首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brown Ring Disease (BRD) is a bacterial disease caused by the pathogen, Vibrio tapetis. The disease induces formation of a brown deposit on inner shell of the Manila clam, Ruditapes philippinarum. Development of this disease is correlated with a decrease in the condition index of infected clams. Experiments were conduced in order to assess the effect of the development of BRD on two parameters affecting the energy balance of the clams: the clearance and the respiration rates. Experiments were performed in a physiological measurement system that allowed simultaneous measures of clearance and respiration rates. During both acclimation and measurements clams were fed with cultured T-iso and temperature was close to seasonal field temperature (10°C). Our results showed that severely diseased clams (conchiolin deposit stage, CDS ≥ 4) are subject to weight loss in comparison to uninfected ones, indicating that BRD induces a disequilibrium in the energy balance. We demonstrated a reduction of the clearance rate of severely diseased clams which led to a decrease in energy acquisition. Respiration rate showed a significant decrease with BRD symptoms, but evidence in the literature allowed us to hypothesize that energy mobilised for an immune response and lesion repair increases overall organism maintenance costs. Both factors should thus contribute to the degradation of the energy balance of diseased clams. Because effects of BRD on naturally infected clams only appears significant for CDS ≥ 4, when brown ring assumes a significant place on the inner shell, we consider that the Manila clam is tolerant of low disease levels.  相似文献   

2.

Increasing seawater temperature, heavy metal concentration and sediment load, all represent environmental stress factors found in the Gulf of Thailand. In the present study we investigate and compare the physiological responses of exposure to increased water temperature (+ 3°C) and copper (50 μg Cu/l) by the giant clam Tridacna squamosa, and the behavioural response to sedimentation.

Both temperature and copper caused significant decrease in Pg: R ratios, although by different physiological responses. In clams exposed to copper, the decrease in Pg: R is caused by reduced photosynthesis, whereas the clams exposed to increased temperature maintained a high photosynthetic rate, but significantly increased their respiration.

Clams responded to additional sediment with increased activity. This augmented activity was further increased for clams previously stressed by copper.  相似文献   

3.
The objectives of this study were to (1) determine the bioavailability of polycyclic aromatic hydrocarbons (PAHs) and other non-polar organics in resident brackish water clams (Rangia cuneata) at selected sites near an oil refinery; (2) determine if the tissue burdens were causing adverse effects to the clams, and (3) evaluate potential seasonal variations from reproduction in clams taken from the same beds in the spring and fall. Clams were evaluated from three beds located in the refinery discharge plume (near-field stations), three beds located up river outside of the Refinery effluent plume (north far-field), and three beds down river (south far-field) of the Refinery plume. Total PAH concentrations in the tissues of the near-field clams were significantly higher than in the clams located at the far-field stations in both the spring and fall. Total PAH concentrations of the near-field clams were significantly higher in the spring than the fall. No difference was found in total PAHs in the spring or fall in the far-field clams. Total pesticide and total PCB concentrations were significantly higher in the spring than the fall at all stations. The highest concentrations of both pesticides and PCBs were found at the north far-field stations. A tissue residue concentration analysis and three theoretical approaches for estimating detrimental effects to clams in both the near- and far-field suggested that no adverse effects should occur from total PAHs, total pesticides, or total PCBs. Some uncertainty, however, was associated with the theoretical approaches. An estimate of clam density in each clam bed showed that Rangia were growing and reproducing at all stations.  相似文献   

