首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the role of cardiac and arterial baroreceptors in the reflex control of arginine vasopressin (AVP) and renin secretion during graded hypotension in conscious dogs. The dogs were prepared with Silastic cuffs on the thoracic inferior vena cava and catheters in the pericardial space. Each experiment consisted of a control period followed by four periods of inferior vena caval constriction, during which mean arterial pressure (MAP) was reduced in increments of approximately 10 mmHg. The hormonal responses were measured in five dogs under four treatment conditions: 1) intact, 2) acute cardiac denervation (CD) by intrapericardial infusion of procaine, 3) after sinoaortic denervation (SAD), and 4) during combined SAD+CD. The individual slopes relating MAP to plasma AVP and plasma renin activity (PRA) were used to compare the treatment effects using a 2 x 2 factorial analysis. There was a significant (P < 0.01) effect of SAD on the slope relating plasma AVP to MAP but no effect of CD and no SAD x CD interaction. In contrast, the slope relating PRA and MAP was increased (P < 0.05) by SAD but was not affected by CD. These results support the hypothesis that stimulation of AVP secretion in response to graded hypotension is primarily driven by unloading arterial baroreceptors in the dog.  相似文献   

2.
We compared changes in muscle sympathetic nerve activity (SNA) during graded lower body negative pressure (LBNP) and 450 ml of hemorrhage in nine healthy volunteers. During LBNP, central venous pressure (CVP) decreased from 6.1 +/- 0.4 to 4.5 +/- 0.5 (LBNP -5 mmHg), 3.4 +/- 0.6 (LBNP -10 mmHg), and 2.3 +/- 0.6 mmHg (LBNP -15 mmHg), and there were progressive increases in SNA at each level of LBNP. The slope relating percent change in SNA to change in CVP during LBNP (mean +/- SE) was 27 +/- 11%/mmHg. Hemorrhage of 450 ml at a mean rate of 71 +/- 5 ml/min decreased CVP from 6.1 +/- 0.5 to 3.7 +/- 0.5 mmHg and increased SNA by 47 +/- 11%. The increase in SNA during hemorrhage was not significantly different from the increase in SNA predicted by the slope relating percent change in SNA to change in CVP during LBNP. These data show that nonhypotensive hemorrhage causes sympathoexcitation and that sympathetic responses to LBNP and nonhypotensive hemorrhage are similar in humans.  相似文献   

3.
The aim of this study was to elucidate the interactive effect of central hypovolemia and plasma hyperosmolality on regulation of peripheral vascular response and AVP secretion during heat stress. Seven male subjects were infused with either isotonic (0.9%; NOSM) or hypertonic (3.0%; HOSM) NaCl solution and then heated by perfusing 42 degrees C (heat stress; HT) or 34.5 degrees C water (normothermia; NT) through water perfusion suits. Sixty minutes later, subjects were exposed to progressive lower body negative pressure (LBNP) to -40 mmHg. Plasma osmolality (P(osmol)) increased by approximately 11 mosmol/kgH(2)O in HOSM conditions. The increase in esophageal temperature before LBNP was much larger in HT-HOSM (0.90 +/- 0.09 degrees C) than in HT-NOSM (0.30 +/- 0.07 degrees C) (P < 0.01) because of osmotic inhibition of thermoregulation. During LBNP, mean arterial pressure was well maintained, and changes in thoracic impedance and stroke volume were similar in all conditions. Forearm vascular conductance (FVC) before application of LBNP was higher in HT than in NT conditions (P < 0.001) and was not influenced by P(osmol) within the thermal conditions. The reduction in FVC at -40 mmHg in HT-HOSM (-9.99 +/- 0.96 units; 58.8 +/- 4.1%) was significantly larger than in HT-NOSM (-6.02 +/- 1.23 units; 44.7 +/- 8.1%) (P < 0.05), whereas the FVC response was not different between NT-NOSM and NT-HOSM. Plasma AVP response to LBNP did not interact with P(osmol) in either NT or HT conditions. These data indicate that there apparently exists an interactive effect of P(osmol) and central hypovolemia on the peripheral vascular response during heat stress, or peripheral vasodilated conditions, but not in normothermia.  相似文献   

