首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control of airway smooth muscle is provided by parasympathetic nerves that release acetylcholine onto M(3) muscarinic receptors. Acetylcholine release is limited by inhibitory M(2) muscarinic receptors. In antigen-challenged guinea pigs, hyperresponsiveness is due to blockade of neuronal M(2) receptors by eosinophil major basic protein (MBP). Because exposure of guinea pigs to ozone also causes M(2) dysfunction and airway hyperresponsiveness, the role of eosinophils in ozone-induced hyperresponsiveness was tested. Animals were exposed to filtered air or to 2 parts/million ozone for 4 h. Twenty-four hours later, the muscarinic agonist pilocarpine no longer inhibited vagally induced bronchoconstriction in ozone-exposed animals, indicating M(2) dysfunction. M(2) receptor function in ozone-exposed animals was protected by depletion of eosinophils with antibody to interleukin-5 and by pretreatment with antibody to guinea pig MBP. M(2) function was acutely restored by removal of MBP with heparin. Ozone-induced hyperreactivity was also prevented by antibody to MBP and was reversed by heparin. These data show that loss of neuronal M(2) receptor function after ozone is due to release of eosinophil MBP.  相似文献   

2.
Ozone causes persistent airway hyperreactivity in humans and animals. One day after ozone exposure, airway hyperreactivity is mediated by release of eosinophil major basic protein that inhibits neuronal M(2) muscarinic receptors, resulting in increased acetylcholine release and increased smooth muscle contraction in guinea pigs. Three days after ozone, IL-1β, not eosinophils, mediates ozone-induced airway hyperreactivity, but the mechanism at this time point is largely unknown. IL-1β increases NGF and the tachykinin substance P, both of which are involved in neural plasticity. These experiments were designed to test whether there is a role for NGF and tachykinins in sustained airway hyperreactivity following a single ozone exposure. Guinea pigs were exposed to filtered air or ozone (2 parts per million, 4 h). In anesthetized and vagotomized animals, ozone potentiated vagally mediated airway hyperreactivity 24 h later, an effect that was sustained over 3 days. Pretreatment with antibody to NGF completely prevented ozone-induced airway hyperreactivity 3 days, but not 1 day, after ozone and significantly reduced the number of substance P-positive airway nerve bundles. Three days after ozone, NK(1) and NK(2) receptor antagonists also blocked this sustained hyperreactivity. Although the effect of inhibiting NK(2) receptors was independent of ozone, the NK(1) receptor antagonist selectively blocked vagal hyperreactivity 3 days after ozone. These data confirm mechanisms of ozone-induced airway hyperreactivity change over time and demonstrate 3 days after ozone that there is an NGF-mediated role for substance P, or another NK(1) receptor agonist, that enhances acetylcholine release and was not present 1 day after ozone.  相似文献   

3.
Eosinophils and airway nerves in asthma   总被引:6,自引:0,他引:6  
In the lungs, neuronal M2 muscarinic receptors limit the release of acetylcholine from postganglionic cholinergic nerves. However, these receptors are not functional under certain circumstances in animal models of hyperreactivity such as occurs after exposure of sensitised animals to an allergen or during a respiratory tract virus infection. This loss of M2 receptor function leads to an increase in acetylcholine release from cholinergic nerves and thus is a mechanism for the vagally mediated hyperreactivity seen in these animals. Studies in animal models of hyperreactivity have shown that eosinophils localise to the airway nerves of sensitised animals after antigen challenge. Inhibiting this localisation of eosinophils either with an antibody to the eosinophil survival cytokine IL-5 or the eosinophil adhesion molecule VLA-4 prevents loss of M2 muscarinic receptor function. It is likely that eosinophil MBP is responsible for the loss of M2 receptor function, since inhibiting eosinophil MBP with an antibody or neutralising MBP with heparin prevents this loss of function. These data are also supported by ligand binding studies where it has been shown that eosinophil MBP is an allosteric antagonist at neuronal M2 muscarinic receptors. Loss of function of lung neuronal M2 muscarinic receptors may also occur under certain circumstances in patients with asthma, although the mechanisms are not yet established.  相似文献   

