首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of leaf canopy overtopping relationships was carried out using a non-destructive point quadrat method followed by a destructive stratified harvest of the above-ground phytomass in Dutch chalk grasslands with different management: summer sheep grazing and annual autumn mowing. The two methods of analysis are compared: e.g. relative leaf overtopping can be recorded by the point quadrat method but it is obscured in vertical vegetation profiles based on stratified phytomass distribution. However the stratified harvest method describes the relationship between canopy phytomass and light microclimate, recorded by measuring Photosynthetically Active Radiation (PAR) at different heights in the vegetation. Plant growth form during peak standing crop is of greater significance than Raunkiaerian life form in determining structure of chalk grassland vegetation. In annually mown grasslands, the tall graminoid growth form, shown by Brachypodium pinnatum, reduces PAR in the lower canopy and suppresses most other growth forms except those which can reach the higher canopy levels, e.g. clumped herbs such as Origanum vulgare. In contrast, grazing can result in a reduction of dominance from the tall graminoids and reduction of the abundance of taller, grazing-sensitive herbs, e.g. clumped and climbing herbs such as Origanum and Lathyrus pratensis, and an increase in grazing-tolerant species, e.g. smaller rosette herb growth forms, e.g. Leontodon hispidus and shorter rhizomatous or stoloniferous graminoids, e.g. Carex flacca and Briza media. Changes in both the overtopping hierarchy at the peak of the growing season and the intensity of overtopping in the course of a growing season are of conclusive importance in determining the relative abundance of species in the vegetation.  相似文献   

2.
Summary A multispecies canopy photosynthesis simulation model was used to examine the importance of canopy structure in influencing light interception and carbon gain in mixed and pure stands of wheat (Triticum aestivum L.) and wild oat (Avena fatua L.), a common weedy competitor of wheat. In the mixtures, the fraction of the simulated canopy photosynthesis contributed by wheat was found to decline during the growing season and this decline was closely related to reductions in the amount of leaf area in upper canopy layers. For both species in mixture and in monoculture, simulated photosynthesis was greatest in the middle or upper-middle canopy layers and sensitivity analyses revealed that canopy photosynthesis was most sensitive to changes in leaf area and leaf inclination in these layers. Changes in LAI and leaf inclination affected canopy carbon gain differently for mixtures and monocultures, but the responses were not the same for the two species. Results from simulations where the structural characteristics of the two species were substituted indicated that species differences in leaf inclination, sheath area and the fraction of leaf area alive were of minor consequence compared with the differences in total leaf area in influencing relative canopy carbon gain in mixtures. Competition for light in these species mixtures appears to be influenced most by differences in the positioning of leaf area in upper canopy layers which determines, to a great extent, the amount of light intercepted.  相似文献   

3.
 Photosynthetic photon flux density (PPFD) fluctuations were quantified in crops of beans (Phaseolus vulgaris L.) in the field as the canopy developed between July and October. Two different methods were used to select sunflecks and shadeflecks. Four ranges of zenith angles (60–70°, 50–60°, 40–50° and 30–40°) were selected for analysing PPFD fluctuations. At the base of the canopy, sunflecks contributed 18%, 53%, 10% and 4% during the 1st, 3rd, 5th and 7th week of growth, respectively. At a height of 20 cm above the soil surface, the respective contributions were 28% and 21% during the 6th and 7th weeks. Sunfleck lengths of 0–5 s were the most frequent, with the greatest number being found with smaller zenith angles. The proportion of short duration sunflecks increased as the growth period advanced. The number of long sunflecks decreased with time, with very few longer than 100 s by the 5th and 7th weeks. The distributions of sunfleck irradiance were similar to normal distributions and irradiance ranged in μmol m−2 s−1 from 600–900, 800–1500 and 1000–1600 respectively at zenith angles of 50–60°, 40–50° and 30–40°. A multiple regression showed that short sunflecks (<100 s) depended on zenith angle, plant height, and leaf and stem area index (L s ), whereas long sunflecks (>100 s) depended on zenith angle and L s. Shadefleck distributions were similar to those for sunflecks but there were fewer of the shortest examples and more of the longest. The best statistical distribution to describe sunflecks and shadeflecks was the gamma distribution, which could provide the basis for the future development of a good model for sunfleck and shadefleck distributions. Received: 10 November 1997 / Accepted: 2 April 1998  相似文献   