4.
Whether or not 1-desamino-8-D-arginine-vasopressin (DDAVP) reduces blood pressure or affects the release of arginine vasopressin (AVP) and renin is controversial, although evidence suggests AVP and renin are important in maintaining blood pressure during hemorrhage. We therefore investigated the effect of DDAVP on endogenous release of AVP and renin and on blood pressure during hemorrhage in dogs. In the control group the hemorrhage was performed at a rate of 0.4 ml.kg-1.min-1 for 40 min from the femoral artery. The plasma AVP concentration and renin activity (PRA) increased progressively in response to the hemorrhage, from 7.5 +/- 0.5 to 40.3 +/- 7.3 pg.ml-1, and from 11.8 +/- 1.5 to 20.5 +/- 4.2 ng.ml-1.h-1, respectively, while blood pressure decreased slightly. In the DDAVP group, intravenous infusion of DDAVP (2.5 ng.kg-1.min-1 for 40 min) and hemorrhage were simultaneously performed. The plasma DDAVP concentration increased progressively to 218 +/- 21.0 pg.ml-1. There was no significant difference, however, between the control and DDAVP groups in the response of AVP, PRA and blood pressure. The results suggested that DDAVP may not affect the release of AVP and renin or blood pressure during hemorrhage.  相似文献   

5.
This study reports the effects of angiotensin II (ANG II), arginine vasopression (AVP), phenylephrine (PE), and sodium nitroprusside (SNP) on baroreflex control of heart rate in the presence and absence of the area postrema (AP) in conscious mice. In intact, sham-lesioned mice, baroreflex-induced decreases in heart rate due to increases in arterial pressure with intravenous infusions of ANG II were significantly less than those observed with similar increases in arterial pressure with PE (slope: -3.0 +/- 0.9 vs. -8.1 +/- 1.5 beats x min(-1) x mmHg(-1)). Baroreflex-induced decreases in heart rate due to increases in arterial pressure with intravenous infusions of AVP were the same as those observed with PE in sham animals (slope: -5.8 +/- 0.7 vs. -8.1 +/- 1.5 beats x min(-1) x mmHg(-1)). After the AP was lesioned, the slope of baroreflex inhibition of heart rate was the same whether pressure was increased with ANG II, AVP, or PE. The slope of the baroreflex-induced increases in heart rate due to decreases in arterial blood pressure with SNP were the same in sham- and AP-lesioned animals. These results indicate that, similar to other species, in mice the ability of ANG II to acutely reset baroreflex control of heart rate is dependent on an intact AP.  相似文献   

6.
We studied the effects of synchronous cardiac cycle-specific high-frequency jet ventilation (HFJV) in pentobarbital-anesthetized, splenectomized, closed-chest dogs to test the hypothesis that phasic inspiratory increases in intrathoracic pressure (ITP) selectively timed to specific periods of the cardiac cycle have different hemodynamic effects during both hypovolemia (acute hemorrhage, 20 ml/kg) and neurogenic vasomotor shock (hexamethonium, 10 mg/kg) than those observed during normovolemic control conditions. Ventricular stroke volumes (SV) were measured by electromagnetic flow probes. The influence of changes in venous return (VR) on the subsequent hemodynamic response to synchronous HFJV was analyzed using instantaneous VR curves (M. R. Pinsky, J. Appl. Physiol. 56:765-771, 1984). During hemorrhage the VR curve was shifted leftward with concomitant reductions in apneic SV (15.4 +/- 3.8 to 11.2 +/- 3.6 ml, mean +/- SD), (P less than 0.01) that were accentuated by HFJV (P less than 0.01), except when the phasic inspiratory increases in ITP during HFJV were timed to occur during late diastole (-4% apneic SV, NS). SV was greater with late diastolic pulses than with other timed synchronous ITP pulses during hypovolemia (P less than 0.01). During ganglionic blockade, arterial pressure decreased (139 +/- 14 to 76 +/- 18 Torr, P less than 0.001), but VR was preserved at control levels, and no significant cardiac cycle-specific HFJV effects occurred. We conclude that SV reductions associated with positive-pressure ventilation during acute hypovolemia are minimized by HFJV synchronized to late diastole but that this effect is preload dependent.  相似文献   

