首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation of synthetic oligonucleotides containing 2'-deoxynebularine (dN) and 2'-deoxyxanthosine (dX) is described. The thermal stabilities of duplexes containing dX, dN, and 2'-deoxyinosine (dI) base-paired with the four natural bases have been measured. Xanthine base pairs have stabilities at pH 5.5 that are similar to those of dI-containing duplexes at neutral pH. When xanthine is paired with adenine or cytosine an unusual stabilization of the duplex structure is observed at acid pH. Incorporation of base mispairs opposite template xanthine sites were measured using Drosophila DNA polymerase alpha. The relative nucleoside incorporation rates are in the order: T greater than C much greater than A approximately equal to G. These rates do not correlate with relative thermodynamic stabilities of base mispairs with xanthine obtained from Tm measurements: T greater than G greater than A approximately equal to C. We suggest that DNA polymerase misinsertion rates are greatest when the base mispair can be formed in accordance with Watson-Crick as opposed to other base pairing geometries even though other geometries, e.g. wobble, may result in a more stable final DNA product.  相似文献   

2.
8-Chloroadenosine (8-Cl-Ado) has shown potential as a chemotherapeutic agent for the treatment of multiple myeloma and certain leukemias. 8-Cl-Ado treatment leads to a decrease in global RNA levels and incorporation of the analog into cellular RNA in malignant cells. To investigate the effects of 8-Cl-Ado modifications on RNA structure and function, an 8-Cl-Ado phosphoramidite and controlled-pore glass support were synthesized and used to introduce 8-Cl-Ado at internal and 3'- terminal positions, respectively. RNA oligonucleotides containing 8-chloroadenine (8-Cl-A) residues were synthesized and hybridized with complementary RNA strands. Circular dichroism spectroscopy of the resulting RNA duplexes revealed that the modified nucleobase does not perturb the overall A-form helix geometry. The thermal stabilities of 8-Cl-Ado modified duplexes were determined by UV thermal denaturation analysis and were compared with analogous natural duplexes containing standard and mismatched base pairs. The 8-Cl-Ado modification destabilizes RNA duplexes by approximately 5 kcal/mole, approximately as much as a U:U mismatched base pair. The duplex destabilization of 8-Cl-A may result from perturbation of Watson-Crick base pairing induced by conformational preferences of 8-halogenated nucleosides.  相似文献   

3.
ABSTRACT

8-Chloroadenosine (8-Cl-Ado) has shown potential as a chemotherapeutic agent for the treatment of multiple myeloma and certain leukemias. 8-Cl-Ado treatment leads to a decrease in global RNA levels and incorporation of the analog into cellular RNA in malignant cells. To investigate the effects of 8-Cl-Ado modifications on RNA structure and function, an 8-Cl-Ado phosphoramidite and controlled-pore glass support were synthesized and used to introduce 8-Cl-Ado at internal and 3′- terminal positions, respectively. RNA oligonucleotides containing 8-chloroadenine (8-Cl-A) residues were synthesized and hybridized with complementary RNA strands. Circular dichroism spectroscopy of the resulting RNA duplexes revealed that the modified nucleobase does not perturb the overall A-form helix geometry. The thermal stabilities of 8-Cl-Ado modified duplexes were determined by UV thermal denaturation analysis and were compared with analogous natural duplexes containing standard and mismatched base pairs. The 8-Cl-Ado modification destabilizes RNA duplexes by ~5 kcal/mole, approximately as much as a U:U mismatched base pair. The duplex destabilization of 8-Cl-A may result from perturbation of Watson-Crick base pairing induced by conformational preferences of 8-halogenated nucleosides.  相似文献   

4.
Metal-dependent pairing of nucleobases represents an alternative DNA base pairing scheme. Our first-generation copper(II)-mediated pyridine-2,6-dicarboxylate (Dipic) and pyridine (Py) metallo-base pair has a stability comparable to the natural base pairs dA:dT and dC:dG but does not have the selectivity of the Watson Crick base pairs. In order to increase the selectivity of base pair formation, a second-generation metallo-base pair was generated consisting of a pyridine-2,6-dicarboxamide (Dipam) and a pyridine (Py) nucleobase. This new metallo-base pair is more stable than the natural base pairs dA:dT and dC:dG and highly selective against mispairing. In addition, incorporation of multiple metallo-base pairs into DNA results in the formation of stable duplexes demonstrating that hydrogen bonding base pairs can efficiently be replaced by metal-dependent base pairs at multiple sites in DNA.  相似文献   