4.
Airway hyperreactivity in antigen-challenged animals is mediated by eosinophil major basic protein (MBP) that blocks inhibitory M(2) muscarinic receptors on parasympathetic nerves, increasing acetylcholine release onto M(3) muscarinic receptors on airway smooth muscle. Acutely, anticholinergics block hyperreactivity in antigen-challenged animals and reverse asthma exacerbations in the human, but are less effective in chronic asthma. We tested whether atropine, given before antigen challenge, affected hyperreactivity, M(2) receptor function, eosinophil accumulation, and activation. Sensitized guinea pigs received atropine (1 mg/kg ip) 1 h before challenge and 6 h later. Twenty-four hours after challenge, animals were anesthetized, vagotomized, paralyzed, and ventilated. Airway reactivity to electrical stimulation of the vagi and to intravenous acetylcholine was not altered by atropine pretreatment in nonsensitized animals, indicating that atropine was no longer blocking postjunctional muscarinic receptors. Antigen challenge induced airway hyperreactivity to vagal stimulation that was significantly potentiated by atropine pretreatment. Bronchoconstriction induced by acetylcholine was not changed by antigen challenge or by atropine pretreatment. M(2) receptor function was lost in challenged animals but protected by atropine pretreatment. Eosinophils in bronchoalveolar lavage and within airway tissues were significantly increased by challenge but significantly reduced by atropine pretreatment. However, extracellular MBP in challenged airways was significantly increased by atropine pretreatment, which may account for reduced eosinophils. Depleting eosinophils with antibody to IL-5 before challenge prevented hyperreactivity and significantly reduced MBP in airways of atropine-pretreated animals. Thus atropine pretreatment potentiated airway hyperreactivity by increasing eosinophil activation and degranulation. These data suggest that anticholinergics enhance eosinophil interactions with airway nerves.  相似文献   

5.
Ozone hyperreactivity over 24 h is mediated by blockade of inhibitory M(2) muscarinic autoreceptors by eosinophil major basic protein. Because eosinophil populations in the lungs fluctuate following ozone, the contribution of eosinophils to M(2) dysfunction and airway hyperreactivity was measured over several days. After one exposure to ozone, M(2) function, vagal reactivity, smooth muscle responsiveness, and inflammation were measured in anesthetized guinea pigs. Ozone-induced hyperreactivity to vagal stimulation persisted over 3 days. Although hyperreactivity one day after ozone is mediated by eosinophils, AbVLA-4 did not inhibit either eosinophil accumulation in the lungs or around the nerves or prevent hyperreactivity at this time point. Two days after ozone, eosinophils in BAL, around airway nerves and in lungs, were decreased, and neuronal M(2) receptor function was normal, although animals were still hyperreactive to vagal stimulation. Depleting eosinophils with AbIL-5 prevented hyperreactivity, thus eosinophils contribute to vagal hyperreactivity by mechanisms separate from M(2) receptor blockade. Three days after ozone, vagal hyperreactivity persisted, eosinophils were again elevated in BAL in lungs and around nerves, and M(2) receptors were again dysfunctional. At this point, airway smooth muscle was also hyperresponsive to methacholine. Eosinophil depletion with AbIL-5, AbVLA-4, or cyclophosphamide protected M(2) function 3 days after ozone and prevented smooth muscle hyperreactivity. However, vagal hyperreactivity was significantly potentiated by eosinophil depletion. The site of hyperreactivity, muscle or nerve, changes over 3 days after a single exposure to ozone. Additionally, the role of eosinophils is complex; they mediate hyperreactivity acutely while chronically may be involved in repair.  相似文献   

6.
We investigated the effects of a neurokinin-1 (NK(1)) receptor antagonist (SR-140333) and a NK(2) receptor antagonist (SR-48968) on airway responsiveness and on the function of neuronal M(2) muscarinic receptors, which normally inhibit vagal acetylcholine release, in guinea pigs infected with parainfluenza virus. Antagonists were given 1 h before infection and daily thereafter. Four days later, bronchoconstriction induced by either intravenous histamine (which is partly vagally mediated) or electrical stimulation of the vagus nerves was increased by viral infection compared with control. In addition, the ability of the muscarinic agonist pilocarpine to inhibit vagally induced bronchoconstriction was lost in virus-infected animals, demonstrating loss of neuronal M(2) receptor function. Macrophage influx into the lungs was inhibited by pretreatment with both antagonists. However, only the NK(1) receptor antagonist prevented M(2) receptor dysfunction and inhibited hyperresponsiveness (measured as an increase in either vagally induced or histamine-induced bronchoconstriction). Thus virus-induced M(2) receptor dysfunction and hyperresponsiveness are prevented by a NK(1) receptor antagonist, but not by a NK(2) receptor antagonist, whereas both antagonists had similar anti-inflammatory effects.  相似文献   