4.
SUMMARY. 1. Unionid clams from Narrow Lake, Alberta, were collected to quantify the natural variation in growth, to assess the natural variation in abundance, age and size distribution, and growth with water depth in the lake, and to conduct in situ experiments to directly test the effects of water depth (temperature) and clam abundance on clam growth. 2. The unionid clam, Anodonta grandis simpsoniana, showed wide variation in length at a given age. There were no significant differences in growth between clams collected at 1,3, 5, and 7m depths in the lake despite marked differences in water temperature. The wide variation in clam biomass within each depth zone may have masked possible effects of water depth. 3. The effect of water depth and variation in clam density on clam growth was tested directly by stocking clams into small enclosures at densities equivalent to 50, 150, 250, 350 and 450g m-2 (live weight) at each of 1, 3, 5 and 7 m depths in Narrow Lake (each depth and abundance treatment in triplicate). A uniform sandy substrate was used in all enclosures to eliminate any possible effect of substrate type on growth. 4. Mortality was negligible (0.9%) during the experiment. Clam density had no significant effect on clam growth which suggests that clam growth was not food limited in the lake. 5. Clams reared at 7 m grew more slowly than clams reared at 1, 3 and 5 m. Clams reared at 5 m grew more slowly than clams reared at 1 and 3m. Growth of clams reared at 1 and 3m did not differ. These differences in growth were strongly correlated with the measured differences in water temperature between depths. 6. Migration between depths probably accounts for the lack of a depth effect on clams growing in the natural habitat.  相似文献   

5.
The objectives of this study were to determine the acclimation of loblolly pine (Pinus taeda L.) foliar respiration to different night-time low temperatures, daytime high temperatures, and daily mean temperatures, and then to use the responses of temperature acclimation to various temperature regimes to predict acclimation under fluctuating temperatures. Experiments were conducted on two-year-old seedlings in growth chambers using different combinations of day and night-time temperatures. The first experiment exposed trees to 22/22, 29/22, 22/15, and 29/15 degrees C day/night (d/n). When measured at a common temperature (15, 22 or 29 degrees C), respiration rates were lower for trees exposed to higher treatment temperatures and acclimation was influenced by both day and night-time temperature. However, the extent of acclimation did not relate to mean temperature, i.e. respiration rates measured at a common temperature ranked as follows for seedlings exposed to different temperature regimes, 22/15>22/22>29/15 congruent with29/22 degrees C d/n. Rather, acclimation of foliar respiration was linearly related to mean daily respiration rate, where mean daily respiration rate is the average of the respiration rates measured at the day and night-time treatment temperatures. The discrepancy between mean daily respiration rate and mean daily temperature occurred because respiration increased exponentially with increasing temperature. In a second experiment, the same seedlings were exposed to 22/22, 15/15, 25.5/18.5, and 25.5/15 degrees C d/n to test the relationship between mean daily respiration rate and acclimation. As in the first experiment, acclimation was linearly related to mean daily respiration rate. The concept of effective acclimation temperature, which is the temperature at which the mean daily respiration rate occurs, was derived from these results as a means to predict the extent that foliar respiration acclimates to treatment temperature.  相似文献   

6.
Chamelea gallina is an infaunal bivalve, widespread in sandy bottoms along Mediterranean coasts. It is an important economic resource for fisheries in the Adriatic, although in recent years over-fishing, and other concurrent factors, have dramatically decreased clam harvesting. In this context, it is of great interest to gain information on seasonal variations in the physiological performance of clams, for an overall evaluation of their well-being. In this study, laboratory experiments were performed to define allometric relationships and effects of temperature on clearance and respiration rates of C. gallina. The mean values of b coefficients were calculated and used to correlate physiological measurements to 'standard' body mass, when seasonally collected clams were analysed. The highest clearance rate (0.42 L h(-1)) was measured in clams collected in July 2000; the highest respiration rate (12.22 micromol O2 h(-1)) was observed in July 2001, leading to a negative scope for growth (-2.8 J h(-1)). The influence of environmental and endogenous factors, mostly reproduction, was discussed. Survival in air and condition indices, showing higher stress conditions in December 2000 and July 2001, were in good agreement with the other physiological measurements. The physiological responses examined in this study appear to be suitable for providing detailed indications on the well-being of C. gallina and may be useful for future studies aimed at eco-sustainable management of the resource.  相似文献   