5.
The deoxyoligonucleotide d(BrU-G-C-G-C-G) was crystallised at pH 8.2 and its structure analysed by X-ray diffraction. The unit cell, of dimensions a = 17.94, b = 30.85, c = 49.94A contains four DNA duplexes in space group P2(1)2(1)2(1). The duplexes are in the Z conformation, with four Watson-Crick G.C base pairs and two BrU.G base pairs. The structure was refined to an R factor of 0.16 at a resolution of 2.2A with 64 solvent molecules located. The BrU.G base pair mismatch is of the wobble type, with both bases in the major tautomer form and hydrogen bonds linking 0-2 of BrU with N-1 of G and N3 of BrU with 0-6 of G. There is no indication of the presence of ionised base pairs, in spite of the high pH of crystallisation. The results are discussed in terms of the mutagenic properties of 5- bromouracil.  相似文献   

6.
We recently reported that a 1'-deoxy-1'-(4,6-difluoro-1H-benzimidazol-1-yl)-2'-(beta-aminoethyl)-beta-d-ribofuranose nucleoside appears to be a universal nucleoside which does not differentiate between the four natural nucleosides A, C, G, and U in duplexes. Moreover, ribozymes modified with this nucleoside analog showed a better or at least equal catalytic activity relative to Watson-Crick mismatches.[1] Due to these data, we investigated the ability of this compound to tolerate Watson-Crick mismatches in order to avoid HIV escape mutations in RNA interference. The influence of this nucleoside analog on siRNA efficiency was analyzed with a proven siRNA targeting GFP.  相似文献   

7.
The specificity of binding of Watson-Crick base pairs by third strand nucleic acid residues via triple helix formation was investigated in a DNA pyrimidine triplex motif by thermal melting experiments. The host duplex was of the type A10-X-A10: T10-Y-T10, and the third strand T10-Z-T10, giving rise to 16 possible triplexes with Z:XY inserts, 4 duplexes with the Watson-Crick base pairs (XY) and 12 duplexes with mismatch pairs (XZ), all of whose stabilities were compared. Two Z:XY combinations confirm the primary binding of AT and GC target pairs in homopurine.homopyrimidine sequences by T and C residues, respectively. All other Z:XY combinations in the T:AT environment result in triplex destabilization. While some related observations have been reported, the present experiments differ importantly in that they were performed in a T:AT nearest neighbor environment and at physiological ionic strength and pH, all of which were previously untested. The conclusions now drawn also differ substantially from those in previous studies. Thus, by evaluating the depression in Tm due to base triplet mismatches strictly in terms of third strand residue affinity and specificity for the target base pair, it is shown that none of the triplet combinations that destabilize qualify for inclusion in the third strand binding code for the pyrimidine triplex motif. Hence, none of the mismatch triplets afford a general way of circumventing the requirement for homopurine.homopyrimidine targets when third strands are predominated by pyrimidines, as others have suggested. At the same time, the applicability of third strand binding is emphasized by the finding that triplexes are equally or much more sensitive to base triplet mismatches than are Watson-Crick duplexes to base pair mismatches.  相似文献   

8.
The fluorescence and the base pairing properties of 8-aza-7-deaza-2'-deoxyisoinosine (1) are described and compared with those of 2'-deoxyisoinosine (2). The corresponding phosphoramidites (11, 12) are synthesized using the diphenylcarbamoyl (DPC) residue for the 2-oxo group protection. The nucleosides 1 and 2 base pair with 2'-deoxy-5-methylisocytidine in DNA duplexes with antiparallel chain orientation and with 2'-deoxycytidine in a parallel DNA. These base pairs are less stable than the canonical dA-dT pair and that of 2'-deoxyinosine (4) with 2'-deoxycytidine. The fluorescence of the nucleosides 1 and 2 is quenched (approximately 95%) in duplex DNA. The residual fluorescence is used to determine the Tm-values, which are found to be the same as determined UV-spectrophotometrically.  相似文献   

