首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The epinephrine (Epi)-induced effects on the sympathetic nervous system (SNS) and metabolic functions were studied in men before and during a decrease in SNS activity achieved through simulated microgravity. Epi was infused at 3 graded rates (0.01, 0.02, and 0. 03 microg. kg(-1). min(-1) for 40 min each) before and on the fifth day of head-down bed rest (HDBR). The effects of Epi on the SNS (assessed by plasma norepinephrine levels and spectral analysis of systolic blood pressure and heart rate variability), on plasma levels of glycerol, nonesterified fatty acids (NEFA), glucose and insulin, and on energy expenditure were evaluated. HDBR decreased urinary norepinephrine excretion (28.1 +/- 4.2 vs. 51.5 +/- 9.1 microg/24 h) and spectral variability of systolic blood pressure in the midfrequency range (16.3 +/- 1.9 vs. 24.5 +/- 0.9 normalized units). Epi increased norepinephrine plasma levels (P < 0.01) and spectral variability of systolic blood pressure (P < 0.009) during, but not before, HDBR. No modification of Epi-induced changes in heart rate and systolic and diastolic blood pressures were observed during HDBR. Epi increased plasma glucose, insulin, and NEFA levels before and during HDBR. During HDBR, the Epi-induced increase in plasma glycerol and lactate levels was more pronounced than before HDBR (P < 0.005 and P < 0.001, respectively). Epi-induced energy expenditure was higher during HDBR (P < 0.02). Our data suggest that the increased effects of Epi during simulated microgravity could be related to both the increased SNS response to Epi infusion and/or to the beta-adrenergic receptor sensitization of end organs, particularly in adipose tissue and skeletal muscle.  相似文献   

2.
To investigate the regulation of leptin secretion and pulsatility by fat mass, we performed overnight leptin sampling every 20 min for 12 h and compared leptin dynamics with total body and regional fat measurements in 20 healthy male subjects. Simultaneous growth hormone (GH), cortisol, and insulin levels were assessed to determine relatedness and synchronicity during overnight fasting. Deconvolution analyses were performed to determine simultaneous hormonal dynamics, synchronicity, and interrelatedness using cross-correlation and cross-approximate entropy (X-ApEn) analyses. Subjects demonstrated 4.7 +/- 0.4 leptin pulses/12 h. Leptin secretion correlated highly with total body fat (r = 0.78, P < 0.001) and regional fat depots. In contrast, leptin pulsatility did not correlate with total fat (r = 0.07, P = 0.785) or other measures of fat. There was synchronicity between GH and leptin (lag -39 minutes), cortisol and leptin (lag -211 min), and leptin and insulin, with leptin following insulin by 275 min. The mean random X-ApEn was significant between leptin and GH (0.854 +/- 0.030), cortisol (0.891 +/- 0.023), and insulin (0.868 +/- 0.034), demonstrating a high degree of regularity and pattern frequency. These data demonstrate differential regulation of leptin secretion and pulsatility in adipocytes and suggest that the leptin pulse generator is extrinsic to fat, whereas fat mass acts as an amplifier to modulate secretion and amplitude for a given pulsatility. We demonstrate synchronicity between leptin and GH, cortisol, and insulin. The directionality of the cross correlation suggests a temporal construct in which changes in leptin follow those of insulin but precede those of GH and cortisol during overnight fasting.  相似文献   

3.
We studied 130 healthy aged women (n = 57) and men (n = 73), age 65-88 yr, with age-related reductions in insulin-like growth factor I and gonadal steroid levels to assess the interrelationships between cortisol and growth hormone (GH) secretion and whether these relationships differ by sex. Blood was sampled every 20 min from 8:00 PM to 8:00 AM; cortisol was measured by RIA and GH by immunoradiometric assay, followed by deconvolution analyses of hormone secretory parameters and assessment of approximate entropy (ApEn) and cross-ApEn. Cortisol mass/burst, cortisol production rate, and mean and integrated serum cortisol concentrations (P < 0.0005), and overnight basal GH secretion (P < 0.05), were elevated in women vs. men. Integrated cortisol concentrations were directly related to most measures of GH secretion in women (P < 0.01) and with mean and integrated GH concentrations in men (P < 0.05). Integrated GH concentrations were directly related to mean and integrated cortisol levels in women (P < 0.005) and men (P < 0.05), with no sex differences. There were no sex differences in cortisol or GH ApEn values; however, the cross-ApEn score was greater in women (P < 0.05), indicating reduced GH-cortisol pattern synchrony in aged women vs. men. There were no significant relationships of integrated cortisol secretion with GH ApEn, or vice versa, in either sex. Thus postmenopausal women appear to maintain elevated cortisol production in patterns that are relatively uncoupled from those of GH, whereas mean hormone outputs remain correlated.  相似文献   

