首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Coral recruitment is important in sustaining coral reef ecosystems and contributing to their recovery after disturbances. Despite widespread acceptance that crustose coralline algae (CCA) positively influence coral recruitment success, especially by enhancing coral settlement and early post-settlement stages, there are no experimental data on the effects of CCA species on late post-settlement survival and growth of corals. This study tested the impact of four common, thick-crusted CCA species from two habitats (exposed and subcryptic) on the survival and growth of two recruit size categories of the coral genus Pocillopora. Coral recruits and CCA were transplanted adjacent to each other using epoxy in Petri dishes directly attached to the reef substratum on the forereef of Moorea (French Polynesia) in a 1-year field experiment. In the subcryptic habitat, survival of small-sized recruits adjacent to subcryptic CCA (0–5%) was lower than adjacent to dead CCA (35%), while in the exposed habitat, survival of small-sized recruits adjacent to exposed CCA (20–25%) was higher than adjacent to dead CCA (5%). None of the CCA species affected the survival of large-sized recruits within exposed or subcryptic habitats. However, the growth of large-sized recruits adjacent to subcryptic CCA was lower than adjacent to dead CCA. Recruits adjacent to exposed CCA died less from competition with turf algae relative to dead CCA, while recruits adjacent to subcryptic CCA frequently died from overgrowth by CCA. These results suggest that, in subcryptic habitats, CCA can reduce the survival and/or growth of coral recruits via direct competitive overgrowth, while in exposed habitats, they can enhance coral recruit survival by alleviating competition with turf algae. Importantly, our study demonstrates that not all CCA species are beneficial to the survival and growth of coral recruits and that there is considerable variability in both the outcome and process of competition between CCA and corals.

  相似文献   

2.
Temporal dynamics of larval survival were examined in vitro in four broadcast-spawning reef coral species, Acropora hyacinthus, A. japonica, A. solitaryensis, and Goniastrea pectinata. Larval size was treated as an important characteristic that may relate to larval lifespan. Two patterns were observed in larval survival dynamics between the three Acropora species (mean initial larval size; 0.05-0.08 mm(3)) and G. pectinata (0.02 mm(3)), based on the timing of a sharp drop in larval survival rates (ca. > 50% reduction over a 1-2 week period). Consequently, the majority of larvae of the three Acropora species had a lifespan of less than 2-3 weeks, whereas those of G. pectinata were extended a further 2-3 weeks despite the smaller larval size. No significant relationship was detected between the initial larval size and larval lifespan in any of the four reef coral species. These results suggest that (1) larval dispersal of spawning Acropora species may be on a more local scale than that of G. pectinata and most other reef coral species previously reported, and (2) larval size is not a good estimator of larval lifespan in reef coral species.  相似文献   

3.
Disturbed coral reefs are often dominated by dense mat- or canopy-forming assemblages of macroalgae. This study investigated how such dense macroalgal assemblages change the chemical and physical microenvironment for understorey corals, and how the altered environmental conditions affect the physiological performance of corals. Field measurements were conducted on macroalgal-dominated inshore reefs in the Great Barrier Reef in quadrats with macroalgal biomass ranging from 235 to 1029 g DW m−2 dry weight. Underneath mat-forming assemblages, the mean concentration of dissolved oxygen was reduced by 26% and irradiance by 96% compared with conditions above the mat, while concentrations of dissolved organic carbon and soluble reactive phosphorous increased by 26% and 267%, respectively. The difference was significant but less pronounced under canopy-forming assemblages. Dissolved oxygen declined and dissolved inorganic carbon and alkalinity increased with increasing algal biomass underneath mat-forming but not under canopy-forming assemblages. The responses of corals to conditions similar to those found underneath algal assemblages were investigated in an aquarium experiment. Coral nubbins of the species Acropora millepora showed reduced photosynthetic yields and increased RNA/DNA ratios when exposed to conditions simulating those underneath assemblages (pre-incubating seawater with macroalgae, and shading). The magnitude of these stress responses increased with increasing proportion of pre-incubated algal water. Our study shows that mat-forming and, to a lesser extent, canopy-forming macroalgal assemblages alter the physical and chemical microenvironment sufficiently to directly and detrimentally affect the metabolism of corals, potentially impeding reef recovery from algal to coral-dominated states after disturbance. Macroalgal dominance on coral reefs therefore simultaneously represents a consequence and cause of coral reef degradation.  相似文献   