7.
We determined the cardiovascular and AVP responses of prenatally dehydrated (PreDehy) neonates to intravascular hemorrhage. Ewes with singleton fetuses were subjected to water restriction from 110 days of gestation to full term to achieve hypernatremia of 8-10 meq/l. Water and food were provided ad libitum to control ewes. After delivery, water and food were provided ad libitum to ewes from both groups, and newborns were allowed to nurse ad libitum. At 15 +/- 2 days of age, PreDehy and control lambs were prepared with bladder and femoral catheters and studied at 25 +/- 2 days of age. After a 2-h basal period, lambs were hemorrhaged to 30% of blood volume over 1 h (0.5% of blood volume/min) and monitored 1 h after hemorrhage. Neonatal arterial blood pressure was measured, and blood samples were collected. Basal plasma sodium levels, plasma osmolality, hematocrit, and mean arterial pressure were increased in PreDehy lambs compared with controls. Both groups had similar basal AVP levels and heart rate. In response to hemorrhage, all parameters remained significantly elevated in PreDehy lambs. Blood pressure decreased less in PreDehy lambs than in controls. The hemorrhage-AVP threshold (percent blood volume withdrawal at which plasma AVP values significantly increased) was markedly elevated (20 vs. 15%) and peak hemorrhage-induced AVP plasma levels were lower (5.6 +/- 1.5 vs. 10.1 +/- 1.5 pg/ml, P < 0.01) in PreDehy lambs than in controls. Thus offspring of dehydrated ewes demonstrate enhanced AVP secretory responses to hypotension. Despite potential long-term adverse effects of systemic hypertension, these results suggest a protective effect of prenatal water restriction on offspring cardiovascular homeostasis during blood volume reduction.  相似文献   

8.
17β-雌二醇抑制雄性大鼠颈动脉窦压力感受器反射   总被引:5,自引:0,他引:5  
Wang S  Fan ZZ  He RR 《生理学报》2000,52(6):445-449
采用隔离灌流麻醉雄性大鼠颈动脉窦技术 ,观察了 17β 雌二醇 (E2 )对颈动脉窦压力感受器反射的影响。结果如下 :(1)以E2 (10 μmol/L)隔离灌流颈动脉窦区时 ,压力感受器机能曲线向右上方移位 ,曲线最大斜率(peakslope,PS)由 0 49± 0 0 3降至 0 2 5± 0 0 1(P <0 0 1) ,反射性血压下降幅度 (reflexdecrease,RD)由 7 37± 0 42kPa降至 3 49± 0 2 0kPa (P <0 0 0 1) ,阈压 (thresholdpressure ,TP)和饱和压 (saturationpressure ,SP)分别由 9 5 2±0 6 8kPa和 2 4 5 3± 0 48kPa增至 13 3± 0 11kPa (P <0 0 0 1)和 2 7 5 2± 0 2 0kPa (P <0 0 1) ,其中PS、RD、TP和SP呈明显的剂量依赖性 ;(2 )用雌激素受体阻断剂tamoxifen (1、5、10、30 μmol/L)预处理后 ,不能阻断E2 对压力感受器反射的抑制作用 ;(3)预先灌流NO合酶阻断剂 (L NAME ,10 0 μmol/L) ,可完全消除E2 (10 μmol/L)对压力感受器反射的抑制效应。以上结果表明 ,17β 雌二醇可通过非基因组机制抑制大鼠颈动脉窦压力感受器反射 ,其效应系E2 引起血管内皮细胞释放NO所致。  相似文献   