7.
Fryer AD  Adamko DJ  Yost BL  Jacoby DB 《Life sciences》1999,64(6-7):449-455
In the lungs, acetylcholine released from the parasympathetic nerves stimulates M3 muscarinic receptors on airway smooth muscle inducing contraction and bronchoconstriction. The amount of acetylcholine released from these nerves is limited locally by neuronal M2 muscarinic receptors. These neuronal receptors are dysfunctional in asthma and in animal models of asthma. Decreased M2 muscarinic receptor function results in increased release of acetylcholine and in airway hyperreactivity. Inflammation has long been associated with hyperreactivity and the role of inflammatory cells in loss of neuronal M2 receptor function has been examined. There are several different mechanisms for loss of neuronal M2 receptor function. These include blockade by endogenous antagonists such as eosinophil major basic protein, decreased expression of M2 receptors following infection with viruses or exposure to pro inflammatory cytokines such as gamma interferon. Finally, the affinity of acetylcholine for these receptors can be decreased by exposure to neuraminidase.  相似文献   

8.
Viral infection causes dysfunction of inhibitory M2 muscarinic receptors (M2Rs) on parasympathetic nerves, leading to airway hyperreactivity. The mechanisms of M2R dysfunction are incompletely understood. Double-stranded RNA (dsRNA), a product of viral replication, promotes the expression of interferons. Interferon-gamma decreases M2R gene expression in cultured airway parasympathetic neurons. In this study, guinea pigs were treated with dsRNA (1 mg/kg ip) on 2 consecutive days. Twenty-four hours later, anesthetized guinea pigs had dysfunctional M2Rs and were hyperresponsive to electrical stimulation of the vagus nerves, in the absence of inflammation. DsRNA did not affect either cholinesterase or the function of postjunctional M3 muscarinic receptors on smooth muscle. M2Rs on the nerves supplying the heart were also dysfunctional, but M2Rs on the heart muscle itself functioned normally. Thus dsRNA causes increased bronchoconstriction and bradycardia via increased release of ACh from the vagus nerves because of loss of M2R function on parasympathetic nerves in the lungs and heart. Production of dsRNA may be a mechanism by which viruses cause dysfunction of neuronal M2Rs and airway hyperreactivity.  相似文献   

9.
Abstract: The regulation of striatal cholinergic function by tachykinins was examined in urethane-anesthetized rats by using microdialysis. Substance P (0.01–1 µ M ), [Sar9,Met(O2)11]substance P (1–10 µ M ), septide (0.1–3 µ M ), neurokinin (NK) A (0.1–10 µ M ), and senktide (0.1–10 µ M ) produced concentration-dependent increases in striatal acetylcholine (ACh) release. Septide was the most potent agonist for inducing release of ACh, whereas the stimulating effect of senktide was less pronounced and more progressive in onset. The response to septide was prevented by intraperitoneal administration of the nonpeptide NK1 antagonist SR 140333 (1–3 mg/kg) but not by the nonpeptide NK2 receptor antagonist SR 48968, indicating that the effect was mediated specifically by NK1 receptors. ACh release caused by NKA was reduced by SR 48968 (1–3 mg/kg) and slightly affected by SR 140333, indicating a principal role for NK2 receptors in the peptide response. The similar efficacy of SR 140333 and SR 48968 in blocking substance P-induced ACh release suggested that the effect of this peptide involves the stimulation of both NK1 and NK2 receptors. Finally, our results indicate that the increase in striatal ACh release induced by the D1 agonist (+)-SKF-38393 (3 µ M ) may be mediated indirectly through local release of NKA or substance P acting at NK2 receptors.  相似文献   