4.
Encrusting calcareous organisms such as bryozoans, crustose coralline algae (CCA), foraminiferans, and serpulid worms are integral components of tropical framework-building reefs. They can contribute calcium carbonate to the reef framework, stabilise the substrate, and promote larval recruitment of other framework-building species (e.g. coral recruits). The percentage cover of encrusting organisms and their rates of carbonate production (g m−2 year−1) were assessed at four sites within a coastal embayment, along a gradient of riverine influence (high-low). As the orientation and type of substrate is thought to influence recruitment of encrusting organisms, organisms recruiting to both natural (the underside of platy corals) and experimental substrates were assessed. The effect of substrate exposure under different levels of riverine influence was assessed by orientating experimental substrates to mimic cryptic and exposed reef habitats (downwards-facing vs upwards-facing tiles) at each site. Cryptic experimental tiles supported similar encruster assemblages to those recruiting to the underneath (cryptic side) of platy corals, suggesting that tiles can be used as an experimental substrate to assess encruster recruitment in reef systems. Encruster cover, in particular CCA, and carbonate production was significantly higher at low-impact (clear water), high wave energy sites when compared to highly riverine impacted (turbid water), low wave energy sites. Cryptically orientated substrates supported a greater diversity of encrusting organisms, in particular serpulid worms and bryozoans. The inverse relationships observed between riverine inputs and encrusters (total encruster cover and carbonate production) have implications for both the current and future rates and styles of reefal framework production.  相似文献   

5.
High cross-fertilization rates in vitro and non-monophyletic patterns in molecular phylogenies challenge the taxonomic status of species in the coral genus Acropora. We present data from eight polymorphic allozyme loci that indicate small, but significant, differentiation between sympatric populations of Acropora cytherea and Acropora hyacinthus (F(ST) = 0.025-0.068, p < 0.05), a pair of acroporid corals with very high interspecific fertilization rates in vitro. Although no fixed allelic differences were found between these species, the absence of genetic differentiation between widely allopatric populations suggests that allele frequency differences between A. cytherea and A. hyacinthus in sympatry are biologically significant. By contrast, populations of Acropora tenuis, a species which spawns 2-3 hours earlier and shows low cross-fertilization rates with congeners in vitro, were clearly distinct from A. cytherea and A. hyacinthus (F(ST) = 0.427-0.465, p < 0.05). Moreover, allopatric populations of A. tenuis differed significantly, possibly as a consequence of its relatively short period of larval competency. Our results effectively rule out the possibility that A. hyacinthus and A. cytherea are morphotypes within a single species, and indicate that hybridization occurs relatively infrequently between these taxa in nature.  相似文献   

6.
Sexual propagation of corals specifically for reef rehabilitation remains largely experimental. In this study, we refined low technology culture and transplantation approaches and assessed the role of colony size and age, at time of transfer from nursery to reef, on subsequent survival. Larvae from Acropora millepora were reared from gametes and settled on engineered substrates, called coral plug-ins, that were designed to simplify transplantation to areas of degraded reef. Plug-ins, with laboratory spawned and settled coral recruits attached, were maintained in nurseries until they were at least 7 months old before being transplanted to replicate coral limestone outcrops within a marine protected area until they were 31 months old. Survival rates of transplanted corals that remained at the protected in situ nursery the longest were 3.9–5.6 times higher than corals transplanted to the reef earlier, demonstrating that an intermediate ocean nursery stage is critical in the sexual propagation of corals for reef rehabilitation. 3 years post-settlement, colonies were reproductively mature, making this one of few published studies to date to rear a broadcasting scleractinian from eggs to spawning adults. While our data show that it is technically feasible to transplant sexually propagated corals and rear them until maturity, producing a single 2.5-year-old coral on the reef cost at least US$60. ‘What if’ scenarios indicate that the cost per transplantable coral could be reduced by almost 80 %, nevertheless, it is likely that the high cost per coral using sexual propagation methods would constrain delivery of new corals to relatively small scales in many countries with coral reefs.  相似文献   