9.
Pial arteriolar diameter changes inversely with changes in systemic arterial blood pressure. Such changes are consistent with autoregulatory functions. These responses are reduced by a brief period of hypoxia followed by reoxygenation. By using an open cranial window preparation we assessed the changes in pial arteriolar diameters during blood pressure changes in rats induced by hemorrhage and reinfusion of blood, before and after a brief period of hypoxia. The slopes of the changes in pial arteriolar diameter as a function of mean arterial blood pressure were -0.47 +/- 0.26 micron/mmHg (mean +/- SD; 1 mmHg = 133.3 Pa) before hypoxia and -0.11 +/- 0.23 micron/mmHg after hypoxia in the untreated rats. In ouabain-treated rats, corresponding slopes were -0.42 +/- 0.24 and -0.46 +/- 0.22 micron/mmHg. The observed protective effects of ouabain might be a blockade of the Na-K pump in the sarcolemma of the vascular smooth muscle.  相似文献   

10.
A stretch of the walls of the thoracic aorta, performed in vagotomized cats without obstructing aortic flow, induces increases in heart rate, myocardial contractility, and arterial pressure. These reflex responses are still present after high spinal section. Cats under chloralose-urethane anesthesia were vagotomized and one carotid sinus was isolated and perfused with arterial blood at constant flow. The contralateral carotid sinus nerve and both aortic nerves were sectioned. A stretch of the walls of the thoracic aorta between the 7th and 10th intercostal arteries induced a reflex increase in mean arterial pressure 29 +/- 2 mmHg (mean +/- SE). Stepwise increases of carotid sinus pressure (CSP) or electrical stimulation of the carotid sinus nerve induced stepwise decreases of this reflex response. At maximal baroreceptor stimulation (CSP 212 +/- 9 mmHg) the reflex response to aortic stretch was reduced by 42%. These experiments show that this spinal cardiovascular reflex is at least partially under the inhibitory control of the baroreceptor input.  相似文献   

11.
Recent evidence has demonstrated that arginine vasopressin (AVP) may modulate primary afferent activity of nociceptors in the dorsal horn of the spinal cord. Because nociceptors are group III and IV afferents, spinal AVP also may modulate the activity of group III and IV afferents that cause reflex cardiovascular responses to muscle contraction. Thus, we compared the pressor (mean arterial pressure), myocardial contractile (dP/dt), and heart rate (HR) responses to electrically induced static contraction of the cat hindlimb before and after lumbar intrathecal (IT) injection (L1-L7) of AVP (n = 9), the V1 receptor antagonist d(CH2)5Tyr(Me)AVP (n = 6), the V2 receptor antagonist d(CH2)5[D-Ile2,Ile4,Ala-NH2(9)]AVP (n = 6), and the V2 agonist [Val4,D]AVP (n = 8). After IT injection of AVP (0.1 or 1 nmol) the pressor and contractile responses to static contraction were attenuated by 55 and 44%, respectively. HR was unchanged. Forty-five to 60 min after AVP injection, the contraction-induced pressor and contractile responses were restored to control levels. V1 receptor blockade augmented contraction-induced increases in mean arterial pressure (36%) and dP/dt (49%) but not HR. V2 receptor blockade had no effect on the cardiovascular response to contraction, whereas selective V2 stimulation attenuated the dP/dt (-20%) and HR (-33%) responses but not the pressor response. These results suggest that AVP attenuates the reflex cardiovascular response to contraction by modulating sensory nerve transmission from contracting muscle primarily via a V1 receptor mechanism in the lumbar spinal cord.  相似文献   

12.
The aim of this study was to elucidate the role of the baroreflex in blood pressure control in sloths, Bradypus variegatus, since these animals show labile levels in this parameter. Unanesthetized cannulated sloths were positioned in an experimental chair and the arterial catheter was coupled to a strain gauge pressure transducer. Blood pressure was monitored before, during and after the administration of phenylephrine (0.0625 to 4 microg/kg) and sodium nitroprusside (0.0625 to 2 microg/kg), bringing about changes in mean blood pressure from +/-30 mmHg in relation to control values. The relation between heart rate changes due to blood pressure variation was estimated by linear regression analysis. The slope was considered the reflex baroreceptor gain. The results (means+/-SD) showed that the reflex baroreceptor gain was -0.3+/-0.1 bpm/mmHg (r=0.88) to phenylephrine and -0.5+/-0.1 bpm/mmHg (r=0.92) to sodium nitroprusside, denoting a reduced reflex baroreceptor gain when compared with other mammals, suggesting that in sloths the baroreceptors are minimally involved in the buffering reflex response to these drugs. These findings suggest that the labile blood pressure could be influenced or be a result of this lowering in the reflex baroreceptor gain.  相似文献   