7.
《Aquatic Botany》2005,81(3):253-264
Field observations suggest that flooding events in the growing season are more detrimental than in winter. To clarify mechanisms producing these seasonal differences we analysed the role of plant acclimation, water temperature and oxygen concentration. We first tested the relative effects of seasonal acclimation and water temperature with three grassland species that differed in tolerance to summer floods (i.e. Rumex crispus, Rumex acetosa and Daucus carota). Our second experiment addressed the role of oxygen level relative to water temperature on biomass decay rate on a moderately intolerant species (i.e. R. acetosa).Irrespective of acclimation, biomass loss in warm water was considerably faster than in cold water. Given the concomitant decline in total non-structural carbohydrates, this was ascribed to the impact of water temperature on respiration rate. However, we only found a significant decline in carbohydrates for R. crispus and R. acetosa. D. carota seemed unable to access stored carbohydrates, which may explain its sensitivity for winter- and summer floods. Our second experiment provided no indication that the higher oxygen concentration may mitigate effects of flooding in cold water since a lower oxygen level of the water did not accelerate the rate of biomass loss.These findings indicate that temperature-driven respiration of carbohydrate reserves determines a species’ response to winter flooding, whereas oxygen level or plant acclimation are unimportant.  相似文献   

8.
Both in field and laboratory choice tests, the sea star, Asterias forbesi (Desor), was attracted to distant upstream clams, Mercenaria mercenaria (Linnaeus). Clams exposed to upstream sea stars were chosen less frequently by downstream sea stars than clams without sea stars upstream. Sea stars neither attracted nor repelled downstream conspecifics.When clams were exposed to upstream sea stars, their oxygen consumption decreased, as did their pumping rate and activity (as measured by number of visible siphons). The former may result from one or both of the latter.It is concluded that clam and sea star sense each other over a distance by chemical cues. The response of the clam is a general lowering of activity which may result in decreased attractiveness to sea star predators. This response may serve as a defensive measure against distance detection by Asterias forbesi.  相似文献   

9.
We conducted a two-year study to assess how plankton composition and water quality impacts the distribution, densities, condition, growth, biochemical composition and reproductive success of juvenile and adult Mercenaria mercenaria (L.) in Long Island's south shore estuaries (LISSE). Juvenile and adult hard clams were placed in suspended cages at 10 locations ranging from the ocean inlets to locations furthest from inlets in Shinnecock Bay (SB), the eastern-most barrier island estuary of LISSE, and Great South Bay (GSB), the western-most barrier island estuary of LISSE. Phytoplankton community composition, temperature, salinity, dissolved oxygen, and clam growth and condition were monitored bi-weekly. A benthic survey of M. mercenaria densities in both estuaries was also conducted. In both 2004 and 2005, juveniles in central bay locations had significantly faster growth rates, lower mortality rates, and higher lipid content relative to sites closest to the inlets. Adult hard clams closest to the Fire Island inlet also had significantly lower condition indexes compared to mid-bay stations and densities of wild M. mercenaria populations in both estuaries were lower near inlets compared to locations further from inlets. In addition to substantial spatial differences within each estuary, differences were also observed between the embayments as juvenile clams in SB grew approximately twice as fast as those in GSB and adults in SB had significantly greater condition indexes than clams in GSB. Instantaneous juvenile growth rates were highly correlated to temperatures below 24 °C (p < 0.0001) and were also significantly correlated with several indicators of suspended food quantity and food quality (centric diatoms, phytoplankton cells > 5 μm, and dinoflagellates (inverse correlation)) which co-varied independently of temperature. In sum, these results suggest tidal exchange in LISSE promotes a water quality regime (cold water, with low food concentration) which would reduce the growth of juvenile clams and the overall reproductive success of adult hard clams located near newly-formed ocean inlets. However, increased exchange for regions furthest from inlets could enhance juvenile clam growth rates by reducing summer peak temperatures (> 24 °C) and densities of poor food sources (dinoflagellates).  相似文献   

