首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amidase is a promising synthesis tool for chiral amides and related derivatives. In the present study, the biochemical properties of the Delftia tsuruhatensis CCTCC M 205114 enantioselective amidase were determined for its potential application in chiral amides synthesis. D. tsuruhatensis CCTCC M 205114 amidase was purified 105.2 fold with total activity recovery of 4.26%. The enzyme is a monomer with a subunit of approximately 50 kDa by analytical gel filtration HPLC and SDS–PAGE. It had a broad substrate spectrum and displayed high enantioselectivity against R-2, 2-dimethylcyclopropane carboxamide and R-mandelic amide. The amidase was applied to enantioselective hydrolysis of R-2, 2-dimethylcyclopropane carboxamide from racemic (R, S)-2, 2-dimethylcyclopropane carboxamide to accumulate S-2, 2-dimethylcyclopropane carboxamide. This enzyme did not require metal ions for the hydrolysis reaction. Its optimal pH and temperature were 8.0 and 35°C, respectively. The K m and V max of the amidase for R-2, 2-dimethylcyclopropane carboxamide were 2.54 mM and 8.37 μmol min−1 mg protein−1, respectively. After 60 min of the reaction, R-2, 2-dimethylcyclopropane carboxamide was completely hydrolyzed, generating S-2, 2-dimethylcyclopropane carboxamide with a yield of 45.9% and an e.e. of above 99%. Therefore, this amidase can serve as a promising producer for S-2, 2-dimethylcyclopropane carboxamide and other amides.  相似文献   

2.
The genes encoding an enantioselective nitrile hydratase (NHase) from Rhodococcus erythropolis AJ270 have been cloned and an active NHase has been produced in Escherichia coli. Maximal activity was found when the genes encoding the α- and β-subunits were transcribed as one unit and the gene encoding the P44k activator protein as a separate ORF on a single replicon. Addition of n-butyric acid and FeSO4 could improve NHase activity. Coexpression of the GroEL-GroES chaperone proteins increased activity in the absence of P44k protein but had no effect in the presence of P44k. The recombinant enzyme was highly enantioselective in the synthesis of S-(+)-3-benzoyloxy- 4-cyanobutyramide from the prochiral substrate 3-benzoyloxyglutaronitrile.  相似文献   

3.
The nitrile metabolising strains AJ270, AJ300 and AJ115 were isolated from the same location. The strains have very similar nitrile metabolising profiles. Sequencing of the 16S rRNA gene indicates that strains AJ270 and AJ300 are novel strains of Rhodococcus erythropolis while strain AJ115 is a novel Microbacterium strain very closely related to Microbacterium oxydans and Microbacterium liquefaciens. Analysis of the structure of the nitrile hydratase/amidase gene clusters in the three strains indicates that this region is identical in these strains and that this structure is different to other nitrile hydratase/amidase gene clusters. The major difference seen is the insertion of a complete copy of the insertion sequence IS1166 in the nhr2 gene. This copy of IS1166 generates a 10 bp direct duplication at the point of insertion and has one ORF encoding a protein of 434 amino acids, with 98% homology to the transposase of IS666 from Mycobacterium avium. A gene oxd, encoding aldoxime dehydratase is found upstream of the nitrile hydratase gene cluster and an open reading frame encoding a protein with homology to GlnQ type ABC transporters is found downstream of the nitrile hydratase/amidase genes. The identity of the nitrile hydratase/amidase gene clusters in the three strains suggests horizontal gene transfer of this region. Analysis of the strains for both linear and circular plasmids indicates that both are present in the strains but hybridisation studies indicate that the nitrile hydratase/amidase gene cluster is chromosomally located. The nitrile hydratase/amidase enzymes of strain AJ270 are inducible with acetonitrile or acetamide. Interestingly although a number of Fe-type nitrile hydratases have been shown to be photosensitive, the enzyme from strain AJ270 is not.  相似文献   

4.
The gene for an enantioselective amidase was cloned from Rhodococcus erythropolis MP50, which utilizes various aromatic nitriles via a nitrile hydratase/amidase system as nitrogen sources. The gene encoded a protein of 525 amino acids which corresponded to a protein with a molecular mass of 55.5 kDa. The deduced complete amino acid sequence showed homology to other enantioselective amidases from different bacterial genera. The nucleotide sequence approximately 2.5 kb upstream and downstream of the amidase gene was determined, but no indications for a structural coupling of the amidase gene with the genes for a nitrile hydratase were found. The amidase gene was carried by an approximately 40-kb circular plasmid in R. erythropolis MP50. The amidase was heterologously expressed in Escherichia coli and shown to hydrolyze 2-phenylpropionamide, α-chlorophenylacetamide, and α-methoxyphenylacetamide with high enantioselectivity; mandeloamide and 2-methyl-3-phenylpropionamide were also converted, but only with reduced enantioselectivity. The recombinant E. coli strain which synthesized the amidase gene was shown to grow with organic amides as nitrogen sources. A comparison of the amidase activities observed with whole cells or cell extracts of the recombinant E. coli strain suggested that the transport of the amides into the cells becomes the rate-limiting step for amide hydrolysis in recombinant E. coli strains.  相似文献   