13.
链霉素对颈动脉窦压力感受器反射的抑制作用   总被引:1,自引:1,他引:0  
Yin T  Chen S  He RR 《生理学报》2000,52(3):239-242
在 2 3只隔离灌流颈动脉窦区的麻醉大鼠 ,观察了链霉素对颈动脉窦压力感受器反射的影响。结果如下 :(1)以链霉素 (10 0 μmol/L)隔离灌流大鼠左侧颈动脉窦区时 ,压力感受器反射机能曲线向左下方移位 ,曲线最大斜率 (PS)由 0 40± 0 0 1kPa降至 0 33± 0 0 1kPa (P <0 0 0 1) ,血压反射性下降 (reflexdecrease ,RD)幅度由 6 2 2±0 13kPa降至 5 0 2± 0 11kPa (P <0 0 0 1) ,阈压 (TP)、平衡压 (EP)和饱和压 (SP)则分别从 8 2 7± 0 2 5 ,12 71± 0 2 1和 2 4 41± 0 14kPa增至 10 33± 0 32 (P <0 0 1) ,13 33± 0 30 (P <0 0 1)和 2 6 11± 0 2 8kPa (P <0 0 1)。其中RD ,PS和TP的变化呈明显的剂量依赖性。 (2 )应用腺苷隔离灌流大鼠颈动脉窦区 ,引起颈动脉窦压力感受器反射的易化 ;在用链霉素预处理后 ,此易化效应不仅完全被阻断 ,且可使反射效应小于应用腺苷前的对照值。以上结果表明 ,链霉素对大鼠颈动脉窦压力感受器反射有明显的抑制作用。  相似文献   

14.
Endothelin-1 (ET-1) acts at selected brain loci to elicit a pressor response and secretion of vasopressin (AVP). Glutamatergic receptors of the N-methyl-D-aspartate (NMDA) subtype mediate ET-1-induced AVP secretion in vitro, but the role of glutamatergic receptors in the pressor response and the secretion of AVP in vivo has not been studied. We hypothesized that both the pressor response and AVP secretion in response to ET-1 microinjection into subfornical organ (SFO) would be suppressed by ionotropic glutamatergic receptor antagonists in the paraventricular nucleus (PVN). Sinoaortic denervated male Long Evans rats were equipped with intracerebral cannulae directed into the SFO and the magnocellular region of the PVN bilaterally. Experiments were performed 5 days later in conscious rats. Direct injection of 5 pmol ET-1 into the SFO resulted in a 20 +/- 3 mm Hg increase in mean arterial pressure (MAP) (+/- SE) and a 14.1 +/- 0.3 pg/ml increase in the mean plasma AVP level (+/- SE) (P < 0.001 vs. artificial CSF) that was blocked by selective ET(A) inhibition. Neither the pressor response nor the increase in plasma AVP in response to ET-1 was altered despite prior injection of the NMDA blocker diclozipine (5 microg, MK801) into PVN bilaterally. In contrast, bilateral PVN injection with 6-cyano-7-nitroquinoxaline-2,3-dione (40 nmol, CNQX) prevented the pressor response (MAP +/- SE, - 4 +/- 4 mm Hg) and also inhibited AVP secretion (mean AVP level +/- SE, 0.16 +/- 0.50 pg/ml) (P < 0.001 vs. vehicle in PVN after injection of ET-1 into SFO). These findings support the conclusion that both the pressor response and AVP secretion in response to ET-1 acting at the SFO are mediated by a non-NMDA, most likely an aminopropionic acid glutamatergic receptor within the PVN.  相似文献   