10.
11.
The freshwater benthic pearl clam, Hyriopsis schlegeli, was experimentally exposed to Cryptosporidium parvum oocysts, and it was verified that the oocysts were eliminated predominantly via the fecal route, retaining their ability to infect cultured cells (HCT-8). The total fecal oocyst elimination rate was more than 90% within 5 days after exposure to the oocysts. H. schlegeli was able to survive in the final settling pond of a sewage plant for long periods, as confirmed by its pearl production. In the light of these findings, the clam was placed in the final settling pond in a trial to test its long-term efficacy in depleting oocysts contaminating the pond water. The number of clams placed was set to ensure a theoretical oocyst removal rate of around 50%, and the turbidity and the density of feed microbes in the overflow trough water of the pond were about 35% and 40 to 60% lower, respectively, than in the control water throughout the year. It was found that the clam feces containing oocysts were sufficiently heavy for them to settle to the bottom of the pond, despite the upward water flow. From these results, we concluded that efficient depletion of oocysts in the sewage water of small or midscale sewage treatment plants can be achieved by appropriate placement of H. schlegeli clams.  相似文献   

12.
The aim of this study was to develop a method to kill or expel the gill-dwelling crustacean parasite Paraergasilus rylovi from a common freshwater clam, Anodonta piscinalis. Naturally infected clams were exposed to different water-quality treatments and monitoring in the laboratory. In a high-temperature treatment (26 C vs. control 18 C), the mean abundance of the parasite decreased to near zero in 7 days. Because only 2 clams of 72 died in this treatment during the 14-day experiment, the survival of the host was not seriously at risk at the high temperature. 'Low oxygen, no water change' (18 C) was the second most effective treatment, followed by a 'low-oxygen, water-flow' (18 C) treatment. At the end of the experiment, the mean parasite abundance was significantly lower in all the treatments than in the control clams (18 C). A few P. rylovi individuals abandoned the host at 26 C but died in a couple of days outside the host. However, the parasites lived on average (+/-SE) 12.7 +/- 0.9 days outside the clam, and were also shown to be capable of infecting another uninfected host individual, at 18 C. The results of the present study suggest that high temperature provides an effective, ecologically sustainable method to manipulate the intensity of P. rylovi infection.  相似文献   

13.
Patterns and mechanisms of short‐term temperature acclimation and long‐term climatic adaptation of respiration among intraspecific populations are poorly understood, but both are potentially important in constraining respiratory carbon flux to climate warming across large geographic scales, as well as influencing the metabolic fitness of populations. Herein we report on leaf dark respiration of 33‐year‐old trees of jack pine (Pinus banksiana Lamb.) grown in three contrasting North American common gardens (0.9, 4.6, and 7.9 °C, mean annual temperature) comprised of identical populations of wide‐ranging geographic origins. We tested whether respiration rates in this evergreen conifer acclimate to prevailing ambient air temperatures and differ among populations. At each of the common gardens, observed population differences in respiration rates measured at a standard temperature (20 °C) were comparatively small and largely unrelated to climate of seed‐source origin. In contrast, respiration in all populations exhibited seasonal acclimation at all sites. Specific respiration rates at 20 °C inversely tracked seasonal variation in ambient air temperature, increasing with cooler temperatures in fall and declining with warmer temperatures in spring and summer. Such responses were similar among populations and sites, thus providing a general predictive equation regarding temperature acclimation of respiration for the species. Temperature acclimation was associated with variation in nitrogen (N) and soluble carbohydrate concentrations, supporting a joint enzyme and substrate‐based model of respiratory acclimation. Regression analyses revealed convergent relationships between respiration and the combination of needle N and soluble carbohydrate concentrations and between N‐based respiration (RN, μmol mol N? 1 s? 1) and soluble carbohydrate concentrations, providing evidence for general predictive relationships across geographically diverse populations, seasons, and sites. Overall, these findings demonstrate that seasonal acclimation of respiration modulates rates of foliar respiratory carbon flux in a widely distributed evergreen species, and does so in a predictable way. Genetic differences in specific respiration rate appear less important than temperature acclimation in downregulating respiratory carbon fluxes with climate warming across wide‐ranging sites.  相似文献   