5.
In the present work, statistical experimental methodology was used to enhance the production of amidase from Rhodococcus erythropolis MTCC 1526. R. erythropolis MTCC 1526 was selected through screening of seven strains of Rhodococcus species. The Placket–Burman screening experiments suggested that sorbitol as carbon source, yeast extract and meat peptone as nitrogen sources, and acetamide as amidase inducer are the most influential media components. The concentrations of these four media components were optimised using a face-centred design of response surface methodology (RSM). The optimum medium composition for amidase production was found to contain sorbitol (5 g/L), yeast extract (4 g/L), meat peptone (2.5 g/L), and acetamide (12.25 mM). Amidase activities before and after optimisation were 157.85 units/g dry cells and 1,086.57 units/g dry cells, respectively. Thus, use of RSM increased production of amidase from R. erythropolis MTCC 1526 by 6.88-fold.  相似文献   

6.
β-galactosidase is an enzyme administered as a digestive supplement to treat lactose intolerance, a genetic condition prevalent in most world regions. The gene encoding an acid-stable β-galactosidase potentially suited for use as a digestive supplement was cloned from Aspergillus niger van Tiegh, sequenced and expressed in Pichia pastoris. The purified recombinant protein exhibited kinetic properties similar to those of the native enzyme and thus was also competitively inhibited by its product, galactose, at application-relevant concentrations. In order to alleviate this product inhibition, a model of the enzyme structure was generated based on a Penicillium sp. β-galactosidase crystal structure with bound β-galactose. This led to targeted mutagenesis of an Asp258-Ser-Tyr-Pro-Leu-Gly-Phe amino acid motif in the A. niger van Tiegh enzyme and isolation from the resultant library of a mutant β-galactosidase enzyme with reduced sensitivity to inhibition by galactose (K i of 6.46 mM galactose, compared with 0.76 mM for the wildtype recombinant enzyme). The mutated enzyme also exhibited an increased K m (3.76 mM compared to 2.21 mM) and reduced V max (110.8 μmol min−1 mg−1 compared to 172.6 μmol min−1 mg−1) relative to the wild-type enzyme, however, and its stability under simulated fasting gastric conditions was significantly reduced. The study nevertheless demonstrates the potential to rationally engineer the A. niger van Tiegh enzyme to relieve product inhibition and create mutants with improved, application-relevant kinetic properties for treatment of lactose intolerance.  相似文献   

7.
A novel fibrinolytic enzyme (AJ) was purified from Staphylococcus sp. strain AJ screened from Korean salt-fermented Anchovy-jeot. Relative molecular weight of AJ was determined as 26 kDa by using SDS-PAGE and fibrin zymography. Based on a 2D gel, AJ was found to consist of three active isoforms (pI 5.5–6.0) with the same N-terminal amino acid sequence. AJ exhibited optimum pH and temperature at 2.5–3.0 and 85°C, respectively. AJ kept 85% of the initial activity after heating at 100°C for 20 min on the zymogram gel. The Michaelis constant (K m) and K cat values of AJ towards α-casein were 0.38 mM and 19.73 s−1, respectively. AJ cleaved the Aα-chain of fibrinogen but did not affect the Bβ- and γ-chains, indicating that it is an α-fibrinogenase. The fibrinolytic activity was inhibited by diisopropyl fluorophosphate, indicating AJ is a serine protease. Interestingly, AJ was very stable at acidic condition, SDS, and heat (100°C), whereas it was easily degraded at neutral and alkaline conditions. In particular, AJ formed an active homo-dimer in the pH range from 7.0 to 8.0. To our knowledge, a similar combination of acid and heat stability has not yet been reported for other fibrinolytic enzymes.  相似文献   

