首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enterostatin, a pentapeptide released from the exocrine pancreas and gastrointestinal tract, selectively inhibits fat intake through activation of an afferent vagal signaling pathway. This study investigated if the effects of enterostatin were mediated through a CCK-dependent pathway. The series of in vivo and in vitro experiments included studies of 1) the feeding effect of peripheral enterostatin on Otsuka Long Evans Tokushima Fatty (OLETF) rats lacking CCK-A receptors, 2) the effect of CCK-8S on the intake of a two-choice high-fat (HF)/low-fat (LF) diet, 3) the effects of peripheral or central injection of the CCK-A receptor antagonist lorglumide on the feeding inhibition induced by either central or peripheral enterostatin, and 4) the ability of enterostatin to displace CCK binding in a 3T3 cell line expressing CCK-A receptor gene and in rat brain sections. The results showed that OLTEF rats did not respond to enterostatin (300 microg/kg ip) in contrast to the 23% reduction in intake of HF diet in Long Evans Tokushima Otsuka (LETO) control rats. CCK (1 microg/kg ip) decreased the intake of the HF diet in a two-choice diet regime with a compensatory increase in intake of the LF diet. Peripheral injection of lorglumide (300 microg/kg) blocked the feeding inhibition induced by either near-celiac arterial or intracerebroventricular enterostatin, whereas intracerebroventricular lorglumide (5 nmol icv) only blocked the response to intracerebroventricular enterostatin but not to arterial enterostatin. Enterostatin did not bind on CCK-A receptors because neither enterostatin nor its analogs VPDPR and beta-casomorphin displaced [3H]L-364,718 from CCK-A receptors expressed in 3T3 cells or the binding of 125I-CCK-8S from rat brain sections. The data suggest that both the peripheral and central responses to enterostatin are mediated through or dependent on peripheral and central CCK-A receptors.  相似文献   

2.
Hayes MR  Covasa M 《Peptides》2005,26(11):2322-2330
Cholecystokinin (CCK) and serotonin (5-HT) systems have been shown to cooperate interdependently in control of food intake. To assess mechanisms by which CCK and 5-HT systems interact in control of food intake we examined: (1) participation of CCK-1 and 5-HT3 receptors in 5-HT-induced suppression of sucrose intake; (2) the interaction between CCK and 5-HT in suppression of food intake; (3) the role of CCK-1 and 5-HT3 receptors in mediating this interaction. Intraperitoneal administration of 5-HT (0.25, 0.5 and 1.0 mg/kg) significantly reduced intake compared to control in a dose responsive fashion (r2=0.989). Suppression of food intake by 5-HT was significantly attenuated by prior treatment with the 5-HT3 receptor antagonist ondansetron at each 5-HT dose tested (P<0.05), while blockade of CCK-1 receptors by lorglumide had no effect on 5-HT-induced suppression of intake. Administration of CCK-8 (0.5 microg/kg) or 5-HT (0.5 mg/kg) alone significantly reduced sucrose intake by 22.9 and 22.2% respectively, compared to control (P<0.0001). Co-administration of CCK and 5-HT resulted in a synergistic suppression of intake leading to an overall 48.4% reduction in sucrose intake compared to saline (P<0.0001). Concomitant CCK-1 and 5-HT3 receptor blockade by lorglumide and ondansetron respectively, resulted in a complete reversal of the combined CCK and 5-HT-induced suppression of intake. Independent administration of lorglumide or ondansetron did not alter intake compared to control. These studies provide evidence that 5-HT causes suppression in food intake by acting at 5-HT3, not CCK-1 receptors. Furthermore, CCK and 5-HT interact to produce an enhanced suppression of food intake, an effect mediated through concomitant activation of CCK-1 and 5-HT3 receptors.  相似文献   