10.
In the lungs, neuronal M2 muscarinic receptors inhibit acetylcholine release from the parasympathetic nerves. Parainfluenza virus infection causes loss of M2 receptor function, which increases acetylcholine release and vagally mediated bronchoconstriction. Because glucocorticoids are known to inhibit airway hyperresponsiveness, we tested whether dexamethasone (6.5 or 65 microg/kg i.p.) prevents virus-induced hyperresponsiveness and M2 receptor dysfunction in guinea pigs. In controls, pilocarpine, a muscarinic agonist, inhibited vagally induced bronchoconstriction, demonstrating functional M2 receptors. However, in virus-infected animals, pilocarpine failed to inhibit vagally induced bronchoconstriction, demonstrating M2 receptor dysfunction. Frequency-dependent bronchoconstriction was greater in virus-infected animals than in controls, indicating airway hyperresponsiveness. Low-dose dexamethasone (6.5 microg/kg i.p.) treatment prevented virus-induced airway hyperresponsiveness, ameliorated M2 receptor dysfunction, and decreased viral content in the lungs without inhibiting virus induced inflammation. High-dose dexamethasone (65 microg/kg i.p.) prevented virus-induced hyperresponsiveness, completely reversed M2 receptor dysfunction, decreased viral titers, and decreased virus-induced inflammation. This high-dose dexamethasone also increased M2 receptor function in uninfected animals. In conclusion, dexamethasone prevented virus-induced hyperresponsiveness and M2 receptor dysfunction via multiple mechanisms.  相似文献   

11.
The mechanism by which substance P induces contraction of airway smooth muscle has been the subject of numerous reports. It has been suggested that in rabbit airways the action of substance P is indirect, via the release of endogenous acetylcholine, whereas this is not so in other species. The present detailed study investigated whether substance P-induced contraction in rabbit isolated bronchus and trachea is due to the release of endogenous acetylcholine or in bronchus is due to histamine release and whether substance P is metabolized by the enzymes enkephalinase and acetylcholinesterase. Isometric contraction to cumulative addition of substance P was measured in the presence of 10(-6) and 10(-4) M atropine, 10(-6) M pyrilamine, 10(-5) M phosphoramidon, or 3 x 10(-7) M neostigmine. Neither atropine nor pyrilamine had any effect on the substance P responses. Phosphoramidon, however, produced a 12-fold shift to the left in the response curve with a decrease in the 50% effective concentration from 7.0 x 10(-8) to 6.1 x 10(-9) M (n = 4 control and 5 treated; P less than 0.05). In contrast, neostigmine at a concentration that produced a sixfold shift to the left in the acetylcholine response curve had no effect on substance P responses. We conclude that, in rabbit airways in vitro, substance P-induced contraction is not mediated by release of endogenous acetylcholine or histamine. In addition, endogenous enkephalinase but not acetylcholinesterase may be involved in the degradation of substance P. Our results show that, in contrast to previous studies in rabbits, the mechanism of action of substance P may resemble that described in humans.  相似文献   

12.
This study was carried out to determine whether tachykinins released from lung C-fiber afferents play a part in the bronchial hyperreactivity induced in guinea pigs by chronic exposure to cigarette smoke (CS). Two matching groups of young guinea pigs were exposed to either mainstream CS (CS group) or air (control group) for 20 min twice daily for 14-17 days. There was no difference in the baseline total pulmonary resistance (RL) between the two groups, but the baseline dynamic lung compliance was reduced ( approximately 19%) in CS animals. The responses of RL to intravenous injections of ACh, neurokinin (NK) A, and capsaicin were all markedly increased in CS animals; for example, ACh at the same dose of 5.06 microg/kg increased RL by 207% in the control group and by 697% (n = 8; P < 0. 001) in the CS group. The increased responsiveness was accompanied by significant increases in the numbers of neutrophils, eosinophils, and macrophages in the bronchoalveolar lavage fluid in CS animals. Pretreatment with SR-48968 and CP-99994, antagonists of NK(1) and NK(2) receptors, respectively, did not alter the response of RL to ACh in control animals, but it abolished the elevated bronchoconstrictive response in the CS animals. Furthermore, the immunoreactivities of substance P and calcitonin gene-related peptide in the bronchoalveolar lavage fluid collected after capsaicin challenge were significantly increased in CS animals. These results show that chronic exposure to CS induced airway mucosal inflammation accompanied by bronchial hyperreactivity in guinea pigs and that the tachykininergic mechanism plays an important role in this augmented responsiveness.  相似文献   