14.
Summary Field experiments withMercenaria mercenaria in a relatively high-energy environment demonstrated that clams on unvegetated sand flats failed to grow during autumn while those within seagrass beds grew substantially. Clam growth rates at the seagrass margin that first receives the faster-flowing, flood-tidal currents were about 25% less than at the opposite edge. In a second experiment, pruning, which reduced average blade length by 50–75%, was shown to enhance near-bottom current velocities and to reduce shell growth ofMercenaria during summer by about 50%. As in the first experiment, clams in the unvegetated sand flats exhibited no net growth. Clam mortality, caused mostly by predatory crabs and whelks, was much higher on sand flats than in seagrass beds and intermediate in clipped seagrass. Although consistent with some previous reports, these growth results are still surprising given that they contradict the generalization that suspension feeders grow faster under more rapid current regimes.Three types of indirect interactions might explain the observed effect of seagrass on growth of buried clams: (1) altering food supply; (2) changing the intensity of biological disturbance on feeding clams; and/or (3) affecting the physical stability of the sediments. Previous research on this question has focused almost exclusively on processes that alter food supply rates. In this study, food concentrations, as indicated by suspended chla, were 30% higher inside than outside one seagrass bed, whereas chla concentrations in two other beds were not different from those on adjacent sand flats. This result is sufficient to show that more intense food depletion was not induced by the reduction in flow velocities under the seagrass canopy. Nevertheless, the possible small difference in food concentrations between vegetated and unvegetated bottom seems insufficient to explain the absence of growth of sand-flat clams, especially given the virtual lack of food limitation among suspension feeders in this system. Two data sets demonstrated that the effects of biological disturbance agents cannot be ignored. An outdoor laboratory experiment showed that even in the absence of physical contact between predator and prey the presence of a whelk reduces the amount of time spent feeding byMercenaria. This result suggests that sand flats, where predation rates are higher, may be sites of lower clam growth than seagrass beds because of greater consumer interference with clam feeding. Furthermore, clam siphons are proportionately larger inside seagrass than on sand flats, implying that siphon nipping may not be as intense inside seagrass. This process, too, would reduce net growth of sand-flat clams. Finally, no explicit test was conducted of the hypothesis that enhanced sediment transport in the absence of flow baffling and root binding by seagrass inhibits net growth of clams on high-energy sand flats. Nevertheless, this is a reasonable explanation for the pattern of enhanced growth of seagrass clams, and could serve to explain the otherwise unexplained pattern of lower clam growth at the edge of the seagrass bed that experiences the faster flood-tidal current velocities. Each broad process, changing fluid dynamics, altering consumer access, and varying sediment stability, represents a mechanism whereby habitat structure, provided by the dominant plant, has an important indirect influence on the functional value of the habitat for resident animals.  相似文献   

15.
Summary

Sulfide-rich cold seeps in Monterey Canyon support dense communities of vesicomyid clams, which harbor chemosynthetic bacterial endosymbionts. Because these animals rely upon non-photosynthetic food sources, their life histories may be decoupled from seasonal phytoplankton productivity. We examined this hypothesis by investigating temporal changes in gametogenesis in two vesicomyid clam species. Clams were collected from two cold seeps (600 m and 900 m depths), and their gonads were removed and processed for histological analyses. Oocyte diameters and relative abundances of tissue types were measured in thin sections taken across the gonad. Mean oocyte diameters of Calyptogena kilmeri increased from August to November, 1994, but did not change by March, 1995. Relative proportions of ovarian tissue types (reproductive vs. somatic) also changed during this period, indicating reproductive seasonality. Analyses of Calyptogena pacifica tissues showed no significant change within a 3-month period. Existence of seasonal cycles for vesicomyid clams suggests that either (1) chemosynthetic production is seasonal or (2) reproductive output is tied to factors other than food production, such as synchrony of spawning to maximize fertilization success, or larval survival.  相似文献   