9.
It is shown that the cationic oligopeptides octadeca(L-lysine) (Lys18) and octadeca(L-ornithine) (Orn18) can induce a parallel duplex for the natural DNA oligomer dT10 with thymine-thymine base pairs. Complexation of the ammonium groups in the peptide side chains with the DNA phosphates leads to diminished electrostatic phosphate-phosphate repulsions, which allows this T-T base pair formation. From combined NOESY 1H NMR and molecular mechanics studies, it follows that the parallel duplex is right-handed, with the peptide located in the groove of the duplex. For the natural DNA oligomers dC10, d(C6T6), and d(T6C2T2), only Lys18 is able to induce the formation of parallel duplexes with C-C and T-T base pairs. It is shown that, for Orn18, a complexation must occur with one of the nonbonded oxygen atoms in the phosphate groups (OR) in such a way that unfavorable steric interactions are present with the C-C base pairs, which have a larger propellor twist angle than T-T base pairs. An analogy is presented between peptide complexation with the phosphates and the neutralization of the phosphate groups by methylation, which is known to lead to parallel duplexes with T-T base pairs (for both the Sp and Rp configurations) and C-C base pairs (only for the Sp configuration).  相似文献   

10.
NMR shielding constants are calculated for the base protons of duplexes formed by the dodecamer d(CGTGAATTCGCG) and the decamer d(CCAAGATTGG). A good agreement with experimental data is obtained for B-DNA helices in which the wobble GT and GA pairs are in the plane of the corresponding GC pairs of the parent duplexes formed by d(CGCGAATTCGCG) and d(CCAAGCTTGG), if the glycosyl bonds of T and G or A and G are symmetrical with respect to the dyad axis of the Watson-Crick GC pair. Interaction energy calculations show that this type of geometrical arrangement, which implies a distortion of the ribonphosphate backbone of both strands of the duplexes are more stable than those in which only one strand has its conformation modified by the presence of the wobble pair. For the duplex containing the GA pair, NMR chemical shifts as well as interaction energy computations favour the Watson-Crick hydrogen bonding scheme. The variation of the different contributions (intrastrand, interstrand, pair-pair) to the interaction energy between the bases of the duplexes, with the geometrical arrangement of the wobble pairs, is reported.  相似文献   

11.
G A Leonard  A Guy  T Brown  R Téoule  W N Hunter 《Biochemistry》1992,31(36):8415-8420
The structure of the synthetic deoxydodecamer d(CGCGAATT(O8A)GCG)2 (O8A = 8-oxoadenine) has been determined by single-crystal X-ray diffraction techniques. The oligonucleotide crystallizes in the orthorhombic space group P2(1)2(1)2(1) with cell dimensions of a = 25.48 A, b = 41.84 A, and c = 64.91 A. The refinement has converged with an R-factor of 0.151 for 1119 reflections in the resolution range 8.0-2.25 A. Sixty-seven solvent molecules were located during the course of the refinement. The B-DNA helix consists of ten Watson-Crick base pairs and two guanine-8-oxoadenine (G.O8A) base pairs. In order to achieve hydrogen-bonding complementarity between the two bases, an unusual G(anti).O8A-(syn) wobble conformation is adopted. It is proposed that the G.O8A mispairs are held together by a network of four interbase hydrogen bonds which are the result of the formation of two reverse three-center hydrogen-bonding systems. These involve one carbonyl oxygen lone pair interacting with two hydrogen atoms. In a departure from previous observations of the characteristics of purine-purine anti-syn base pairs, lambda 1 and lambda 2, the angles between the glycosidic bonds and the C1'-C1' vector, are symmetric. A reassessment of the other purine-purine mispairs suggests that similar three-center hydrogen bonds may occur and make a contribution to stabilizing other base pairings.  相似文献   