15.
Myocardial ischemia stimulates cardiac spinal afferents to initiate a sympathoexcitatory reflex. However, the pathways responsible for generation of increased sympathetic outflow in this reflex are not fully known. In this study, we determined the role of the paraventricular nucleus (PVN) in the cardiogenic sympathetic reflex. Renal sympathetic nerve activity (RSNA) and blood pressure were recorded in anesthetized rats during epicardial application of 10 microg/ml bradykinin. Bilateral microinjection of muscimol (0.5 nmol), a GABA(A) receptor agonist, was performed to inhibit the PVN. In 10 vehicle-injected rats, epicardial bradykinin significantly increased RSNA 178.4 +/- 48.5% from baseline, and mean arterial pressure from 76.9 +/- 2.0 to 102.3 +/- 3.3 mmHg. Microinjection of muscimol into the PVN significantly reduced the basal blood pressure and RSNA (n = 12). After muscimol injection, the bradykinin-induced increases in RSNA (111.6 +/- 35.9% from baseline) and mean arterial pressure (61.2 +/- 1.3 to 74.5 +/- 2.7 mmHg) were significantly reduced compared with control responses. The response remained attenuated even when the basal blood pressure was restored to the control. In a separate group of rats (n = 9), bilateral microinjection of the ionotropic glutamate antagonist kynurenic acid (4.82 or 48.2 nmol in 50 nl) had no significant effect on the RSNA and blood pressure responses to bradykinin compared with controls. These results suggest that the tonic PVN activity is important for the full manifestation of the cardiogenic sympathoexcitatory response. However, ionotropic glutamate receptors in the PVN are not directly involved in this reflex response.  相似文献   

16.
The effects of changes in blood volume on arterial pressure patterns during the Valsalva maneuver are incompletely understood. In the present study we measured beat-to-beat arterial pressure and heart rate responses to supine Valsalva maneuvers during normovolemia, hypovolemia induced with intravenous furosemide, and hypervolemia induced with ingestion of isotonic saline. Valsalva responses were analyzed according to the four phases as previously described (W. F. Hamilton, R. A. Woodbury, and H. T. Harper, Jr. JAMA 107: 853-856, 1936; W. F. Hamilton, R. A. Woodbury, and H. T. Harper, Jr. Am. J. Physiol. 141: 42-50, 1944). Phase I is the initial onset of straining, which elicits a rise in arterial pressure; phase II is the period of straining, during which venous return is impeded and pressure falls (early) and then partially recovers (late); phase III is the initial release of straining; and phase IV consists of a rapid "overshoot" of arterial pressure after the release. During hypervolemia, early phase II arterial pressure decreases were significantly less than those during hypovolemia, thus making the response more "square." Systolic pressure hypervolemic vs. hypovolemic falls were -7.4 +/- 2.1 vs. -30.7 +/- 7 mmHg (P = 0.005). Diastolic pressure hypervolemic vs. hypovolemic falls were -2.4 +/- 1.6 vs. -15.2 +/- 2.6 mmHg (P = 0.05). A significant direct correlation was found between plasma volume and phase II systolic pressure falls, and a significant inverse correlation was found between plasma volume and phase III-IV systolic pressure overshoots. Heart rate responses to systolic pressure falls during phase II were significantly less during hypovolemia than during hypervolemia (0.7 +/- 0.2 vs. 2.82 +/- 0.2 beats. min-1. mmHg-1; P = 0.05) but were not different during phase III-IV overshoots. We conclude that acute changes in intravascular volume from hypovolemia to hypervolemia affect cardiovascular responses, particularly arterial pressure changes, to the Valsalva maneuver and should be considered in both clinical and research applications of this maneuver.  相似文献   