16.
Accumulation and elimination of viral particles by hard clams, Mercenaria mercenaria, were studied with the coliphage S-13 as a working model. Escherichia coli uptake and elimination were simultaneously monitored. Clams were exposed to low levels of S-13 (7 particles/ml) in running seawater for several days, achieving titers in tissues from 2 to more than 1,000 times the levels to which they had been exposed. Bacterial accumulation (previously established by other workers) was comparable. Upon exposure to virus-free running water, clams polluted to relatively low levels (100 plaque-forming units/ml) eliminated most of their bacterial contaminants in 24 to 48 hr. Viral contaminants, however, persisted for several days to weeks even under ideal conditions for clam activity, provided that the temperature remained below the inactivation threshold for the virus. Most of the accumulated virus appeared to be sequestered in the digestive gland. These sequestered particles are refractory to those mechanisms responsible for elimination of bacterial contaminants. This discrepancy points out the need for caution in evaluating the efficiency of shellfish depuration processes, especially if only a bacterial criterion is used as a monitoring system.  相似文献   

17.
Aquaculture has been the traditional focus of tridacnid giant clam research whereas their ecology and behaviour have received much less attention. This study was based on the observation that juvenile fluted giant clams (Tridacna squamosa), when evenly distributed in a tank, will move and aggregate over time. We observed movement in clams ranging from 10 to 313 mm in shell length and ‘climbing’ up the sides of tanks was noted for clams with lengths between 10 and 22 mm. Locomotion also occurred after byssal attachment to the substrate; there was a highly significant association between type of movement (i.e. translation, rotation and no movement) and presence of attachment. Tests for phototaxis were negative. Aggregation was examined by placing clams in regular patterns on grids. After three days in the aquarium and 24 h in the field, their positions were analysed to obtain a statistical parameter for ‘clumpiness’. This was found to be greater in the live clam runs than both random walk and random distribution simulations, suggesting that clams were attracted to conspecifics. The latter was tested by recording clam movement with respect to five types of fixed ‘targets’ (i.e. live clam, fouled clam shell, foul-free clam shell, random inanimate object and none). The test clams moved, non-significantly, towards live clam targets and displayed higher mobility compared to tests with other target objects; a negative correlation between mobility and clam length was also observed. A choice experiment using bidirectional water inflow with clam effluent as one source resulted in clams moving toward the effluent, offering the first direct support for positive chemotaxis among conspecifics in Bivalvia. Together, our results indicate the presence of chemical signalling among clams, leading to movement toward one another and clumping. Aggregation could serve several ecological functions, such as defence against predation, physical stabilisation and facilitation of reproduction. With worldwide decline in natural giant clam densities, the opportunity for conspecific clumping is reduced, and local stocks could be facing increased vulnerability to Allee affects.  相似文献   