3.
The present study was undertaken to investigate how the activation of gastric mechanoreceptors by distension of the stomach in conscious gastric fistula rats influences gastric emptying; and the roles of capsaicin sensitive vagal afferent fibres and the 5-HT3, GRP and CCK-A receptors involved in mediating these responses. To activate mechanoreceptors by non-nutrient dependent pathways, methylcellulose in saline was used to distend the stomach (5 cm H2O) and the subsequent emptying of saline was examined immediately, and at 3, 5 and 10 min following distension. Prior distension delayed the subsequent emptying of saline instilled into the stomach compared with non-distended controls (2.28+/-0.09 ml/5 min; P < 0.001). Topical application of capsaicin, completely abolished the distension-induced inhibition of gastric emptying when compared with vehicle treated rats (2.82+/-0.09 vs. 2.38+/-0.04 ml/5 min; P < 0.001). Peripheral administration of a GRP antagonist (2258 U89UJ, 1 mg/kg), and a 5-HT3 antagonist (BRL4369UA, 50 microg/kg) significantly reversed (2.56+/-0.14 ml/5 min; P < 0.05 and 2.61+/-0.07 ml/5 min; P < 0.01; respectively) the delay in gastric emptying induced by distension. When the rats were treated with the CCK-A antagonist, gastric emptying of saline following distension was also significantly facilitated (2.56+/-0.07 ml/5 min; P < 0.001). In contrast, the CCK-B/gastrin receptor antagonist had no significant effect on the distension induced delay in gastric emptying (1.95+/-0.12 ml/5 min). The present results suggest that gastric distension in conscious gastric fistula rats delays gastric emptying by activating capsaicin-sensitive extrinsic afferent nerve fibres. Moreover, the results also indicate that distension-induced mechanisms involve GRP, 5-HT3 and CCK-A receptors, but not CCK-B receptors.  相似文献   

4.
Xu DY  Jia HB 《生理学报》2001,53(5):349-354
实验通过大鼠侧脑室和杏仁核给予5-HT3受体激动剂1-phenylbiguanide(PBG),用3H-TdR掺入法测定脾细胞丝裂原(concanavalin A,Con A和lipopolysaccharide,LPS)刺激增殖效应,用活化脾细胞增殖法测定IL-2生成,MTT法测定自然杀伤(natural killer,NK)细胞活性和用放射免疫测定血浆皮质酮水平,以探讨大鼠杏仁核5-HT3受体在免疫调控中的作用。结果表明:5-HT3受体拮抗剂granisetron(GNT,0.1-0.4mg/kg ip)剂量依赖地增强Con A和LPS刺激的脾细胞增殖,作用在连续给药5d最明显,双侧脑室给予PBG(5ug/side)可增强ConA和LPS刺激的脾细胞增殖效应,作用在连续给药3d最明显,双侧和单侧中共杏仁核给予PBG0.5ug均增强ConA刺激的脾细胞增殖和IL-2生成,底内侧杏仁核给予同剂量PBG仅增强LPS刺激的脾细胞增殖效应,不影响ConA刺激的脾细胞增殖和IL-2生成,中央杏仁核给予PBG升高血浆皮质酮的作用较底侧杏仁核给予等量PBG引起的升高血浆皮质酮作用明显(P<0.01),侧脑室,中央杏仁核和底内杏仁核给予PBG对丝裂原刺激的脾细胞增殖效应影响不同,但均被同时同部位给予GNT所拮抗,提示杏仁核中央核和底内侧核的5-HT3受体可能以不同方式参与ConA或LPS刺激的脾细胞增殖效应的调制。  相似文献   

5.
Cholecystokinin (CCK) is a potential mediator of gastrointestinal vasodilatation during digestion. To determine whether CCK influences sympathetic vasomotor function, we examined the effect of systemic CCK administration on mean arterial blood pressure (MAP), heart rate (HR), lumbar sympathetic nerve discharge (LSND), splanchnic sympathetic nerve discharge (SSND), and the discharge of presympathetic neurons of the rostral ventrolateral medulla (RVLM) in alpha-chloralose-anesthetized rats. CCK (1-8 microg/kg iv) reduced MAP, HR, and SSND and transiently increased LSND. Vagotomy abolished the effects of CCK on MAP and SSND as did the CCK-A receptor antagonist devazepide (0.5 mg/kg iv). The bradycardic effect of CCK was unaltered by vagotomy but abolished by devazepide. CCK increased superior mesenteric arterial conductance but did not alter iliac conductance. CCK inhibited a subpopulation (approximately 49%) of RVLM presympathetic neurons whereas approximately 28% of neurons tested were activated by CCK. The effects of CCK on RVLM neuronal discharge were blocked by devazepide. RVLM neurons inhibited by exogenous CCK acting via CCK-A receptors on vagal afferents may control sympathetic vasomotor outflow to the gastrointestinal tract vasculature.  相似文献   