13.
It is proposed the link between the hyperactivity of NMDA receptors and airway hyperresponsiveness. We investigated the effect of agents modulating the activity of NMDA receptors in the ovalbumin-induced airway hyperreactivity in guinea pigs. The airways hyperreactivity was influenced by the agonist (NMDA) and selective antagonist - competitive (AP-5) and non-competitive (MK-801) of NMDA receptors. Airway responsiveness to histamine or acetylcholine was evaluated in in vitro conditions. NMDA administration caused the increase of tracheal smooth muscle response in ovalbumin-induced hyperreactivity to acetylcholine. MK 801 as well as AP-5 provoked the decrease of reactivity mainly to acetylcholine in tracheal smooth muscle, while the former, non-competitive antagonist was more effective. We recorded more pronounced response in tracheal than in lung tissue smooth muscle with more considerable response to acetylcholine than to histamine. The results of experiments show the modification of airway smooth muscles responses by agents modulating the activity of NMDA receptors. They confirm the possibility of NMDA receptors participation in experimental airway hyperreactivity. The results enlarge information regarding the link of the inflammatory diseases and glutamatergic system.  相似文献   

14.
A 25 year adventure in the field of tachykinins   总被引:3,自引:0,他引:3  
  相似文献   

15.
SSR 146977 is a potent and selective antagonist of the tachykinin NK3 receptor. In Chinese hamster ovary cells expressing the human tachykinin NK3 receptor, SSR 146977 inhibited the binding of radioactive neurokinin B to NK3 receptors (Ki = 0.26 nM), senktide (10 nM) induced inositol monophosphate formation (IC50 = 7.8-13 nM), and intracellular calcium mobilization (IC50 = 10 nM). It antagonized [MePhe7]neurokinin B induced contractions of guinea pig ileum (pA2 = 9.07). Senktide (30 nM) induced firing rate increase of noradrenergic neurons in the guinea pig locus coeruleus and dopaminergic neurons in the guinea pig substantia nigra was also blocked by SSR 146977 (50 and 100 nM, respectively). In vivo, in the respiratory system, SSR 146977 inhibited bronchial hyperresponsiveness to acetylcholine, bronchial microvascular permeability hypersensitivity to histamine (doses of 0.1-1 mg/kg i.p.), and cough (doses of 0.03-1 mg/kg i.p.) provoked by citric acid in guinea pigs. In the central nervous system, SSR 146977 inhibited turning behaviour (ID50 = 0.2 mg/kg i.p. and 0.4 mg/kg p.o.) and prevented the decrease of locomotor activity (10 and 30 mg/kg i.p) mediated by the stimulation of NK3 receptors in gerbils. In guinea pigs, SSR 146977 antagonized senktide-induced acetylcholine release in the hippocampus (0.3 and 1 mg/kg i.p) and norepinephrine release in the prefrontal cortex (0.3 mg/kg i.p.). It also prevented haloperidol-induced increase of the number of spontaneously active dopamine A10 neurons (1 and 3 mg/kg i.p.).  相似文献   

16.
It has been suggested that pesticide exposure may be a contributing factor underlying the increased incidence of asthma in the United States and other industrialized nations. To test this hypothesis, airway hyperreactivity was measured in guinea pigs exposed to chlorpyrifos, a widely used organophosphate pesticide. Electrical stimulation of the vagus nerves caused frequency-dependent bronchoconstriction that was significantly potentiated in animals 24 h or 7 days after a single subcutaneous injection of either 390 mg/kg or 70 mg/kg of chlorpyrifos, respectively. Mechanisms by which chlorpyrifos may cause airway hyperreactivity include inhibition of acetylcholinesterase (AChE) or dysfunction of M3 muscarinic receptors on airway smooth muscle or of autoinhibitory M2 muscarinic receptors on parasympathetic nerves in the lung. AChE activity in the lung was significantly inhibited 24 h after treatment with 390 mg/kg of chlorpyrifos, but not 7 days after injection of 70 mg/kg of chlorpyrifos. Acute exposure to eserine (250 microg/ml) also significantly inhibited lung AChE but did not potentiate vagally induced bronchoconstriction. Neuronal M2 receptor function was tested using the M2 agonist pilocarpine, which inhibits vagally induced bronchoconstriction in control animals. In chlorpyrifos-treated animals, pilocarpine dose-response curves were shifted significantly to the right, demonstrating decreased responsiveness of neuronal M2 receptors. In contrast, chlorpyrifos treatment did not alter methacholine-induced bronchoconstriction, suggesting that chlorpyrifos does not alter M3 muscarinic receptor function on airway smooth muscle. These data demonstrate that organophosphate insecticides can cause airway hyperreactivity in the absence of AChE inhibition by decreasing neuronal M2 receptor function.  相似文献   