4.
彭晓茜  王娓 《微生物学通报》2016,43(9):1918-1930
【目的】探索内蒙古温带草原土壤微生物生物量碳的空间分布特征以及驱动因素。【方法】在内蒙古自治区境内沿着年均温、年降水梯度选择17个草原样点,在土壤剖面上分0-10 cm、10-20 cm、20-40 cm、40-60 cm、60-100 cm五层,分别采集土壤样品,测定土壤微生物生物量碳以及主要的环境和生物影响因子,分析不同草地类型以及不同土壤深度土壤微生物生物量碳的差异,探索非生物因子和生物因子对土壤微生物量碳的影响。【结果】草甸草原土壤微生物量碳最高,典型草原次之,荒漠草原最低。在0-10 cm土壤中,草地类型间的微生物量碳变异系数高于草甸草原和典型草原,低于荒漠草原;在0-100 cm土壤中,草甸草原样点间的微生物量碳的变异系数低于典型草原和荒漠草原。土壤微生物量碳与年降水、土壤含水量、粘粒含量、土壤养分元素、地上生物量、地下生物量呈显著正相关,与年均温和土壤p H值呈显著负相关关系。随着土壤深度的增加,土壤微生物量碳显著减少,非生物因子与微生物量碳的相关性减弱,草地类型间以及同一草地类型不同样点间的变异系数增加。0-10 cm土壤微生物量碳与10-40 cm土壤微生物量碳的相关指数高于0.5,与40-100 cm的土壤微生物量碳的相关指数小于0.3。【结论】内蒙古温带草原土壤微生物量碳的垂直分布呈现一定的规律性,且非生物因子对微生物量碳的影响也呈现垂直减弱的规律。  相似文献   

5.
Changes in plant community structure are identified as a result of grazing in grasslands of the flooding pampa which evolved under supposedly light grazing conditions. The effect of excluding grazing upon total leaf area index was an increase of 30%. The largest response was observed in the distribution of leaves in the canopy. In the grazed areas, most of the green material was concentrated in the 0–5 cm layer while in the ungrazed treatments the largest portion of the leaf area was in the 10–30 cm layer. Grazing exclusion resulted in a small change in total basal area but a larger change in its distribution, from many small tussocks to less numerous large ones. The effect of grazing upon leaf area and basal area was accounted for by changes in vigor as well as by changes in species composition. The major effect of excluding grazing upon species composition was the disappearance of some native planophile species and most of the exotics. The species composition of grazed areas of both communities was very similar while there were large differences between the ungrazed areas and between the grazed and ungrazed areas of the same community. It is suggested that there is a group of species which responds to the coarse-grained ‘signal’ of grazing and its presence can cause dissimilar communities to converge under grazing conditions. The other group of species responded to the fine-grained ‘signal’ of the environmental conditions associated with topography.  相似文献   

6.
7.
Summary A few assumptions were used to generate a series of specific, quantitative predictions for the relationships between stand density and various dimensional measures of canopy structure. The predictions, each indicating an increase in mean crown size as density decreased, appeared to be reasonable and intuitive. Predictions were compared to data for two conifer species with different crown forms, Pinus contorta var. latifolia and Abies lasiocarpa. Results of these comparisons were mixed — the linear, directly measured dimensions were consistent with predicted relationships, but dimensions calculated from the linear measures were not. Re-examination of the original assumptions indicated that the model should account for crown shyness (engagement/disengagement) to adequately reflect the influence of stand density on canopy structure. The results also indicated a strong association between stand height and measures of mean crown size. Mean crown size of lodgepole pine was altered much more by density than was mean crown size of subalpine fir, due primarily to the different relative shade tolerances of the two species. Some of the observed differences between species may also reflect the range of densities examined and uneven spacing in the unmanaged natural stands.  相似文献   