7.
Removing predatory fishes has effects that cascade through ecosystems via interactions between species and functional groups. In Kenyan reef lagoons, fishing-induced trophic cascades produce sea urchin-dominated grazing communities that greatly reduce the overall cover of crustose coralline algae (CCA). Certain species of CCA enhance coral recruitment by chemically inducing coral settlement. If sea urchin grazing reduces cover of settlement-inducing CCA, coral recruitment and hence juvenile coral abundance may also decline on fished reefs. To determine whether fishing-induced changes in CCA influence coral recruitment and abundance, we compared (1) CCA taxonomic compositions and (2) taxon-specific associations between CCA and juvenile corals under three fisheries management systems: closed, gear-restricted, and open-access. On fished reefs (gear-restricted and open-access), abundances of two species of settlement-inducing CCA, Hydrolithon reinboldii and H. onkodes, were half those on closed reefs. On both closed and fished reefs, juveniles of four common coral families (Poritidae, Pocilloporidae, Agariciidae, and Faviidae) were more abundant on Hydrolithon than on any other settlement substrate. Coral densities were positively correlated with Hydrolithon spp. cover and were significantly lower on fished than on closed reefs, suggesting that fishing indirectly reduces coral recruitment or juvenile success over large spatial scales via reduction in settlement-inducing CCA. Therefore, managing reefs for higher cover of settlement-inducing CCA may enhance coral recruitment or juvenile survival and help to maintain the ecological and structural stability of reefs.  相似文献   

8.
The settlement specificity of two threatened Caribbean corals, Acropora palmata and A. cervicornis, was tested by measuring their rates of larval metamorphosis in response to crustose coralline algae (CCA) and other substrata. In the no-choice experiments, the coral larvae were placed in six treatments: filtered seawater (FSW), a fragment of biofilmed dead skeleton of A. palmata, or a fragment of one of four species of CCA (Hydrolithon boergesenii, Porolithon pachydermum, Paragoniolithon solubile, and Titanoderma prototypum). Within each CCA treatment, there were three different substrata on which to settle and metamorphose: (1) the CCA surface, (2) the rock under the CCA, or (3) the plastic dish. The 5-day-old larvae of both A. palmata and A. cervicornis had similar rates of total metamorphosis (all substrata combined) in every treatment (excluding FSW) even in the absence of CCA. However, there were differences in larval behavior among the CCA species since the larvae settled and metamorphosed on different substrata in the presence of different CCA species. In the no-choice experiments the larvae of both corals had higher rates of metamorphosis on the top surfaces of H. boergesenii and/or T. prototypum than on P. pachydermum. In the choice experiments, the coral larvae were offered two species of CCA in the same dish. When given a choice, both species of coral larvae had more settlement and metamorphosis on the surface of H. boergesenii or T. prototypum or clean rock than onto the surface of P. solubile. After 6 weeks in the field, transplanted A. palmata recruits had approximately 15% survival on both T. prototypum and H. boergesenii, but A. cervicornis recruits only survived on T. prototypum (13%). Some, but not all, CCA species facilitated the larval settlement and post-settlement survival of these two threatened corals, highlighting the importance of benthic community composition for successful coral recruitment.  相似文献   