17.
More information is needed on the physiological role of the tachykinins (TKs), especially neurokinin3-receptor (NK3) agonists, in the pancreas. In this paper we investigated and compared the effect of PG-KII (10(-9) to 10(-6) M), a natural NK3-receptor agonist, with that of the known secretagogues substance P (10(-9) to 10(-6)M), caerulein (10(-11) to 10(-8) M) and carbachol (10(-8) to 10(-5) M), on amylase secretion from dispersed pancreatic acini of the guinea pig and rat. PG-KII (10(-7) M) significantly increased basal amylase release from guinea pig pancreatic acini (from 5.4+/-0.9% to 11.3+/-0.5%, P < 0.05) but left basal release in the rat unchanged (6.5+/-0.5%). The stimulant effect of PG-KII on guinea pig acini was significantly reduced by the NK3-receptor antagonist, SR 142801 (5 x 10(-7) M), and left unchanged by the NK1-receptor antagonist, SR 140333 (5 x 10(-7) M). Conversely, substance P (10(-7) M) significantly stimulated amylase secretion from rat and guinea pig acini (12.6+/-0.6% and 12.1+/-0.7%, P < 0.05). This stimulated effect of substance P was antagonized by the NK1--receptor antagonist (5 x 10(-7) M), but not by the NK3-receptor antagonist (5 x 10(-7) M). The PG-KII- and substance P-evoked maximal responses were lower than those evoked by caerulein (10(-9) M) (guinea pig, 19.1+/-1.3%; rat, 1802+/-0.9%, P < 0.01) and carbachol (10(-5) M) (guinea pig, 23.3+/-1.2%; rat, 24.0+/-1.1%, P < 0.01). The inhibitors of phospholipase C U-73122 (10(-5) M), phospholipase A2 quinacrine (10(-5)M), and protein tyrosine kinase genistein (10(-4) M), partly but significantly inhibited PG-KII, as well as carbachol-stimulated amylase release. Coincubation of PG-KII 10(-7) M with submaximal doses of caerulein (10(-11) to 10(-10) M) and carbachol (10(-7) to 10(-6) M) had an additive effect on amylase release. Pre-incubation with PG-KII (10(-7) M) for 30 min significantly reduced the subsequent amylase response to PG-KII, whereas pre-incubation with caerulein 10(-10) M or carbachol 10(-6) M did not. These findings suggest that PG-KII directly contributes to pancreatic exocrine secretion by interacting with acinar NK3 receptors of the guinea pig but not of the rat. PG-KII signal transduction involves the intracellular phospholipase C, phospholipase A2 and protein tyrosine kinase pathways. The NK3 receptor system cooperates with the other known secretagogues in regulating guinea pig exocrine pancreatic secretion and undergoes rapid homologous desensitization.  相似文献   