18.
Temperature acclimation of respiration may contribute to climatic adaptation and thus differ among populations from contrasting climates. Short-term temperature responses of foliar dark respiration were measured in 33-yr-old trees of jack pine (Pinus banksiana) in eight populations of wide-ranging origin (44-55 degrees N) grown in a common garden at 46.7 degrees N. It was tested whether seasonal adjustments in respiration and population differences in this regard resulted from changes in base respiration rate at 5 degrees C (R(5)) or Q(10) (temperature sensitivity) and covaried with nitrogen and soluble sugars. In all populations, acclimation was manifest primarily through shifts in R(5) rather than altered Q(10). R(5) was higher in cooler periods in late autumn and winter and lower in spring and summer, inversely tracking variation in ambient air temperature. Overall, R(5) covaried with sugars and not with nitrogen. Although acclimation was comparable among all populations, the observed seasonal ranges in R(5) and Q(10) were greater in populations originating from warmer than from colder sites. Population differences in respiratory traits appeared associated with autumnal cold hardening. Common patterns of respiratory temperature acclimation among biogeographically diverse populations provide a basis for predicting respiratory carbon fluxes in a wide-ranging species.  相似文献   

19.
We investigated the relationship between daily and seasonal temperature variation and dark respiratory CO2 release by leaves of snow gum (Eucalyptus pauciflora Sieb. ex Spreng) that were grown in their natural habitat or under controlled‐environment conditions. The open grassland field site in SE Australia was characterized by large seasonal and diurnal changes in air temperature. On each measurement day, leaf respiration rates in darkness were measured in situ at 2–3 h intervals over a 24 h period, with measurements being conducted at the ambient leaf temperature. The rate of respiration at a set measuring temperature (i.e. apparent ‘respiratory capacity’) was greater in seedlings grown under low average daily temperatures (i.e. acclimation occurred), both in the field and under controlled‐environment conditions. The sensitivity of leaf respiration to diurnal changes in temperature (i.e. the Q10 of leaf respiration) exhibited little seasonal variation over much of the year. However, Q10 values were significantly greater on cold winter days (i.e. when daily average and minimum air temperatures were below 6° and –1 °C, respectively). These differences in Q10 values were not due to bias arizing from the contrasting daily temperature amplitudes in winter and summer, as the Q10 of leaf respiration was constant over a wide temperature range in short‐term experiments. Due to the higher Q10 values in winter, there was less difference between winter and summer leaf respiration rates measured at 5 °C than at 25 °C. The net result of these changes was that there was relatively little difference in total daily leaf respiratory CO2 release per unit leaf dry mass in winter and summer. Under controlled‐environment conditions, acclimation of respiration to growth temperature occurred in as little as 1–3 d. Acclimation was associated with a change in the concentration of soluble sugars under controlled conditions, but not in the field. Our data suggest that acclimation in the field may be associated with the onset of cold‐induced photo‐inhibition. We conclude that cold‐acclimation of dark respiration in snow gum leaves is characterized by changes in both the temperature sensitivity and apparent ‘capacity’ of the respiratory apparatus, and that such changes will have an important impact on the carbon economy of snow gum plants.  相似文献   

20.
Following acclimation to 5°, 15° or 25°C for 14days, samples of 30 Dreissena polymorpha (zebra mussels) andCorbicula fluminea (Asian clams) were held in either aerated(control) or extremely hypoxic N2 gassed water (PO2 < 3%of full air saturation). Mortality was negligible in all aeratedcontrols. Mean hypoxia tolerance in D. polymorpha ranged from3–4 days at 25°C to 38–42 days at 5°C. Hypoxiatolerance time of zebra mussels increased significantly withdeclining test temperature (P < 0.001) and increasing acclimationtemperature (P < 0.001). Larger zebra mussels were more tolerantthan smaller individuals. Asian clams were 2–7 times moretolerant of hypoxia than zebra mussels, surviving a mean of11.8 and 35.1 days at 25°C and 15°C, respectively, andwithout mortality for 84 days at 5°C, and were not influencedby temperature acclimation. At 25°C, larger specimens ofAsian clams were less tolerant of hypoxia than smaller individuals.Both species are amongst the least hypoxia tolerant freshwaterbivalve molluscs, reflecting their prevalence in well-oxygenatedshallow water habitats. Prolonged exposure to extreme hypoxiamay provide an efficacious control strategy, particularly forD. polymorpha (Received 12 January 1998; accepted 30 September 1998)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号