8.
Leaf Area Index (leaf area per unit ground area, LAI) is a key driver of forest productivity but has never previously been measured directly at the landscape scale in tropical rain forest (TRF). We used a modular tower and stratified random sampling to harvest all foliage from forest floor to canopy top in 55 vertical transects (4.6 m2) across 500 ha of old growth in Costa Rica. Landscape LAI was 6.00 ± 0.32 SEM. Trees, palms and lianas accounted for 89% of the total, and trees and lianas were 95% of the upper canopy. All vertical transects were organized into quantitatively defined strata, partially resolving the long-standing controversy over canopy stratification in TRF. Total LAI was strongly correlated with forest height up to 21 m, while the number of canopy strata increased with forest height across the full height range. These data are a benchmark for understanding the structure and functional composition of TRF canopies at landscape scales, and also provide insights for improving ecosystem models and remote sensing validation.  相似文献   

9.
Temperate seagrass meadows form valuable ecosystems in coastal environments and present a distinct seasonal growth. They are threatened by an increasing amount of stressors, potentially affecting their capacity to recover from disturbances. We hypothesized that their resilience to disturbances is affected by seasonal dynamics. Hence, we investigated the effect of the timing of the disturbance on seagrass Leaf Area Index (as a proxy for presence, or ‘visible’ status), recovery from disturbance (as a proxy for meadow resilience), and rhizome carbohydrates (as a proxy for longer term resilience) by a series of four disturbance-recovery field experiments spread over the growing season at two sites in Shandong Province, China. During the course of the growing season, we found the highest recovery at the start of the growing season, lowest recovery when Leaf Area Index peaked around mid-growing season, and intermediate recovery when Leaf Area Index decreased at the end of the growing season. Rhizome carbohydrates were not affected by disturbances during any of the four experimental periods and could not explain the low recovery during mid-growing season. The two sites differed in exposure and in the occurrence of incidents like a green tide and storms, which affected recovery. However, general patterns were similar; timing strongly influenced the indicator of meadow resilience and its correlation with presence during the two main seagrass growth phases. Our results emphasize the importance of carefully considering timing in the evaluation of seagrass resilience in temperate systems. Furthermore, our study implies that, to effectively protect seagrass beds, conservation management should aim at avoiding disturbances particularly during the peak of the growing season, when resilience is lowest.  相似文献   

10.
杂交粳稻超高产群体的冠层结构特点研究   总被引:9,自引:0,他引:9  
研究了杂交粳稻超高产群体的苗穗粒结构及干物重在冠层不同层次、不同器官的分布,叶面积配置及光强分布等冠层结构特点.结果表明,杂交粳稻超高产群体冠层总干物重及40cm以下、40~60cm、60~80cm和80cm以上4个层次的干物重分别比常规粳稻高32.29%及29.12%、13.95%、16.45%和100.17%.杂交粳稻叶片(同化器官)与穗(库器官)干重分别占总干物重的248%与12.8%.高于常规稻;而叶鞘与茎(贮藏器官)的干重分别占总干物重的33.6%和28.9%,低于常规粳稻.杂交粳稻超高产群体冠层叶面积配置比较合理,齐穗期40cm以上冠层LAI达5.44.冠层光强上下分布比较均匀,60cm以下冠层光强比常规稻高13.1%~37.0%,而60cm以上冠层光强比常规稻低5.9%~12.2%;20cm、20~40cm、40~60cm和60~80cm各层消光系数分别比常规粳稻低35.1%、13.5%、29.1%和17.2%.  相似文献   