8.
The enantioselective production of (S)-2,2-dimethylcyclopropane carboxylic acid was investigated in 53 Rhodococcus and Pseudomonas related strains. Rhodococcus erythropolis ATCC 25544 was selected as it showed the highest enantioselectivity. The enantioselectivity was due to the amidase activity in a two-step reaction involving nitrile hydratase. The enantiomeric excess of the amidase was highest at pH 7.0 and decreased significantly above 20 °C. For the enantioselective production of (S)-2,2-dimethylcyclopropane carboxylic acid, the optimum reaction conditions of the cells were determined to be pH 7.0, 20 °C, and 10% (v/v) methanol and were the same as the optimum pH and temperature for the enantioselective conversion by the amidase. Under these conditions, the R. erythropolis ATCC 25544 cells, which harbored nitrile hydratase and amidase enzymes, produced 45 mM (S)-2,2-dimethylcyclopropane carboxylic acid from racemic 100 mM 2,2-dimethylcyclopropane carbonitrile with an 81.8% enantiomeric excess after 64 h.  相似文献   

9.
The moderately thermophilic aerobic ascomycete Talaromyces emersonii secretes, under selected growth conditions, several β-glucan hydrolases including an exo-1,3-β-glucanase. This enzyme was purified to apparent homogeneity in order to characterise its biochemical properties and investigate hydrolysis of different β-glucans, including laminaran, a 1,3-β-glucan from brown algae. The native enzyme is monomeric with a molecular mass of ~40 kDa and a pI value of 4.3, and is active over broad ranges of pH and temperature, with optimum activity observed at pH 5.4 and 65 °C. At pH 5.0, the enzyme displays strict specificity for laminaran (apparent K m 1.66 mg mL−1; V max 7.69 IU mL−1) and laminari-oligosaccharides and did not yield activity against 1,4-β-glucans, 1,3;1,4-β-glucans or 4-nitrophenyl- and methylumbelliferyl-β-d-glucopyranosides. Analysis of hydrolysis products formed during time-course hydrolysis of laminaran by high-performance anion exchange chromatography with pulsed amperometric detection revealed a strict exo mode of action, with glucose being the sole reaction product even at the initial stages of hydrolysis. The T. emersonii exo-1,3-β-glucanase was inhibited by glucono-δ-lactone (K i 1.25 mM) but at significantly higher concentrations than typically inhibitory for exo-glycosidases such as β-glucosidase. ‘De novo’ sequence analysis of the purified enzyme suggests that it belongs to family GH5 of the glycosyl hydrolase superfamily. The results clearly show that the exo-1,3-β-glucanase is yet another novel enzyme present in the β-glucanolytic enzyme system of T. emersonii.  相似文献   

10.
A new acylamidase was isolated from Rhodococcus erythropolis TA37 and characterized. N-Substituted acrylamides (isopropyl acrylamide, N,N-dimethyl-aminopropyl acrylamide, and methylene-bis-acrylamide), acid para-nitroanilides (4′-nitroacetanilide, Gly-pNA, Ala-pNA, Leu-pNA), and N-acetyl derivatives of glycine, alanine, and leucine are good substrates for this enzyme. Aliphatic amides (acetamide, acrylamide, isobutyramide, n-butyramide, and valeramide) are also used as substrates but with less efficiency. The enzyme subunit mass by SDS-PAGE is 55 kDa. Maximal activity is exhibited at pH 7–8 and 55°C. The enzyme is stable for 15 h at 22°C and for 0.5 h at 45°C. The Michaelis constant (K m) is 0.25 mM with Gly-pNA and 0.55 mM with Ala-pNA. The acylamidase activity is suppressed by inhibitors of serine proteases (phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate) but is not suppressed by inhibitors of aliphatic amidases (acetaldehyde and nitrophenyl disulfides). The N-terminal amino acid sequence of the acylamidase is highly homologous to those of two putative amidases detected from sequenced R. erythropolis genomes. It is suggested that the acylamidase together with the detected homologs forms a new class within the amidase signature family.  相似文献   

11.
The gene encoding a cold-active and xylose-stimulated β-glucosidase of Marinomonas MWYL1 was synthesized and expressed in Escherichia coli. The recombinant enzyme (reBglM1) was purified and characterized. The molecular mass of the purified reBglM1 determined by SDS-PAGE agree with the calculated values (50.6 Da). Optima of temperature and pH for enzyme activity were 40°C and 7.0, respectively. The enzyme exhibited about 20% activity at 5°C and was stable over the range of pH 5.5–10.0. The presence of xylose significantly enhanced enzyme activity even at higher concentrations up to 600 mM, with maximal stimulatory effect (about 1.45-fold) around 300 mM. The enzyme is active with both glucosides and galactosides and showed high catalytic efficiency (k cat = 500.5 s−1) for oNPGlc. These characterizations enable the enzyme to be a promising candidate for industrial applications.  相似文献   