6.
CCK-resistance in Zucker obese versus lean rats   总被引:4,自引:0,他引:4  
Obese Zucker rats are less sensitive to the satiety effect of CCK than lean litter mates. The present studies further characterised this CCK resistance. Subcutaneous injection of the CCK agonist caerulein dose-dependently decreased food intake in Zucker obese and lean rats whereas the CCK-B agonist gastrin-17 did not. Caerulein at 4 μg/kg, which resulted in CCK plasma bioactivity slightly above postprandial levels, decreased food intake in lean rats but not in obese rats. The decrease in food intake was also more marked at higher caerulein doses (20–100 μg/kg) in lean versus obese rats. In lean animals the satiety effects of the “near physiological” 4 μg/kg caerulein dose was abolished after blockade of vagal afferents with capsaicin, whereas the effects of higher caerulein doses were not. CCK-stimulated amylase secretion from pancreatic acini and binding capacity of 125I- labelled CCK-8 were decreased in obese versus lean rats. The CCK-A antagonist loxiglumide at 20 mg/kg, a dose which abolished the action of all caerulein doses on food intake, failed to alter the food intake either in obese or in lean rats when given without an agonist. The results suggest that the satiety effects of “near physiological” doses of caerulein in lean rats are mediated by vagal afferents whereas pharmacological doses act via non-vagal mechanisms. The differences in CCK's satiety effect between lean and obese rats may be due to differences in CCK-receptor binding and action at peripheral vagal sites. However, the failure of the CCK-A antagonist to increase food intake questions whether any of the effects of exogenous CCK are of physiological relevance.  相似文献   

7.
CCK-A receptors and neurons of the nucleus of the solitary tract (NTS) are involved in the regulation of food intake, and in rats, there is evidence for involvement of an intestinal vagal afferent pathway. Studies investigating the role of CCK-A receptors in activation of NTS neurons using highly selective CCK-A receptor agonists and antagonists have yielded conflicting data. In the present study, we investigated CCK-induced and postprandial activation of NTS neurons, together with food intake studies, in CCK-A receptor-deficient Otsuka Long-Evans Tokushima fatty (OLETF) rats. Activated NTS neurons were detected using immunohistological staining for c-Fos protein. Exogenous CCK increased the number of c-Fos protein-positive cells in the NTS of Sprague-Dawley and CCK-A receptor-intact Long-Evans Tokushima Otsuka (LETO) rats but had no effect in CCK-A receptor-deficient OLETF rats. Food intake-induced c-Fos protein expression in NTS neurons was significantly reduced in CCK-A receptor-deficient OLETF rats compared with Sprague-Dawley or LETO rats. Postprandial c-Fos protein expression in the NTS was also significantly decreased after pretreatment with the CCK-A receptor antagonist MK329 after both short- and long-term fasting periods. Exogenous CCK decreased cumulative food intake in Sprague-Dawley and LETO rats but not in OLETF rats. These data demonstrate that CCK-A receptors are involved in the CCK- and food-induced c-Fos protein expression in the NTS. Taken together with the results of the food intake studies, this suggests that activation of CCK-A receptors is involved in the postprandial activation of NTS neurons and in the regulation of food intake.  相似文献   

8.
The selective type A and B cholecystokinin (CCK) receptor antagonists L364,718 and L365,260 were used to identify the receptor subtype that mediates the satiety effect of endogenous CCK. Male rats (n = 12–13/group), fed ground rat chow ad lib, received L364,718 (0, 1, 10, 100, or 1000 μg/kg IP) or L365,260 (0, 0.1, 1, 10, 100, 1000, or 10,000 μg/kg IP) 2 h after lights off, and food intake was measured 1.5, 3.5, and 5.5 h later. L364,718 significantly stimulated 1.5-h food intake by more than 40% at 10 μg/kg and higher doses; cumulative intake at 3.5 and 5.5 h remained elevated by about 20% at 1000 and 100 μg/kg of L364,718, respectively. In contrast, L365,260 had no significant stimulatory effect on feeding at any dose. The potency of L365,260 for antagonizing gastrin-stimulated gastric acid secretion was examined in unanesthetized rats. Male rats (n = 14), prepared with gastric and jugular vein cannulas, received doubling doses of gastrin (G-17I) (0.16–5 nmol/kg/h IV), each dose for 30 min, and gastric juice was collected for each 30-min period. G-17I stimulated gastric acid output dose dependently; the minimal effective dose was 0.16 nmol/kg/h, while maximal output (5-fold above basal) occurred at 5 nmol/kg/h. L365,260 (0, 1, 10, 100, 1000, or 10,000 μg/kg IV), administered 30 min before continuous infusion of G-17I (1.25 or 5 nmol/kg/h), significantly inhibited acid output only at 10,000 μg/kg; cumulative 60-min output was decreased by 60%. These results suggest that CCK acts at CCK-A receptors to produce satiety during the dark period in ad lib-feeding rats.  相似文献   