9.
Nichole Price 《Oecologia》2010,163(3):747-758
Habitat selection can determine the distribution and performance of individuals if the precision with which sites are chosen corresponds with exposure to risks or resources. Contrastingly, facilitation can allow persistence of individuals arriving by chance and potentially maladapted to local abiotic conditions. For marine organisms, selection of a permanent attachment site at the end of their larval stage or the presence of a facilitator can be a critical determinant of recruitment success. In coral reef ecosystems, it is well known that settling planula larvae of reef-building corals use coarse environmental cues (i.e., light) for habitat selection. Although laboratory studies suggest that larvae can also use precise biotic cues produced by crustose coralline algae (CCA) to select attachment sites, the ecological consequences of biotic cues for corals are poorly understood in situ. In a field experiment exploring the relative importance of biotic cues and variability in habitat quality to recruitment of hard corals, pocilloporid and acroporid corals recruited more frequently to one species of CCA, Titanoderma prototypum, and significantly less so to other species of CCA; these results are consistent with laboratory assays from other studies. The provision of the biotic cue accurately predicted coral recruitment rates across habitats of varying quality. At the scale of CCA, corals attached to the “preferred” CCA experienced increased survivorship while recruits attached elsewhere had lower colony growth and survivorship. For reef-building corals, the behavioral selection of habitat using chemical cues both reduces the risk of incidental mortality and indicates the presence of a facilitator.  相似文献   

10.
Despite widespread acceptance that competition between scleractinian corals and benthic algae is important to the structure of coral reef communities, there is little direct experimental evidence that corals and algae do compete, and very little data on the processes and causality of their interactions. Most available evidence is observational or correlative, with intrinsic risks of confounded causality. This paper reviews and categorises the available evidence, concluding that competition between corals and algae probably is widespread on coral reefs, but also that the interaction varies considerably. Widespread replacement of corals by algae may often indicate coral mortality due to external disturbances, rather than competitive overgrowth, but may lead to competitive inhibition of coral recruitment, with consequences for reef recovery. We list eight specific processes by which corals and algae may affect each other, and suggest life history properties that will influence which of these interactions are possible. We propose a matrix for algal effects on corals, which lists the subset of processes possible for each combination of coral life form and algal functional group. This table provides a preliminary framework for improved understanding and interpretation of coral-algal interactions.  相似文献   

11.
Tropical reefs are dynamic ecosystems that host diverse coral assemblages with different life-history strategies. Here, we quantified how juvenile (<50 mm) coral demographics influenced benthic coral structure in reef flat and reef slope habitats on the southern Great Barrier Reef, Australia. Permanent plots and settlement tiles were monitored every six months for three years in each habitat. These environments exhibited profound differences: the reef slope was characterised by 95% less macroalgal cover, and twice the amount of available settlement substrata and rates of coral settlement than the reef flat. Consequently, post-settlement coral survival in the reef slope was substantially higher than that of the reef flat, and resulted in a rapid increase in coral cover from 7 to 31% in 2.5 years. In contrast, coral cover on the reef flat remained low (~10%), whereas macroalgal cover increased from 23 to 45%. A positive stock-recruitment relationship was found in brooding corals in both habitats; however, brooding corals were not directly responsible for the observed changes in coral cover. Rather, the rapid increase on the reef slope resulted from high abundances of broadcast spawning Acropora recruits. Incorporating our results into transition matrix models demonstrated that most corals escape mortality once they exceed 50 mm, but for smaller corals mortality in brooders was double those of spawners (i.e. acroporids and massive corals). For corals on the reef flat, sensitivity analysis demonstrated that growth and mortality of larger juveniles (21–50 mm) highly influenced population dynamics; whereas the recruitment, growth and mortality of smaller corals (<20 mm) had the highest influence on reef slope population dynamics. Our results provide insight into the population dynamics and recovery trajectories in disparate reef habitats, and highlight the importance of acroporid recruitment in driving rapid increases in coral cover following large-scale perturbation in reef slope environments.  相似文献   