12.
Human 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the reaction of estrone with NADPH to form estradiol and NADP+, thereby regulating the biological activity of sex steroid hormones in a variety of tissues. Here, we present an efficient method for expressing and purifying human 17β-HSD1 from Escherichia coli. The expression vector pET28a/17β-HSD1 was constructed and transformed into Escherichia coli BL21(DE3) cells. We found that the active enzyme can be obtained by inducing 17β-HSD1 expression at 0.25 mM IPTG, 13°C for overnight. The protein is purified by single step Ni–NTA affinity chromatography and yields 2.8 mg/L of culture. The kinetic study shows V/E t of (1.21 ± 0.05) × 10−2/s and K estradiol of 0.8 μM in the oxidation of estradiol with NADP+ as cofactor at pH 9.3. The new bacterial expression system for recombinant 17β-HSD1 is useful for the easy purification of large amounts and will facilitate the functional study of this enzyme.  相似文献   

13.
Consistent with its precloning characterization from the cellulolytic Bacillus sp., β-1,4-endoglucanase purified from the recombinant E. coli exhibited maximum activity at 60°C and pH 7.0. It was highly specific for CMC hydrolysis, with stability up to 70°C and over a pH range of 6.0–8.0. The K m and V max values for CMCase activity of the enzyme were 4.1 mg/ml and 25 μmole/ml min−1, respectively. The purified enzyme was a monomer of 65 kDa, as determined by SDS-PAGE. The presence of sucrose and IPTG in fermentation media increased the endoglucanase activity of the recombinant enzyme to 5.2-folds as compared with that of the actual one.  相似文献   

14.
The specific activity of a recombinant β-glucosidase from Sulfolobus solfataricus for isoflavones was: daidzin > glycitin > genistin > malonyl genistin > malonyl daidzin > malonyl glycitin. The hydrolytic activity of this enzyme for daidzin was highest at pH 5.5 and 90°C with a half-life of 18 h, a K m of 0.5 mM, and a k cat of 2532 s−1. The enzyme converted 1 mM daidzin to 1 mM daidzein after 1 h with a molar yield of 100% and a productivity of 1 mM h−1. Among β-glucosidases, that from S. solfataricus β had the highest thermostability, k cat, k cat/K m, conversion yield, and productivity in the hydrolysis of daidzin.  相似文献   

15.
Expression and purification of a recombinant enantioselective amidase   总被引:2,自引:0,他引:2  
Microbacterium sp. AJ115 metabolises a wide range of nitriles using the two-step nitrile hydratase/amidase pathway. In this study, the amidase gene of Microbacterium sp. AJ115 has been inserted into the pCal-n-EK expression vector and expressed in Escherichia coli BL21(DE3)pLysS. The expressed protein is active in E. coli and expression of the amidase gene allows E. coli to grow on acetamide as sole carbon and/or nitrogen source. Expression of active amidase in E. coli was temperature dependent with high activity found when cultures were grown between 20 and 30 degrees C but no activity at 37 degrees C. On induction, the amidase represents 28% of the total soluble protein in E. coli. The expressed amidase has been purified in a single step from the crude lysate using the calmodulin-binding peptide (CBP) affinity tag. The V(max) and K(m) of the purified enzyme with acetamide (50 mM) were 4.4 micromol/min/mg protein and 4.5mM, respectively. The temperature optimum was found to be 50 degrees C. Purified enzyme demonstrated enantioselectivity with the ability to preferentially act on the S enantiomer of racemic (R,S)-2-phenylpropionamide. S-2-phenylpropionic acid is produced with an enantiomeric excess of >82% at 50% conversion of the parent amide.  相似文献   

16.
An isolated gene from Neosartorya fischeri NRRL181 encoding a β-glucosidase (BGL) was cloned, and its nucleotide sequence was determined. DNA sequence analysis revealed an open reading frame of 1,467 bp, capable of encoding a polypeptide of 488 amino acid residues. The gene was over-expressed in Escherichia coli, and the protein was purified using nickel-nitrilotriacetic acid chromatography. The purified recombinant BGL showed a high level of catalytic activity, with V max of 886 μmol min−1 mg-protein−1 and a K m of 68 mM for p-nitrophenyl-β-d-glucopyranoside (pNPG). The optimal temperature for enzyme activity was about 40°C, and the optimal pH was about 6.0. A homology model of N. fischeri BGL1 was constructed based on the X-ray crystal structure of Phanerochaete chrysosporium BGLA. Molecular dynamics simulation studies of the enzyme with the pNPG and cellobiose shed light on the unique substrate specificity of N. fischeri BGL1 only towards pNPG.  相似文献   