9.
(1) Administration of arginine vasopressin (AVP) in the ventral septal area (VSA) or intracerebroventricularly (i.c.v.) is thought to attenuate lipopolysaccharide (LPS) or prostaglandin (PG) E2 fevers in rabbits and rats by acting on the V1 receptor. (2) We found that the fever response of rabbits to intravenous LPS (200 ng/kg) or intra-VSA PGE2 (500 ng) was not attenuated but enhanced by intra-VSA AVP (5 μg); a pharmacological analysis showed that this fever-enhancing effect was mediated by the V2 receptor. (3) The febrile response of rats to intraperitoneal (50 μg/kg) or i.c.v. (100 ng) LPS was unaffected by i.c.v. AVP (2.5–100 ng). (4) The role of AVP in fever should be re-examined.  相似文献   

10.
It has been suggested that proinflammatory cytokines communicate to the brain via a neural pathway involving activation of vagal afferents by interleukin-1beta (IL-1beta), in addition to blood-borne routes. In support, subdiaphragmatic vagotomy blocks IL-1beta-induced, brain-mediated responses such as fever. However, vagotomy has also been reported to be ineffective. Neural signaling would be expected to be especially important at low doses of cytokine, when local actions could occur, but only very small quantities of cytokine would become systemic. Here, we examined core body temperature after intraperitoneal injections of three doses of recombinat human IL-1beta (rh-IL-1beta). Subdiaphragmatic vagotomy completely blocked the fever produced by 0.1 microg/kg, only partially blocked the fever produced by 0.5 microg/kg, and had no effect at all on the fever that followed 1.0 microg/kg rh-IL-1beta. Blood levels of rh-IL-1beta did not become greater than normal basal levels of endogenous rat IL-beta until the 0.5-microg/kg dose nor was IL-1beta induced in the pituitary until this dose. These results suggest that low doses of intraperitoneal IL-1beta induce fever via a vagal route and that dose may account for some of the discrepancies in the literature.  相似文献   

11.
We have demonstrated that after intraperitoneal lipopolysaccharide (LPS) injection, old rats mount fevers similar to those of young rats at an ambient temperature (Ta) of 31 degrees C, but not at 21 degrees C. The same is true for intraperitoneal or intravenous IL-1beta administration. The underlying mechanism responsible for blunted fever in old rats may be a deficiency in communication between the periphery and the brain. Possibly, peripheral cytokine actions are altered in old rats, such that the signal that reaches the brain is diminished. Here, we hypothesized that at standard laboratory temperatures, not enough IL-1beta is reaching the brain for fever to occur and that a warmer Ta would increase the influx of IL-1beta into the brain, enabling old rats to generate fever. Young (3-5 mo) and old (23-29 mo) Long-Evans rats were maintained for 3 days at either Ta 21 or 31 degrees C prior to intravenous injection with radiolabeled IL-1beta to measure passage across the blood-brain barrier. Young rats showed similar influx of IL-1beta into the brain at the two Tas, but old rats showed significant influx only at the warmer Ta. These data suggest that the lack of fever at a cool Ta may be due to a reduced influx of IL-1beta into the brain.  相似文献   