12.
Restoration of rare corals is desirable and restoration projects are fairly common, but scientific evaluation of this approach is limited. We tested several techniques for transplant and restabilization of Acropora palmata (the elkhorn coral), an ecologically important Caribbean coral whose populations have suffered severe declines. In rough weather, fragments break‐off colonies of branching corals like A. palmata as a normal form of asexual reproduction. We transplanted naturally produced coral fragments from remnant populations to nearby restoration sites. Untouched control fragments at the donor site died faster and grew slower than fragments attached to the reef, so attaching fragments to the reef is beneficial. Transplanted fragments grew and died at a rate similar to fragments left at the donor site (both groups were attached to the reef), so there were no effects of moving fragments or differences in habitat quality between donor and restoration sites. Growth and survival were similar using four methods of attaching fragments to the reef: cable ties, two types of epoxy resin, and hydrostatic cement. Corals sometimes compete with the macroalgae that dominate degraded reefs, and clearing surrounding algae improved the growth of fragments. After 4 years, transplanted fragments grew to 1,450 cm2 in area and so were potentially sexually active. Because the methods tested are simple and cheap, they could be used by volunteer recreational divers to restore locally extirpated A. palmata populations or to enhance reefs where natural recovery is slow.  相似文献   

13.
Restoration of degraded coral reef communities is dependent on successful recruitment and survival of new coral planulae. Degraded reefs are often characterized by high cover of fleshy algae and high microbial densities, complemented by low abundance of coral and coral recruits. Here, we investigated how the presence and abundance of macroalgae and microbes affected recruitment success of a common Hawaiian coral. We found that the presence of algae reduced survivorship and settlement success of planulae. With the addition of the broad-spectrum antibiotic, ampicillin, these negative effects were reversed, suggesting that algae indirectly cause planular mortality by enhancing microbial concentrations or by weakening the coral’s resistance to microbial infections. Algae further reduced recruitment success of corals as planulae preferentially settled on algal surfaces, but later suffered 100% mortality. In contrast to survival, settlement was unsuccessful in treatments containing antibiotics, suggesting that benthic microbes may be necessary to induce settlement. These experiments highlight potential complex interactions that govern the relationships between microbes, algae and corals and emphasize the importance of microbial dynamics in coral reef ecology and restoration. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
A rapid benthic line-transect survey method for use by non-specialist observers is described. At both Davies Reef (mid-continental shelf) and Myrmidon Reef (outer-continental shelf) in the central Great Barrier Reef a set of 6 sites of varying depths on the reef flat, crest and slope were sampled using this method. At least 10 contiguous 10 m transects were made at each site. Benthic organisms were recorded as life forms with categories based on both high level taxa and morphologies, and including scleractinian corals, alcyonarians, sponges, algae and others. Percentage cover data for 19 benthic categories are presented for all sites. Coral cover on both reefs is high on the crest and slope but low on the reef flat. At all sites the cover of soft corals and sponges is much less than cover of hard corals and algae. Abundances of soft corals and sponges increase with depth. Analysis of gaps between hard corals show that many colonies grow close to each other (<1 cm)even when total coral cover is low.  相似文献   

15.
Caribbean reef corals have declined precipitously since the 1980s due to regional episodes of bleaching, disease and algal overgrowth, but the extent of earlier degradation due to localised historical disturbances such as land clearing and overfishing remains unresolved. We analysed coral and molluscan fossil assemblages from reefs near Bocas del Toro, Panama to construct a timeline of ecological change from the 19th century-present. We report large changes before 1960 in coastal lagoons coincident with extensive deforestation, and after 1960 on offshore reefs. Striking changes include the demise of previously dominant staghorn coral Acropora cervicornis and oyster Dendrostrea frons that lives attached to gorgonians and staghorn corals. Reductions in bivalve size and simplification of gastropod trophic structure further implicate increasing environmental stress on reefs. Our paleoecological data strongly support the hypothesis, from extensive qualitative data, that Caribbean reef degradation predates coral bleaching and disease outbreaks linked to anthropogenic climate change.  相似文献   