11.
Abstract. This study attempts to show the dynamics of the canopy structure of the Mediterranean pioneer shrub Lavandula stoechas after man-made perturbation (i.e. grazing). The development of the vertical structure of the shrub was studied by harvesting the canopy of plants of 2–6 yr old in horizontal layers. The supportive biomass of the canopy was concentrated near the base at all ages. Leaf biomass was evenly distributed all over the vertical profile in 2- and 3-yr old plants. In 4-yr old plants it presented a maximum near the top of the canopy. For 5-yr old plants a structural transition started with leaf profiles showing a bimodal distribution. Leaf biomass predominated near the base in 6-yr old plants, suggesting that the transition was completed. Three canopy stages in the growth processes of the plant were recognized after the first year of growth: in the first one (from 2 to 3 yr old) both leaf and supportive biomass increased; in the second one (from 3 to 4 yr) leaf biomass remained stable and there was an increase in supportive biomass until the plants reached a ‘mature stage’, in 4-yr old plants; finally, in 5- and 6-yr old plants there was a decrease both in leaf and supportive biomass and plant structure showed evidence of senescence. Early transitions from seedling to 1-yr old plant and from this to 2- to 3-yr old plants were less obvious. The leaf/supportive biomass ratio always decreased with plant age, from 1.88 in seedlings to 0.01 in 6-yr old plants. Biomass density followed the pattern of supportive biomass, with an increase from 1.7 g/dm3 (2-yr old plants) to 2.4 g/dm3 (4-yr old plants). Thereafter, biomass density decreased to 0.6 g/dm3 (6-yr old plants).  相似文献   

12.
Drone-based remote sensing is a promising new technology that combines the benefits of ground-based and satellite-derived forest monitoring by collecting fine-scale data over relatively large areas in a cost-effective manner. Here, we explore the potential of the GatorEye drone-lidar system to monitor tropical forest succession by canopy structural attributes including canopy height, spatial heterogeneity, gap fraction, leaf area density (LAD) vertical distribution, canopy Shannon index (an index of LAD), leaf area index (LAI), and understory LAI. We focus on these variables’ relationship to aboveground biomass (AGB) stocks and species diversity. In the Caribbean lowlands of northeastern Costa Rica, we analyze nine tropical forests stands (seven second-growth and two old-growth). Stands were relatively homogenous in terms of canopy height and spatial heterogeneity, but not in their gap fraction. Neither species density nor tree community Shannon diversity index was significantly correlated with the canopy Shannon index. Canopy height, LAI, and AGB did not show a clear pattern as a function of forest age. However, gap fraction and spatial heterogeneity increased with forest age, whereas understory LAI decreased with forest age. Canopy height was strongly correlated with AGB. The heterogeneous mosaic created by successional forest patches across human-managed tropical landscapes can now be better characterized. Drone-lidar systems offer the opportunity to improve assessment of forest recovery and develop general mechanistic carbon sequestration models that can be rapidly deployed to specific sites, an essential step for monitoring progress within the UN Decade on Ecosystem Restoration.  相似文献   

13.
Abstract. Cove forests of the Great Smoky Mountains are North American examples of old-growth temperate forest. Ecological attributes of seven stands were studied using one 0.6 - 1.0 ha plot per stand. Stand basal area (39 - 55 m2/ha) and biomass (326 - 471 Mg/ha) were high for temperate deciduous forest. Density ranged from 577 to 1075 stems/ha. All stands had a mixture of deciduous canopy species. Only rarely did a single species comprise more than half of the stand by density, basal area or biomass. Shade-intolerant species were present at low levels (1 - 5 % of total stand density). A wide range of stem diameters was characteristic of most species. However, some species lacked small stems, indicating discontinuous regeneration. Stands tended to have 10 - 20 tree species per ha and at least five species had biomass levels > 10 Mg/ha, indicating high evenness. Canopy gaps covered 10 % of the total area (2 - 21 % by stand). Gaps and conspecific patches of canopy trees > 0.05 ha in size were infrequent. Spatial analyses revealed a variety of patterns among species at inter-tree distances of 1 to 25 m. When all species were combined, juveniles showed aggregation, and adults were often hyperdispersed. Analyses for individual species confirmed that the mosaic of canopy species is influenced by non-random spatial processes. Adults of several species were aggregated at distances > 10 m. Juveniles of all major species exhibited aggregation. Several species exhibited regeneration near conspecific adults. This pattern suggested limited mobility for such species within the shifting mosaic. A diverse patchwork resulted despite the fact that many species did not exhibit segregation of adults and juveniles. Further understanding of patch dynamics and the potential for compositional steady state in cove forests requires long-term study with spatial data.  相似文献   

