 (as opposed to 0%) during the OGD period, or maintained in serum-containing media throughout. While NMDA receptor antagonism significantly reduced cortical cell death under all conditions, a caspase-inhibitor sensitive component of cell death was not uncovered. These studies suggest that OGD of cultured cortical cells models the excitotoxic, but not the apoptotic component of cell death observed in vivo.  相似文献   

20.

Background  

Bcl-2 homology domain (BH) 3-only proteins are pro-apoptotic proteins of the Bcl-2 family that couple stress signals to the mitochondrial cell death pathways. The BH3-only protein Bid can be activated in response to death receptor activation via caspase 8-mediated cleavage into a truncated protein (tBid), which subsequently translocates to mitochondria and induces the release of cytochrome-C. Using a single-cell imaging approach of Bid cleavage and translocation during apoptosis, we have recently demonstrated that, in contrast to death receptor-induced apoptosis, caspase-independent excitotoxic apoptosis involves a translocation of full length Bid (FL-Bid) from the cytosol to mitochondria. We induced a delayed excitotoxic cell death in cultured rat hippocampal neurons by a 5-min exposure to the glutamate receptor agonist N-methyl-D-aspartate (NMDA; 300 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号