12.
CCK type 1 (CCK1) receptor antagonists differing in blood-brain barrier permeability were used to test the hypothesis that satiety is mediated in part by CCK action at CCK1 receptors on vagal sensory nerves innervating the small intestine. Devazepide penetrates the blood-brain barrier; A-70104, the dicyclohexylammonium salt of N alpha-3-quinolinoyl-D-Glu-N,N-dipentylamide, does not. At dark onset, non-food-deprived control rats and rats with subdiaphragmatic vagotomies received a bolus injection of devazepide (2.5 micromol/kg i.v.) or a 3-h infusion of A-70104 (3 micromol.kg(-1).h(-1) i.v.) either alone or coadministered with a 2-h intragastric infusion of peptone (0.75 or 1 g/h). Food intake was determined from continuous computer recordings of changes in food bowl weight. In control rats both antagonists stimulated food intake and attenuated the anorexic response to intragastric infusion of peptone. In contrast, only devazepide was effective in stimulating food intake in vagotomized rats. Thus endogenous CCK appears to act both at CCK1 receptors beyond the blood-brain barrier and by a CCK1 receptor-mediated mechanism involving abdominal vagal nerves to inhibit food intake.  相似文献   

13.
Febrile responses to bacterial pathogens are attenuated near term of pregnancy in several mammalian species. It is unknown, however, whether this reflects a fundamental physiological adaptation of female rats or whether it is specific to pregnancy. The aims of this study therefore were 1) to determine whether febrile responses to the bacterial endotoxin lipopolysaccharide (LPS) are attenuated in female vs. male rats and, if so, to identify possible mechanisms involved in modulating this and 2) to assess whether plasma concentrations of the anti-inflammatory cytokine, interleukin-1 receptor antagonist (IL-1ra), an important regulator of fever, are dependent on the physiological state of the female and could therefore be involved in modulating febrile responses. We found febrile responses were attenuated in cycling female vs. male rats and also in near-term pregnant dams vs. cycling females after intraperitoneal injection of LPS (0.05 mg/kg). Plasma levels of IL-1ra were significantly greater in female rats after injection of LPS, particularly during pregnancy, than in males. This was accompanied by attenuated levels of hypothalamic IL-1beta and cyclooxygenase-2 mRNA, two key mediators of the febrile response, in female rats. Furthermore, increasing plasma levels of IL-1ra in male rats by intraperitoneal administration of the recombinant antagonist attenuated hypothalamic mRNA levels of these mediators after LPS. These data suggest that there is a fundamental difference in febrile response to LPS between the genders that is likely regulated by IL-1ra. This may be an important mechanism that protects the developing fetus from potentially deleterious consequences of maternal fever during pregnancy.  相似文献   

14.
Capsaicin treatment destroys vagal afferent C fibers and markedly attenuates reduction of food intake and induction of hindbrain Fos expression by CCK. However, both anatomical and electrophysiological data indicate that some gastric vagal afferents are not destroyed by capsaicin. Because CCK enhances behavioral and electrophysiological responses to gastric distension in rats and people, we hypothesized that CCK might enhance the vagal afferent response to gastric distension via an action on capsaicin-insensitive vagal afferents. To test this hypothesis, we quantified expression of Fos-like immunoreactivity (Fos) in the dorsal vagal complex (DVC) of capsaicin-treated (Cap) and control rats (Veh), following gastric balloon distension alone and in combination with CCK injection. In Veh rats, intraperitoneal CCK significantly increased DVC Fos, especially in nucleus of the solitary tract (NTS), whereas in Cap rats, CCK did not significantly increase DVC Fos. In contrast to CCK, gastric distension did significantly increase Fos expression in the NTS of both Veh and Cap rats, although distension-induced Fos was attenuated in Cap rats. When CCK was administered during gastric distension, it significantly enhanced NTS Fos expression in response to distension in Cap rats. Furthermore, CCK's enhancement of distension-induced Fos in Cap rats was reversed by the selective CCK-A receptor antagonist lorglumide. We conclude that CCK directly activates capsaicin-sensitive C-type vagal afferents. However, in capsaicin-resistant A-type afferents, CCK's principal action may be facilitation of responses to gastric distension.  相似文献   