4.
We examined the relationship between energy expenditure (in kcal) and epinephrine (Epi), norepinephrine (NE), and growth hormone (GH) release. Ten men [age, 26 yr; height, 178 cm; weight, 81 kg; O(2) uptake at lactate threshold (LT), 36.3 ml. kg(-1). min(-1); peak O(2) uptake, 49.5 ml. kg(-1). min(-1)] were tested on six randomly ordered occasions [control, 5 exercise: at 25 and 75% of the difference between LT and rest (0.25LT, 0.75LT), at LT, and at 25 and 75% of the difference between LT and peak (1.25LT, 1.75LT) (0900-0930)]. From 0700 to 1300, blood was sampled and assayed for GH, Epi, and NE. Carbohydrate (CHO) expenditure during exercise and fat expenditure during recovery rose proportionately to increasing exercise intensity (P = 0.002). Fat expenditure during exercise and CHO expenditure during recovery were not affected by exercise intensity. The relationship between exercise intensity and CHO expenditure during exercise could not be explained by either Epi (P = 1.00) or NE (P = 0.922), whereas fat expenditure during recovery increased with Epi and GH independently of exercise intensity (P = 0. 028). When Epi and GH were regressed against fat expenditure during recovery, only GH remained statistically significant (P < 0.05). We conclude that a positive relationship exists between exercise intensity and both CHO expenditure during exercise and fat expenditure during recovery and that the increase in fat expenditure during recovery with higher exercise intensities is related to GH release.  相似文献   

5.
Changes of plasma hormone levels were investigated in human subjects after exposure to physical exercise (WL) and insulin induced hypoglycemia (ITT) during apace flight or after head down bed rest (HDBR). Exaggerated responses of plasma epinephrine (EPI), norepinephrine (NE) and aldosterone (ALD) were observed after WL during space flight as compared to preflight response. Hypoglycemia during space flight induced attenuated responses of EPI, NE and augmented response of ALD. Exposure to WL during HDBR was followed by significantly exaggerated responses of plasma EPI, NE, ALD, PRA and cortisol. In HDBR the responses of plasma EPI, NE and cortisol were reduced and PRA response was exaggerated during ITT. These data indicate that hormonal responses to ITT and WL are similar at real and simulated microgravity.  相似文献   

6.
To test the hypothesis that heightened sympathetic outflow precedes and predicts the magnitude of the growth hormone (GH) response to acute exercise (Ex), we studied 10 men [age 26.1 +/- 1.7 (SE) yr] six times in randomly assigned order (control and 5 Ex intensities). During exercise, subjects exercised for 30 min (0900-0930) on each occasion at a single intensity: 25 and 75% of the difference between lactate threshold (LT) and rest (0.25LT, 0.75LT), at LT, and at 25 and 75% of the difference between LT and peak (1.25LT, 1.75LT). Mean values for peak plasma epinephrine (Epi), plasma norepinephrine (NE), and serum GH concentrations were determined [Epi: 328 +/- 93 (SE), 513 +/- 76, 584 +/- 109, 660 +/- 72, and 2,614 +/- 579 pmol/l; NE: 2. 3 +/- 0.2, 3.9 +/- 0.4, 6.9 +/- 1.0, 10.7 +/- 1.6, and 23.9 +/- 3.9 nmol/l; GH: 3.6 +/- 1.5, 6.6 +/- 2.0, 7.0 +/- 2.0, 10.7 +/- 2.4, and 13.7 +/- 2.2 microg/l for 0.25, 0.75, 1.0, 1.25, and 1.75LT, respectively]. In all instances, the time of peak plasma Epi and NE preceded peak GH release. Plasma concentrations of Epi and NE always peaked at 20 min after the onset of Ex, whereas times to peak for GH were 54 +/- 6 (SE), 44 +/- 5, 38 +/- 4, 38 +/- 4, and 37 +/- 2 min after the onset of Ex for 0.25-1.75LT, respectively. ANOVA revealed that intensity of exercise did not affect the foregoing time delay between peak NE or Epi and peak GH (range 17-24 min), with the exception of 0.25LT (P < 0.05). Within-subject linear regression analysis disclosed that, with increasing exercise intensity, change in (Delta) GH was proportionate to both DeltaNE (P = 0.002) and DeltaEpi (P = 0.014). Furthermore, within-subject multiple-regression analysis indicated that the significant GH increment associated with an antecedent rise in NE (P = 0.02) could not be explained by changes in Epi alone (P = 0.77). Our results suggest that exercise intensity and GH release in the human may be coupled mechanistically by central adrenergic activation.  相似文献   