17.
Bacterial enzymes capable of nitrile hydrolysis have significant industrial potential. Microbacterium sp. AJ115, Rhodococcus erythropolis AJ270 and AJ300 were isolated from the same location in England and harbour identical nitrile hydratase/amidase gene clusters. Strain AJ270 has been well studied due to its nitrile hydratase and amidase activity. R. erythropolis ITCBP was isolated from Denmark and carries a very similar nitrile hydratase/amidase gene cluster. In this study, an identical nitrilase gene (nit1) was isolated from the four strains, and the nitrilase from strain AJ270 cloned and expressed in Escherichia coli. Analysis of the recombinant nitrilase has shown it to be functional with activity demonstrated towards phenylacetonitrile. A real-time PCR TaqMan® assay was developed that allowed nit1 detection directly from soil enrichment cultures without DNA extraction, with nit1 detected in all samples tested. Real-time PCR screening of isolates from these soils resulted in the isolation of nit1 and also very similar nitrilase gene nit2 from a number of Burkholderia sp. The genes nit1 and nit2 have also been detected in many bacteria of different genera but are unstable in these isolates. It is likely that the genes were acquired by horizontal gene transfer and may be widespread in the environment.  相似文献   

18.
A microbial peptide amidase was found in a limited screening and purified about 500-fold from Stenotrophomonas maltophilia. The native enzyme has a molecular mass of 38 kDa (gel filtration). The sequence of the first 16 amino acids was determined by Edman degradation. The isoelectric point was found to be around 5.8. The peptide amidase exhibited a pH optimum of 6.0 and a temperature optimum of about 39–45°C. The enzyme is stable in 50 mM TRIS/HCl, pH 7.5, at 30°C, and the residual activity was found to be above 90% after 1 week of incubation. The biocatalyst is not inhibited by potential inhibitors like Hg2+, EDTA, d-cycloserine or dithiothreitol and only weakly influenced by inhibitors of serine proteases. The peptide amidase deamidates selectively C-terminal amide groups in peptide amides without hydrolysing internal peptide bonds or amide functions in the side-chain of glutamine or asparagine. Unprotected amino acid amides are not hydrolysed. The enzyme is stereoselective with regard to l-enantiomers in the C-terminal position.  相似文献   

19.
The enantioselective nitrile hydratase from the bacterium Agrobacterium tumefaciens d3 was purified and completely separated from the amidase activity that is also present in cell extracts prepared from this strain. The nitrile hydratase had an activity optimum at pH 7.0 and a temperature optimum of 40 °C. The holoenzyme had a molecular mass of 69 kDa, the subunits a molecular mass of 27 kDa. The enzyme hydrated various 2-arylpropionitriles and other aromatic and heterocyclic nitriles. With racemic 2-phenylpropionitrile, 2-phenylbutyronitrile, 2-(4-chlorophenyl)propionitrile, 2-(4-methoxy)propionitrile or ketoprofen nitrile the corresponding (S)-amides were formed enantioselectively. The highest enantiomeric excesses (ee >90% until about 30% of the respective substrates were converted) were found for the amides formed from 2-phenylpropionitrile, 2-phenylbutyronitrile and ketoprofen nitrile. For the reaction of the purified nitrile hydratase, higher ee values were found than when whole cells were used in the presence of an inhibitor of the amidase activity. The enantioselectivity of the whole-cell reaction was enhanced by increasing the reaction temperature. Received: 20 June 1997 / Received revision: 28 August 1997 / Accepted: 29 August 1997  相似文献   

20.
Summary The thermophilic fungus Humicola grisea var. thermoidea produces a mycelium-associated β-xylosidase activity when grown in liquid-state cultures on media containing oat spelt xylan as the carbon source. The β-xylosidase was purified to apparent homogeneity by gel filtration and anion exchange chromatography. Its molecular weight was 37 and 50 kDa, as determined by MALDI/TOF mass spectrometry and SDS-PAGE, respectively. The purified enzyme exhibited maximum activity at 55 °C and pH 6.5. It was also active at pH 8.8, retaining 60% of its activity after 6 h of incubation at 50 °C. β-xylosidase was strongly inactivated by NBS and slightly activated by DTT and β-mercaptoethanol. The enzyme was highly specific for PNPX as the substrate. The purified β-xylosidase showed K m and V max values of 1.37 mM and 12.98 IU ml−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号