15.
Acute starvation attenuates the fever response to pathogens in several mammalian species. The underlying mechanisms responsible for this effect are not fully understood but may involve a compromised immune and/or thermoregulatory function, both of which are prerequisites for fever generation. In the present study, we addressed whether the impaired innate immune response contributes to the reported attenuation of the fever response in fasted rats during LPS-induced inflammation. Animals fasted for 48 h exhibited a significant and progressive hypothermia prior to drug treatment. An intraperitoneal injection of LPS (100 microg/kg) resulted in a significantly attenuated fever in the fasted animals compared with the fed counterparts. This attenuation was accompanied by the diminution in the concentration of some [TNF and IL-1 receptor antagonist (RA)] but not all (IL-1beta and IL-6) of the plasma cytokines normally elevated in association with the fever response. Nevertheless, fasting had no effect on the LPS-induced inflammatory responses at the level of the brain, as assessed by mRNA expressions of inhibitory factor(I)-kappaB, suppressor of cytokine signaling (SOCS3), IL-1beta, cyclooxygenase (COX)-2, and microsomal PGE synthase (mPGES)-1 in the hypothalamus, as well as by PGE2 elevations in the cerebrospinal fluid. In contrast, fasting significantly attenuated the fever response to central PGE2 injection. These results show that fasting does not alter the febrigenic signaling from the periphery to the brain important for central PGE2 synthesis but does affect thermoregulatory mechanisms downstream of and/or independent of central PGE2 action.  相似文献   

16.
Bacterial lipopolysaccharide (LPS) induces fever that is mediated by pyrogenic cytokines such as interleukin (IL)-1 beta. We hypothesized that the anti-inflammatory cytokine IL-10 modulates the febrile response to LPS by suppressing the production of pyrogenic cytokines. In rats, intravenous but not intracerebroventricular infusion of IL-10 was found to attenuate fever induced by peripheral administration of LPS (10 microg/kg iv). IL-10 also suppressed LPS-induced IL-1 beta production in peripheral tissues and in the brain stem. In contrast, central administration of IL-10 attenuated the febrile response to central LPS (60 ng/rat icv) and decreased IL-1 beta production in the hypothalamus and brain stem but not in peripheral tissues and plasma. Furthermore, intravenous LPS upregulated expression of IL-10 receptor (IL-10R1) mRNA in the liver, whereas intracerebroventricular LPS enhanced IL-10R1 mRNA in the hypothalamus. We conclude that IL-10 modulates the febrile response by acting in the periphery or in the brain dependent on the primary site of inflammation and that its mechanism of action most likely involves inhibition of local IL-1 beta production.  相似文献   

17.
LPS injected intraperitoneally decreases fasted plasma levels of ghrelin at 3 h postinjection in rats. We characterized the inhibitory action of LPS on plasma ghrelin and whether exogenous ghrelin restores LPS-induced suppression of food intake and gastric emptying in fasted rats. Plasma ghrelin and insulin and blood glucose were measured after intraperitoneal injection of LPS, intravenous injection of IL-1beta and urocortin 1, and in response to LPS under conditions of blockade of IL-1 or CRF receptors by subcutaneous injection of IL-1 receptor antagonist (IL-1Ra) or astressin B, respectively, and prostaglandin (PG) synthesis by intraperitoneal indomethacin. Food intake and gastric emptying were measured after intravenous injection of ghrelin at 5 h postintraperitoneal LPS injection. LPS inhibited the elevated fasted plasma ghrelin levels by 47.6 +/- 4.9%, 58.9 +/- 3.3%, 74.4 +/- 2.7%, and 48.9 +/- 8.7% at 2, 3, 5, and 7 h postinjection, respectively, and values returned to preinjection levels at 24 h. Insulin levels were negatively correlated to those of ghrelin, whereas there was no significant correlation between glucose and ghrelin. IL-1Ra and indomethacin prevented the first 3-h decline in ghrelin levels induced by LPS, whereas astressin B did not. IL-1beta inhibited plasma ghrelin levels, whereas urocortin 1 had no influence. Ghrelin injected intravenously prevented an LPS-induced 87% reduction of gastric emptying and 61% reduction of food intake. These data showed that IL-1 and PG pathways are part of the early mechanisms by which LPS suppresses fasted plasma ghrelin and that exogenous ghrelin can normalize LPS-induced-altered digestive functions.  相似文献   