12.
M W Kalnik  B F Li  P F Swann  D J Patel 《Biochemistry》1989,28(15):6182-6192
The pairing of O6etG with C located four base pairs in from either end of the self-complementary d(C1-G2-C3-O6etG4-A5-G6-C7-T8-C9-G10-C11-G12) duplex (designated O6etG.C 12-mer) has been investigated from an analysis of proton and phosphorus two-dimensional NMR experiments. The structural consequences of increasing the alkyl group size were elucidated from a comparative study of the pairing of O6meG4 with C9 in a related sequence (designated O6meG.C 12-mer). The NMR parameters for both O6alkG-containing dodecanucleotides are also compared with those of the control sequence containing G4.C9 base pairs (designated G.C 12-mer). The NOE cross-peaks detected in the two-dimensional NOESY spectra of the O6alkG.C 12-mer duplexes in H2O solution establish that the O6etG4/O6meG4 and C9 bases at the lesion site stack into the helix between the flanking C3.G10 and A5.T8 Watson-Crick base pairs. The amino protons of C9 at the O6alkG4-C9 lesion site resonate as an average resonance at 7.78 and 7.63 ppm in the O6etG.C 12-mer and O6meG.C 12-mer duplexes, respectively. The observed NOEs between the amino protons of C9 and the CH3 protons of O6alkG4 establish a syn orientation of the O6-alkyl group with respect to the N1 of alkylated guanine. A wobble alignment of the O6alkG4.C9 base pair stablized by two hydrogen bonds, one between the amino group of C9 and N1 of O6alkG and the other between the amino group of O6alkG and N3 of C9, is tentatively proposed on the basis of the NOEs between the amino protons of C9 at the lesion site and the imino protons of flanking Watson-Crick base pairs. The proton and phosphorus chemical shift differences between the O6etG.C 12-mer and O6meG.C 12-mer duplexes are small compared to the differences between these O6alkG-containing duplexes and the control G.C 12-mer duplex.  相似文献   

13.
A series of sequences of the DNA analog bicyclo-DNA, 6-12 nucleotides in length and containing all four natural nucleobases, were prepared and their Watson-Crick pairing properties with complementary RNA and DNA, as well as in its own series, were analyzed by UV-melting curves and CD-spectroscopy. The results can be summarized as follows: bicyclo-DNA forms stable Watson-Crick duplexes with complementary RNA and DNA, the duplexes with RNA generally being more stable than those with DNA. Pyrimidine-rich bicyclo-DNA sequences form duplexes of equal or slightly increased stability with DNA or RNA, whereas purine-rich sequences show decreased affinity to complementary DNA and RNA when compared with wild-type (DNA-DNA, DNA-RNA) duplexes. In its own system, bicyclo-DNA prefers antiparallel strand alignment and strongly discriminates for base mismatches. Duplexes are always inferior in stability compared with the natural ones. A detailed analysis of the thermodynamic properties was performed with the sequence 5'-GGATGGGAG-3'x 5'-CTCCCATCC-3' in both backbone systems. Comparison of the pairing enthalpy and entropy terms shows an enthalpic advantage for DNA association (delta deltaH = -18 kcal x (mol)-1)) and an entropic advantage for bicyclo-DNA association (delta deltaS = 49 cal x K(-1) x mol(-1), leading to a delta deltaG 25 degrees C of -3.4 kcal x mol(-1) in favor of the natural duplex. The salt dependence of Tm for this sequence is more pronounced in the case of bicyclo-DNA due to increased counter ion screening from the solvent. Furthermore bicyclo-DNA sequences are more stable towards snake venom phosphodiesterase by a factor of 10-20, and show increased stability in fetal calf serum by a factor of 8 compared with DNA.  相似文献   

14.
Hairpin polyamides selectively recognize predetermined DNA sequences with affinities comparable to naturally occurring proteins. Internal side-by-side pairs of unsymmetrical aromatic rings within the minor groove of DNA distinguish each of the four Watson-Crick base pairs. In contrast, N-terminal ring pairs exhibit less specificity, with the exception of Im/Py targeting G.C base pairs. In an effort to explore the sequence specificity of new ring pairs, a series of hairpin polyamides containing 3-substituted-thiophene-2-carboxamide residues at the N-terminus was synthesized. An N-terminal 3-methoxy (or 3-chloro) thiophene residue paired opposite Py displayed 6- (and 3-) fold selectivity for T.A relative to A.T base pair, while disfavoring G,C base pairs by >200-fold. Our data suggests shape selective recognition with projection of the 3-thiophene substituent (methoxy or chloro) to the floor of the minor groove.  相似文献   