7.
In this experiment, we assessed the effect of amino acid (AA) intake restriction in entire male Yorkshire pigs between 15 and 38 kg BW (restriction phase) on BW gain, body composition and plasma levels of blood urea nitrogen (BUN), cortisol, insulin-like growth factor I (IGF-I), growth hormone (GH) and leptin during the subsequent re-alimentation phase. During the restriction phase, 36 pigs were allotted to one of two dietary treatments: adequate AA intake (control) or AA-limiting diets (AA-30%). Thereafter, pigs were fed common non-limiting diets up to 110 kg BW. Throughout the experiment, pigs were scale-fed at 90% of the estimated voluntary daily digestible energy intake. At the end of the restriction phase, pigs on AA-30% had lesser BW gain (650 v. 784 g/day; P < 0.001), loin area (LA; 12.2 v. 14.2 cm2; P < 0.001), BUN (4.6 v. 6.3 mg/dl; P < 0.02), lesser plasma levels of IGF-I (440 v. 640 ng/m; P < 0.001) and cortisol (8.2 v. 19.2 μg/dl; P < 0.001), greater backfat thickness (BF; 7.56 v. 6.56 mm; P < 0.02), and greater plasma levels of leptin (2.7 v. 1.8 ng/ml; P = 0.027) and GH (3.3 v. 2.0 ng/ml; P = 0.05) than pigs on control. During the re-alimentation phase, previously restricted pigs showed full compensatory growth (CG) in terms of BW gain (1170 v. 1077 g/day; P < 0.002), whole-body protein deposition (Pd) (179 v. 163 g/day; P < 0.001) as well as physical and chemical body composition (whole-body lipid to body protein mass ratio, LB/PB; 1.14 v. 1.15; P > 0.10). Besides GH at 45 kg BW (4.2 v. 2.4 ng/ml; P = 0.066), there were no effects of previous AA intake restriction on leptin, IGF-I and BUN during the re-alimentation phase (P > 0.10). Plasma cortisol and IGF-I levels may act as an indicator of AA-induced restriction in Pd in growing pigs. Plasma BUN level does not appear as a sensitive indicator for compensatory Pd. Plasma leptin and GH levels allow for the involvement of the brain in controlling chemical body composition. Full CG was observed during the energy-dependent phase of Pd in growing pigs and might be driven by a target LB/PB, possibly mediated via plasma leptin, IGF-I and GH levels.  相似文献   