14.
柞蚕林冠层结构,林内光照分布与叶生物量研究   总被引:3,自引:3,他引:0  
柞蚕林是以养蚕为目的的萌生栎林,林冠经剪伐而形成不同的冠型结构。本文对3种冠型的叶面积系数,冠层内叶量分布及消光系数等冠层结构特点进行了测定。结果表明,不同冠形的冠层结构特点明显影响林内光照环境及叶生物量。现有的3种冠型中,“阶梯”型结构有较高的叶面积系数和较合理的叶量分布,因而具有较高的叶生物量。“中干”型叶生物量与无干型虽无明显差异,但“中干”型消光系数较低,林内空间较大,林内光照环境比“无干”型结构优越。  相似文献   

15.
Abstract. We studied the vertical structure of wet grazed grasslands in Tierra del Fuego (southern Argentina). A point quadrat method was developed using a fine needle graduated in cm. The vertical and horizontal frequency of species and organs was quantified in samples collected from non‐grazed and grazed plots in the field. There was vertical stratification in both types of samples, but only in the first eight cm above the ground in grazed samples, with a dominance of Caltha sagittata. In non‐grazed samples graminoids grew taller than forbs and their inflorescences were an important element of the canopy structure. In both treatments, vertical species diversity was maximum in the lower part of the canopy, although diversity was significantly higher in grazed pots. In grazed samples, Caltha sagittata was the dominant species in 46% of samples and its leaves occupied 35% of the upper canopy. In the non‐grazed samples, Hordeum pubiflorum and Festuca magellanica were dominant in 63% of the samples, with H. pubiflorum leaves occupying 55% of the upper canopy. Comparing species by pairs, significant differences in vertical position were maintained in non‐grazed versus grazed pots. It is concluded that vertical stratification occurs even in the shortest communities. In this community, forb species grew close to the ground in the grazed areas, while forbs grew in the gaps and grasses above them in the non‐grazed areas. The main differences were in the relative dominance of forb and grass species and the presence of inflorescences.  相似文献   

16.
Question: Is light available for subcanopy individuals of Fagus crenata spatiotemporally heterogeneous across patches with closed canopies of different foliage phenologies and gaps? Is local abundance of Sasa influenced by the composition of the canopy layer? If so, does the Sasa layer also affect the amount of light available to small F. crenata saplings? Is variation in F. crenata population structure consistent with the hypothesis that light is important? Location: Mt. Kurikoma, Japan 780 m a.s.l. Methods: Population structure of subcanopy individuals of Fagus crenata and importance of Sasa were examined in five patch types. The patch‐types were Fc (F. crenata only in the crown), Qm (Quercus mongolica var. grosseserrata only in the crown), Mo (Magnolia obovata only in the crown), Fc’ (periphery of F. crenata) and Gap. Seasonal changes in light availability above and below the Sasa layer was examined by using hemispherical photographs and quantum sensors. Results: Subcanopy individuals of F. crenata began unfolding their leaves approximately one month earlier than canopy trees of Q. mongolica var. grosseserrata and M. obovata, but a few days later than those of adult F. crenata. Accumulated photosynthetic photon flux density above the Sasa layer was greatest in Qm and Mo, and lowest in Fc. Importance of Sasa was highest in Gap. Maximum height and the number of subcanopy individuals of F. crenata were greatest in Qm, followed by Mo, and lowest in Fc. Conclusions: Differences in canopy layer composition probably influence the regeneration of F. crenata both directly through their foliage phenologies, and also indirectly by determining the importance of Sasa.  相似文献   