18.
We have previously shown that serotonin type-3 (5-HT3) receptors mediate cholecystokinin (CCK)-induced satiation and that this effect is dependent on postoropharyngeal feedback. However, the independent contributions of gastric and intestinal feedback in 5-HT3 receptor mediation of suppression of food intake by CCK have not been determined. Using a sham-feeding preparation combined with intraduodenal sucrose infusion, we show that blockade of 5-HT3 receptors by ondansetron (1 mg/kg ip) had no effect on suppression of sham feeding by intraduodenal 15% sucrose infusion (4 ml/10 min), CCK (2 microg/kg ip) administration, or the combination of the two treatments. In separate experiments consisting of either sham-feeding rats that received gastric distension with the use of a balloon or real-feeding rats whose stomachs were distended using gastric loads of saline after the occlusion of the pylorus, we tested the hypothesis that gastric feedback signals are necessary for activation of 5-HT3 receptors. Ondansetron significantly attenuated suppression of sham sucrose intake after a 10-ml gastric balloon distension (30.5 +/- 2.2 vs. 20.2 +/- 2.2 ml, respectively) and gastric distension combined with CCK (21.9 +/- 1.4 vs. 12.0 +/- 1.7 ml, respectively). When intestinal feedback was eliminated in a real-feeding paradigm by closing the pylorus using a cuff preparation, ondansetron attenuated suppression of sucrose intake produced by a 10-ml saline gastric load (6.8 +/- 0.7 vs. 4.2 +/- 0.4 ml, respectively). Finally, when CCK (1 microg/kg) was administered in combination with a 5-ml saline gastric load in a real-feeding preparation, ondansetron significantly attenuated suppression of sucrose intake by CCK (9.0 +/- 0.9 vs. 6.3 +/- 0.5 ml, respectively), as well as the enhanced suppression of intake by CCK plus gastric load (6.9 +/- 0.6 vs. 4.6 +/- 0.5 ml, respectively). These findings demonstrate that CCK-induced activation of 5-HT3 receptors requires gastric, but not intestinal feedback.  相似文献   

19.
Pineal hormone melatonin is proposed as a potential treatment for severe sleep disturbances, and various gastrointestinal disorders. It was shown that melatonin increases intestinal motility and influences the activity of myoelectric complexes of the gut. The aim of the study was to evaluate the mechanisms of the effect of exogenous melatonin on gastric emptying rate. Male Sprague-Dawley rats were fitted with gastric cannulas under anesthesia. The rate of gastric emptying of saline was determined after instillation into the gastric fistula, from the volume and phenol red concentrations recovered after 5 min. Melatonin injected intraperitoneally (ip; 0.001-100 mg/kg) delayed gastric emptying rate of saline at 3 and 10 mg/kg doses. When administered ip 15 min before melatonin (10 mg/kg) injections, CCK2 (L-365,260, 1 mg/kg) or 5-HT3 receptor (ramosetrone, 50 microg/kg) blockers abolished melatonin-induced delay in gastric emptying rate, while the blockade of sympathetic ganglia (bretylium tosylate, 15 mg/kg) significantly reduced the delay in gastric emptying rate. CCK1 receptor blocker (L-364,718, 1 mg/kg) had no significant effect on the delaying action of melatonin. Our results indicate that pharmacological doses of melatonin delay gastric emptying via mechanisms that involve CCK2 and 5-HT3 receptors. Moreover, it appears that exogenous melatonin inhibits gastric motility in part by activating sympathetic neurons.  相似文献   

20.
Feeding induces increased sleep in several species, including rats. The aim of the study was to determine if CCK plays a role in sleep responses to feeding. We induced excess eating in rats by 4 days of starvation and studied the sleep responses to refeeding in control and CCK-A receptor antagonist-treated animals. Sleep was recorded on 2 baseline days when food was provided ad libitum. After the starvation period, sleep was recorded on 2 refeeding days when the control rats (n = 8) were injected with vehicle and the experimental animals (n = 8) received intraperitoneal injections of L-364,718 (500 microg/kg, on both refeeding days). In the control group, refeeding caused increases in rapid eye movement sleep (REMS) and non-REMS (NREMS) and decreases in NREMS intensity as indicated by the slow-wave activity (SWA) of the electroencephalogram. CCK-A receptor antagonist treatment completely prevented the SWA responses and delayed the NREMS responses to refeeding; REMS responses were not simply abolished, but the amount of REMS was below baseline after the antagonist treatment. These results suggest that endogenous CCK, acting on CCK-A receptors, may play a key role in eliciting postprandial sleep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号