16.
Colonies of two scleractinian reef coral species, Acropora longicyathus and Acropora aspera were transplanted into patch reefs at One Tree Reef, Great Barrier Reef, Australia as part of the ENCORE experiment. These corals and colonies of A. aspera which were naturally present in the patch reefs were exposed to four treatments over two years: controls with normal seawater, elevated levels of nitrogen only, phosphorus only, or nitrogen plus phosphorus. These corals were sampled and used to determine whether gametogenic cycles and fecundity were affected by nutrient enrichment. Acropora longicyathus had a single annual gametogenic cycle. Corals exposed to elevated nitrogen produced significantly smaller and fewer eggs and contained less testes material than those which were not exposed to nitrogen. Exposure to elevated phosphorus only resulted in corals producing more but smaller eggs, and more testes material. Egg numbers of colonies from other treatments decreased as the gametogenic cycles continued, but those of the phosphorus colonies showed almost no reduction in egg numbers between the early and late stages of the gametogenic cycles. These results have important management implications for coral reefs as they demonstrate that small increases in concentrations of nitrogen and phosphorus can have severe effects on reproductive activity in these species of scleractinian corals.  相似文献   

17.
Arnold SN  Steneck RS 《PloS one》2011,6(12):e28681
Free space is necessary for larval recruitment in all marine benthic communities. Settling corals, with limited energy to invest in competitive interactions, are particularly vulnerable during settlement into well-developed coral reef communities. This situation may be exacerbated for corals settling into coral-depauperate reefs where succession in nursery microhabitats moves rapidly toward heterotrophic organisms inhospitable to settling corals. To study effects of benthic organisms (at millimeter to centimeter scales) on newly settled corals and their survivorship we deployed terra-cotta coral settlement plates at 10 m depth on the Mesoamerican Barrier Reef in Belize and monitored them for 38 mo. During the second and third years, annual recruitment rates declined by over 50% from the previous year. Invertebrate crusts (primarily sponges) were absent at the start of the experiment but increased in abundance annually from 39, 60, to 73% of the plate undersides by year three. Subsequently, substrates hospitable to coral recruitment, including crustose coralline algae, biofilmed terra-cotta and polychaete tubes, declined. With succession, substrates upon which spat settled shifted toward organisms inimical to survivorship. Over 50% of spat mortality was due to overgrowth by sponges alone. This result suggests that when a disturbance creates primary substrate a "recruitment window" for settling corals exists from approximately 9 to 14 mo following the disturbance. During the window, early-succession, facilitating species are most abundant. The window closes as organisms hostile to coral settlement and survivorship overgrow nursery microhabitats.  相似文献   

18.
In order to develop and test a low-cost method of coral reef rehabilitation, the staghorn corals Acropora muricata and A. vaughani were transplanted to a shallow site with unstable substrate. To avoid abrasion, dislodgement and transport due to water movement, the transplanted corals were tied to string sections, which were connected at the seabed to form a grid. This created stability and improved the survival of the corals. The average increase in weight of live coral over 1 year was 56%, eight times more than the control treatment with unattached coral branches. This difference was mainly due to a reduced partial mortality among smaller coral fragments in the stabilized treatment. Survival was positively related to initial size among the loosely placed coral branches, whereas the attached treatment showed a negative relation between size and relative increase in weight of the surviving parts of the coral branches. Coral fragments were not significantly affected by severe physical damage simulating the effects of handling.  相似文献   