18.
We investigated the effects of ozone exposure (3.0 ppm, 2 h) on the responsiveness of guinea pig airway muscle in vitro from animals developing bronchial hyperreactivity. Muscarinic reactivity in vivo was determined by measuring specific airway resistance (sRaw) in response to increasing concentrations of aerosolized acetylcholine (ACh) administered before and 30 min after exposure. Immediately after reactivity testing, multiple tracheal rings from ozone- and air-exposed animals were prepared and the contractile responses to increasing concentrations of substance P, ACh, or KCl were assessed in the presence of 10 microM indomethacin with or without 1 microM phosphoramidon, an inhibitor of neutral endopeptidase. Isometric force generation in vitro was measured on stimulation by cumulative concentrations of the agonists, and force generation (in g/cm2) was calculated after determination of muscle cross-sectional area. The smooth muscle of mucosa-intact airways from guinea pigs with ozone-induced bronchial hyper-reactivity proved to be hyperresponsive in vitro to substance P and ACh but not to KCl. Pretreatment with phosphoramidon abolished the increase in substance P responsiveness but had no effect on muscarinic hyperresponsiveness after ozone exposure. Furthermore, substance P responsiveness was not augmented in ozone-exposed airways in which the mucosa had been removed before testing in vitro. Likewise, muscarinic hyperresponsiveness was not present in ozone-exposed airways without mucosa. Our data indicate that airway smooth muscle responsiveness is increased in guinea pigs with ozone-induced bronchial hyperreactivity and suggest that this hyperresponsiveness may be linked to non-cyclooxygenase mucosa-derived factors.  相似文献   

19.
Viral infections exacerbate asthma. One of the pathways by which viruses trigger bronchoconstriction and hyperresponsiveness is by causing dysfunction of inhibitory M(2) muscarinic receptors on the airway parasympathetic nerves. These receptors normally limit acetylcholine (ACh) release from the parasympathetic nerves. Loss of M(2) receptor function increases ACh release, thereby increasing vagally mediated bronchoconstriction. Because viral infection causes an influx of macrophages into the lungs, we tested the role of macrophages in virus-induced airway hyperresponsiveness and M(2) receptor dysfunction. Guinea pigs infected with parainfluenza virus were hyperresponsive to electrical stimulation of the vagus nerves but not to intravenous ACh, indicating that hyperresponsiveness was due to increased release of ACh from the nerves. In addition, the muscarinic agonist pilocarpine no longer inhibited vagally induced bronchoconstriction, indicating M(2) receptor dysfunction. Treating animals with liposome-encapsulated dichloromethylene-diphosphonate depleted macrophages as assessed histologically. In these animals, viral infection did not cause airway hyperresponsiveness or M(2) receptor dysfunction. These data suggest that macrophages mediate virus-induced M(2) receptor dysfunction and airway hyperresponsiveness.  相似文献   

20.

Background

Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine constitutively expressed by urothelial cells. During inflammatory stimuli, MIF is released into the lumen complexed to other proteins and these complexes can bind to urothelial cell-surface receptors to activate signaling pathways. Since MIF is complexed to α1-inhibitor III (A1-I3; a member of the α2-macroglubulin family) and glucose regulated protein 78 (GRP78) is a receptor for A1-I3 the goals of this study were to determine if substance P elicits urothelial cell-surface expression of GRP78 and to assess the functional role of CD74 (receptor for MIF) or GRP78 in substance P-induced bladder inflammatory changes.

Methodology/Principal Findings

Anesthetized male Sprague-Dawley rats received either saline or substance P (s.c.), bladders were collected 1 hour after treatment and processed for histology or protein/mRNA. The expression of GRP78 at urothelial cell-surface was determined by performing in vivo biotinylation of urothelial cell-surface proteins. Finally, in order to determine the effects of receptor blockade on substance P-induced MIF release and inflammatory changes, rats received either intraluminal antibodies to CD74, GRP78, both, or non-specific IgG (as a control).GRP78 and MIF immunostaining was simultaneously visualized in umbrella cells only after substance P treatment. Immunoprecipitation studies showed GRP78-MIF complexes increased after substance P while in vivo biotinylation confirmed substance P-induced GRP78 cell-surface expression in urothelial cells. Intraluminal blockade of CD74 and/or GRP78 prevented substance P-induced changes, including bladder edema, intraluminal MIF release by urothelial cells and production of inflammatory cytokines by urothelial cells.

Conclusions/Significance

GRP78 is expressed on the surface of urothelial cells after substance P treatment where it can bind MIF complexes. Blocking CD74 (receptor for MIF) and/or GRP78 prevented substance P-induced inflammatory changes in bladder and urothelium, indicating that these urothelial receptors are effective targets for disrupting MIF-mediated bladder inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号