15.
Minor adducts, derived from the covalent binding of anti-benzo[a]pyrene-7,8-dihydroxy-9,10-epoxide to cellular DNA, may play an important role in generating mutations and initiating cancer. We have applied a combined NMR-computational approach including intensity based refinement to determine the solution structure of the minor (+)-cis-anti-[BP]dA adduct positioned opposite dT in the d(C1-T2-C3-T4-C5-[BP]A6-C7-T8-T9-C10-C11). (d(G12-G13-A14-A15-G16-T17-G18-A19-G20+ ++-A21-G22) 11-mer duplex. The BP ring system is intercalated toward the 5'-side of the [BP]dA6 lesion site without disrupting the flanking Watson-Crick dC5.dG18 and [BP]dA6.dT17 base pairs. This structure of the (+)-cis-anti-[BP]dA.dT 11-mer duplex, containing a bay region benzo[a]pyrenyl [BP]dA adduct, is compared with the corresponding structure of the (+)-trans-anti-[BPh]dA.dT 11-mer duplex (Cosman et al., Biochemistry 32, 12488-12497, 1993), which contains a fjord region benzo[c]phenanthrenyl [BPh]dA adduct with the same R stereochemistry at the linkage site. The carcinogen intercalates toward the 5'-direction of the modified strand in both duplexes (the adduct is embedded within the same sequence context) with the buckling of the Watson-Crick [BP]dA6.dT17 base pair more pronounced in the (+)-cis-anti-[BP]dA.dT 11-mer duplex compared to its Watson-Crick [BPh]dA.dT17 base pair in the (+)-trans-anti-[BPh]dA.dT 11-mer duplex. The available structural studies of covalent polycyclic aromatic hydrocarbon (PAH) carcinogen-DNA adducts point toward the emergence of a general theme where distinct alignments are adopted by PAH adducts covalently linked to the N(6) of adenine when compared to the N(2) of guanine in DNA duplexes. The [BPh]dA and [BP]dA N(6)-adenine adducts intercalate their polycyclic aromatic rings into the helix without disruption of their modified base pairs. This may reflect the potential flexibility associated with the positioning of the covalent tether and the benzylic ring of the carcinogen in the sterically spacious major groove. By contrast, such an intercalation without modified base pair disruption option appears not to be available to [BP]dG N(2)-guanine adducts where the covalent tether and the benzylic ring are positioned in the more sterically crowded minor groove. In the case of [BP]dG adducts, the benzopyrenyl ring is either positioned in the minor groove without base pair disruption, or if intercalated into the helix, requires disruption of the modified base pair and displacement of the bases out of the helix.  相似文献   

16.
As part of an overall program to characterize the impact of mutagenic lesions on the physiochemical properties of DNA, we report here the results of a comparative spectroscopic study on pairs of DNA duplexes both with and without an exocyclic guanine lesion. Specifically, we have studied a family of four 13-mer duplexes of the form d(CGCATGYGTACGC).d(GCGTACZCATGCG) in which Y is either the normal deoxyguanosine residue (G) or the exocyclic guanine adduct 1,N2-propanodeoxyguanosine (X), while Z is either deoxycytosine (C) or deoxyadenosine (A). Thus, the four duplexes studied, which can be designated by the identity of their central Y.Z base pair, are a Watson-Crick duplex (GC), a duplex with a central mismatch (GA), and two duplexes with exocyclic guanine lesions (X), that differ only by the base opposite the lesion (XC and XA). The data derived from our spectroscopic measurements on these four duplexes have allowed us to evaluate the influence of the exocyclic guanine lesion, as well as the base opposite the lesion, on the conformation, thermal stability, and melting energetics of the host DNA duplex. To be specific, our circular dichroism (CD) spectra show that the exocyclic guanine lesion induces alterations in the duplex structure, while our temperature-dependent optical measurements reveal that these lesion-induced structural alterations reduce the thermal stability, the transition enthalpy, and the transition free energy of the duplex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The base lesion 8-oxoguanine is formed readily by oxidation of DNA, potentially leading to G → T transversion mutations. Despite the apparent similarity of 8-oxoguanine-cytosine base pairs to normal guanine-cytosine base pairs, cellular base excision repair systems effectively recognize the lesion base. Here we apply several techniques to examine a single 8-oxoguanine lesion at the center of a nonpalindromic 15-mer duplex oligonucleotide in an effort to determine what, if anything, distinguishes an 8-oxoguanine-cytosine (8oxoG-C) base pair from a normal base pair. The lesion duplex is globally almost indistinguishable from the unmodified parent duplex using circular dichroism spectroscopy and ultraviolet melting thermodynamics. The DNA mismatch-detecting photocleavage agent Rh(bpy)(2)chrysi(3+) cleaves only weakly and nonspecifically, revealing that the 8oxoG-C pair is locally stable at the level of the individual base pairs. Nuclear magnetic resonance spectra are also consistent with a well-conserved B-form duplex structure. In the two-dimensional nuclear Overhauser effect spectra, base-sugar and imino-imino cross-peaks are strikingly similar between parent and lesion duplexes. Changes in chemical shift due to the 8oxoG lesion are localized to its complementary cytosine and to the 2-3 bp immediately flanking the lesion on the lesion strand. Residues further removed from the lesion are shown to be unperturbed by its presence. Notably, imino exchange experiments indicate that the 8-oxoguanine-cytosine pair is strong and stable, with an apparent equilibrium constant for opening equal to that of other internal guanine-cytosine base pairs, on the order of 10(-6). This collection of experiments shows that the 8-oxoguanine-cytosine base pair is incredibly stable and similar to the native pair.  相似文献   