17.
Summary The structural characteristics of a diverse array of Quercus coccifera canopies were assessed and related to measured and computed light attenuation, proportion of sunlit foliage, foliage temperatures, and photosynthesis and diffusive conductance behavior in different canopy layers. A canopy model incorporating all components of shortwave and longwave radiation, and the energy balance, conductance, and CO2 and H2O exchanges of all leaf layers was developed and compared with measurements of microclimate and gas exchange in canopies in four seasons of the year. In the denser canopies with a leaf area index (LAI) greater than 5, there is little sunlit foliage and the diffuse radiation (400–700 nm) is attenuated to 5% or less of the global radiation (400–700 nm) incident on the top of the canopy. Foliage of this species is nonrandomly distributed with respect to azimuth angle, and within each canopy layer, foliage azimuth and inclination angles are correlated. A detailed version of the model which computed radiation interception and photosynthetic light harvesting according to these nonrandom distributions indicated little difference in whole-canopy gas exchange from calculations of the normal model, which assumes random azimuth orientation. The contributions of different leaf layers to canopy gas exchange are not only a function of the canopy microclimate, but also the degree to which leaves in the lower layers of the canopy exhibit more shade-leaf characteristics, such as low photosynthetic and respiratory capacity and maximal conductance. On cloudless days, the majority of the foliage in a canopy of 5.4 LAI is shaded —70%–90% depending on the time of year. Yet, the shaded foliage under these conditions is calculated to contribute only about one-third of the canopy carbon gain. This contribution is about the same as that of the upper 13% of the canopy foliage. Computed annual whole-canopy carbon gain and water use are, respectively, 60% and 100% greater for a canopy of 5 LAI than for one of 2 LAI. Canopy water-use efficiency is correspondingly less for the canopy of 5 LAI than for that of 2 LAI, but most of this difference is apparent during the cool months of the year, when moisture is more abundant.  相似文献   

18.
Abstract. In temperate grasslands, the relative importance of above‐ground competition for light compared to below‐ground competition for water and nutrients is hypothesized to increase with increasing precipitation. Thus, competition for light is likely to exert an increasing influence on canopy structure and species composition as precipitation increases. We quantified canopy structure, light availability and changes in species composition at seven sites across the central grassland region of the United States to determine how these properties change across a precipitation gradient. Across the region, there was a disproportionate increase in leaf area and canopy height with increasing precipitation, indicating that plants become taller and leafier across the gradient. Leaf area index increased by a factor of 12 across the gradient while above‐ground net primary productivity increased by a factor of only 5.5. As precipitation increased, there was decreased light availability at the soil surface, increased seasonal variability in light transmission, increased biomass and leaf area at higher canopy layers and an increased proportion of tallstatured species. These observed changes in canopy structure support the prediction that competition for light increases in importance with increasing precipitation.  相似文献   

19.
20.
Using a combination of mathematical modeling and field studies we showed that in dense stands of growing herbaceous plants the vertical pattern of leaf nitrogen distribution resembles the pattern of mean light attenuation in the stand and hence tends to maximize total daily photosynthetic carbon gain of the whole stand. Flowering represents a strong sink of nitrogen away from the photosynthetic apparatus and in herbs like Solidago altissima it induces leaf shedding. We studied both the effect of nitrogen reallocation and leaf shedding on the whole canopy photosynthesis and changes in leaf nitrogen distributions in stands moving from the growing to the flowering stage. Despite a decrease in leaf area index and total nitrogen available for photosynthesis in the flowering stand, the leaf nitrogen distribution here also leads to an almost maximum canopy photosynthesis. In both the growing and the flowering stands the leaf area index was higher than calculated optimum values. It is pointed out that this should not necessarily be interpreted as non-adaptive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号