17.
Spontaneuosly hypertensive rats (SHR) have been shown to exhibit several alterations in function of the intrabrain vasopressinergic system. The present study was designed to find out whether centrally administered vasopressin (AVP) may influence the cardiovascular adaptation to hypotensive hypovolemia in SHR rats. Two series of experiments were performed on conscious 17 SHR rats chronically implanted with lateral cerebral ventricle (LCV) cannulas and with femoral artery catheters. Mean arterial pressure (MAP) and heart rate (HR) were monitored before and after arterial bleeding (1,3% body weight) performed during LCV infusion of 1) artificial cerebrospinal fluid 5 microl/hour (aCSF); and 2) arginine vasopressin, 100 ng/hour/5 microl of aCSF (AVP). Central administration of aCSF and AVP had no effect on MAP and HR under resting conditions. Hemorrhage evoked significant hypotension (p<0.001) and bradycardia (p<0.001). During central infusion of AVP hemorrhage resulted in significantly greater hypotension than during central infusion of aCSF alone (p<0,05). The results provide evidence that centrally applied vasopressin significantly modulates cardivascular adjustments to hypotensive hemorrhage in SHR.  相似文献   

18.
We examined the contribution of bradykinin to the reflex hemodynamic response evoked by static contraction of the hindlimb of anesthetized cats. During electrical stimulation of ventral roots L7 and S1, we compared the cardiovascular responses to hindlimb contraction before and after the following interventions: inhibition of converting enzyme (kininase II) with captopril (3-4 mg/kg, n = 6); inhibition of kallikrein activity with aprotinin (Trasylol, 20,000-30,000 KIU/kg, n = 8); and injection of carboxypeptidase B (500-750 U/kg, n = 7). Treatment with captopril augmented the rise in mean arterial blood pressure and maximal time derivative of pressure (dP/dt) caused by static contraction from 21 +/- 3 to 39 +/- 7 mmHg and 1,405 +/- 362 to 2,285 +/- 564 mmHg/s, respectively. Aprotinin attenuated the contraction-induced rise in mean arterial blood pressure (28 +/- 4 to 9 +/- 2 mmHg) and maximal dP/dt (1,284 +/- 261 to 469 +/- 158 mmHg/s). Carboxypeptidase B reduced the cardiovascular response to static contraction. Thus the mean arterial blood pressure response was decreased from 36 +/- 12 to 24 +/- 11 mmHg, maximal dP/dt from 1,618 +/- 652 to 957 +/- 392 mmHg/s, and heart rate from 12 +/- 2 to 7 +/- 1 beats/min. These data suggest that stimulation of muscle afferents by bradykinin contributes to a portion of the reflex cardiovascular response to static contraction.  相似文献   

19.
The role of thermoregulatory background in the baroreceptor reflex control of the tail circulation was investigated 1) in anesthetized rats with a constant flow technique and 2) in conscious rats by measuring tail blood flow (venous occlusion plethysmography). In series I, during normothermia, systemic intravenous phenylephrine infusion increased mean arterial pressure (MAP) by 61.0 +/- 3.6 mmHg and induced a reflex decrease in tail perfusion pressure (TPP) from 105.0 +/- 6.3 to 84.2 +/- 4.4 mmHg (P less than 0.005). Hyperthermia decreased TPP to 66.5 +/- 5.1 mmHg (P less than 0.001) and abolished the TPP response to increased MAP (P greater than 0.05). Increases in MAP via systemic infusion of whole blood caused reductions in TPP during normothermia but failed to reduce TPP further during hyperthermia. Graded decreases in MAP during both normothermia and hyperthermia caused tail vasoconstriction. The increase in TPP was greater (P less than 0.025) during hyperthermia. In series II, conscious animals showed similar responses to hemorrhage. Graded decreases in MAP produced graded decreases in tail vascular conductance (TVC, ml.100 ml-1.min-1.100 mmHg-1). The slope of the TVC-MAP relationship averaged 0.011 +/- 0.003 TVC U/mmHg during normothermia and was markedly steeper (P less than 0.01) during hyperthermia (1.99 +/- 0.39 TVC U/mmHg). Thus the participation of the cutaneous vasculature of the rat in baroreceptor reflexes depends on thermal status, probably through the level of background sympathetic vasoconstrictor nerve activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号