19.
As part of a study of reef rehabilitation, whole coral colonies (primarily Acropora, Pocillopora, Porites, Eavia and Favites) were transplanted and cemented in place onto three approximately 20 m2 areas of Armorflex concrete mats on a 0.8–1.5 m deep reef-flat in the Maldives which had been severely degraded by coral mining. Growth, in situ mortality, and losses from mats due to wave action of a total of 530 transplants were monitored over 28 months. Natural recruitment of corals to both the transplanted Armorflex areas and concrete mats without transplants was also studied. Overall survivorship of corals 28 moths after transplantation was 51%. Most losses of transplants due to wave action occurred during the first 7 months when 25% were lost, with only a further 5% of colonies being lost subsequently. Within 16 months most colonies had accreted naturally to the concretemats. Thirty-two percent of transplants which remained attached died with Acropora hyacinthus and Pocillopora perrucosa having the highest mortality rates (approx. 50% nortality over two years) and Porites lobata and P. lutea the lowest (2.8 and 8.1% mortality respectively over two years). Growth rates were very variable with a quarter to a third of transplants showing negative growth during each inter-survey period. Acropora hyacinthus, A. cytherea and A. divaricata transplants had the highest growth rates (colony mean linear radial extension 4.15–5.81 cm y-1), followed by Pocillopora verrucosa (mean 2.51 cm y-1). Faviids and poritids had lowest growth rates. Favia and Favites showed the poorest response to transplantation whilst Acropora divaricata, which combined a high growth rate with relatively low mortality, appeared particularly amenable to transplantation. Natural recruitment did not differ significantly between concrete mats with and without transplanted corals. Visible recruits wer first recorded 10 months after emplacement of the mats and were predominantly Acropora and Pocillopora. On near vertical surfaces their density was almost 18 m-2. Recruits grew fast producing many 20–30 cm diameter colonies on the mats within 3.5 years. Growth and survival of transplants are compared with results of transplantation studies in other locations. We conclude: (1) species transplanted should be selected with care as certain species are significantly more amenable than others to transplantation, (2) the choice of whether fragments or whole colonies are transplanted may profoundly influence survival, (3) considerable loss of transplants is likely from higher energy sites whatever method of attachment, (4) transplantation should, in general, be undertaken only if recovery following natural recruitment is unlikely.  相似文献   

20.
Previous studies in fringing reefs of the Northern Red Sea demonstrated that the in-situ competition of corals and algae in natural assemblages is highly variable between seasons displaying fast overgrowth of corals by benthic reef algae in fall that follows close to equilibrium between both groups of organisms in summer. This may be caused by up to 5-fold higher inorganic nutrient and 6-fold higher organic nutrient concentrations in fall and winter, thereby potentially promoting algae and cyanobacteria growth with concomitant phase shift. A long term mesocosm experiment (duration: 90 days) was conducted in order to study the effect of dissolved inorganic (ammonium, phosphate, nitrate, and mix of all three) and organic (glucose) nutrient addition onto the competitive process in the dominant coral–algae assemblages of the Northern Red Sea involving branching corals of the genus Acropora and a typical consortium of benthic turf algae. Nutrients were added in 3-fold higher concentrations compared to the annual averages, and the parameters algal growth, extension of bleached area on corals, tissue colour change and chlorophyll a concentrations were monitored at regular intervals over experimental duration. This revealed that elevated ammonium concentrations and elevated organic nutrient concentrations stimulate algal growth, while coral tissue pigmentation and chlorophyll a content were significantly decreased. But only in the elevated organic nutrient treatment all effects on corals were significantly pronounced when assembled with benthic turf algae. Supplementary logger measurements revealed that O2 water concentrations were significantly lower in the elevated organic nutrient mesocosm compared to all other treatments, confirming side-effects on microbial activity. These findings indicate that organic nutrient input into coral reefs can affect physiology and metabolism of both corals and benthic turf algae. Reinforcing interaction between both groups of organisms along with involvement of microbes may facilitate phase shifts in coral reef ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号