18.
Acyclic nucleoside analogues with carboxamido- or nitro-substituted heterocyclic bases have been evaluated for their possible use as universal bases in oligodeoxynucleotides. The acyclic moiety endows the constructs with enough flexibility to allow good base stacking. The 5-nitroindazole analogue afforded the most stable duplexes among the acyclic derivatives with the least spread in Tm versus the four natural bases. In spite of the acyclic moiety, stabilities are comparable with those of duplexes incorporating the recently described 5-nitroindole nucleoside analogue, but considerably exceed those for the 3-nitropyrrole analogue.  相似文献   

19.
Sequencing by the recently reported hybridization technique requires the formation of DNA duplexes with similar stabilities. In this paper we describe a new strategy to obtain DNA duplexes with a thermal stability independent of their AT/GC ratio content. Melting data were acquired on 35 natural and 27 modified duplexes of a given length and of varying base compositions. Duplexes built with AT and/or G4EtC base pairs exhibit a thermal stability restrained to a lower range of temperature than that of the corresponding natural compounds (16 instead of 51 degrees C). The 16 degrees C difference in thermal stability observed between the least stable and the most stable duplex built with AT and/or G4EtC base pairs is mainly due to the sequence effect and not to their AT/G4EtC ratio content. Thus N -4-ethyl-2'-deoxycytidine (d4EtC) hybridizes specifically with natural deoxyguanosine leading to a G4EtC base pair whose stability is very close to that of the natural AT base pair. Oligonucleotide probes involving d4EtC can be easily prepared by chemical synthesis with phosphoramidite chemistry. Modified DNA targets were successfully amplified by random priming or PCR techniques using d4EtCTP, dATP, dGTP and dTTP in the presence of DNA polymerase. This new system might be very useful for DNA sequencing by hybridization.  相似文献   

20.
The synthesis of 8-methoxy-2'-deoxyadenosine (moA) protected at N6 as an N,N-dimethylformamidine derivative and incorporation of the modified nucleoside into oligodeoxynucleotides via the phosphoramidite method are described. UV thermal denaturation studies were conducted on duplexes containing moA:G, moA:C and moA:T base pairs to determine the thermodynamic stability of duplexes containing moA relative to their adenosine (A)-containing counterparts. In the case of moA:G base pairs the effect of moA substitution is sequence dependent. In A:G mismatch-containing sequences, which have been shown by structural characterization to have a syn conformational preference at the glycosidic bond of A, moA substitution results in stabilization of the duplex. In contrast, in sequences where the A in the A:G mismatch has been shown to prefer the anti conformation moA substitution is destabilizing to the duplex. Thus moA may be a useful probe for investigating the conformational preferences of the N-glycosidic bond of adenosine within DNA. In addition, moA nucleoside is more resistant to acid-catalyzed depurination than previously described 8-bromo-2'-deoxyadenosine, allowing for facile incorporation into oligonucleotides via automated solid phase DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号