8.
Ghrelin is an orexigenic peptide and a growth hormone (GH) secretagogue. Secretory dynamics of ghrelin have not been characterized in adolescents with anorexia nervosa (AN). We hypothesized that, compared with healthy adolescents, girls with AN would have increased ghrelin concentrations measured over 12 h of nocturnal sampling from increased basal and pulsatile secretion, and endogenous ghrelin would independently predict GH and cortisol. We examined ghrelin concentration and secretory dynamics in 22 girls with AN and 18 healthy adolescents 12-18 yr old. Associations between ghrelin, various hormones, and measures of insulin resistance were examined. On Cluster analysis, girls with AN had higher ghrelin concentrations than controls, including total area under the curve (AUC) (P = 0.002), nadir (P = 0.0006), and valley levels (P = 0.002). On deconvolution analysis, secretory burst amplitude (P = 0.03) and burst mass (P = 0.04) were higher in AN, resulting in higher pulsatile (P = 0.05) and total ghrelin secretion (P = 0.03). Fasting ghrelin independently predicted GH burst frequency (r = 0.44, P = 0.005). The nutritional markers body mass index and body fat predicted postglucose and valley ghrelin but not fasting levels. Ghrelin parameters were inversely associated with fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), leptin, and IGF-I. HOMA-IR was the most significant predictor of most ghrelin parameters. Valley ghrelin independently predicted cortisol burst frequency (52% of variability), and ghrelin parameters independently predicted total triiodothyronine and LH levels. Higher ghrelin concentrations in adolescents with AN are a consequence of increased secretory burst mass and amplitude. The most important predictor of ghrelin concentration is insulin resistance, and ghrelin in turn predicts GH and cortisol burst frequency.  相似文献   

9.
Leptin, an adipocytokine that suppresses appetite and may regulate neuroendocrine pathways, is low in undernourished states like anorexia nervosa (AN). Although leptin exhibits pulsatility, secretory characteristics have not been well described in adolescents and in AN, and the contribution of hypoleptinemia to increased growth hormone (GH) and cortisol in AN has not been explored. We hypothesized that hypoleptinemia in AN reflects decreased basal and pulsatile secretion and may predict increased GH and cortisol levels. Sampling for leptin, GH, cortisol, and ghrelin was performed every 30 min (from 2000 to 0800) in 23 AN and 21 controls 12-18 yr old, and data were analyzed using Cluster and deconvolution methods. Estradiol, thyroid hormones, and body composition were measured. AN girls had lower pulsatile and total leptin secretion than controls (P < 0.0001) subsequent to decreased burst mass (P < 0.0001) and basal secretion (P = 0.02). Nutritional markers predicted leptin characteristics. In a regression model including BMI, body fat, and ghrelin, leptin independently predicted GH burst interval and frequency. Valley leptin contributed to 56% of the variability in GH burst interval, and basal leptin and fasting ghrelin contributed to 42% of variability in burst frequency. Pulsatile leptin independently predicted urine free cortisol/creatinine (15% of variability). Valley leptin predicted cortisol half-life (22% of variability). Leptin predicted estradiol and thyroid hormone levels. In conclusion, hypoleptinemia in AN is subsequent to decreased basal and pulsatile secretion and nutritionally regulated. Leptin predicts GH and cortisol parameters and with ghrelin predicts GH burst frequency. Low leptin and high ghrelin may be dual stimuli for high GH concentrations in undernutrition.  相似文献   

10.
We previously identified a hormone sensitive lipase (HSL) promoter variant, -60C>G, which in vitro exhibits 40% reduced promoter activity. In this study we examined the effect of the -60C>G on glycemic and lipid measures in the population based Ely study of metabolic function and insulin resistance in 218 middle-aged men and 276 middle-aged women. Adipose tissue HSL is the rate-limiting step in triglyceride lipolysis, generating free fatty acids for energy utilization. HSL is also expressed in pancreatic beta-cells where its activity therefore may affect insulin secretion. In the women, carriers of the HSL -60G allele had significantly lower fasting insulin levels (P=0.0005) and a lower total area under the curve for insulin during the oral glucose tolerance test (P=0.005). There was no demonstrable association in men with these measures of insulin sensitivity but carriers of the -60G allele had significantly lower fasting non-esterified fatty acid (NEFA) levels (P=0.025) and higher low density lipoprotein cholesterol levels (P=0.02) than men who were non-carriers. This study provides additional evidence for a role for HSL in the development of insulin resistance, from which carriers of the -60G allele, associated here with markers of insulin sensitivity in women, and with lower NEFA levels in men, might be protected.  相似文献   

11.
We studied growth hormone (GH) and leptin secretion in eight male (age 29.3 +/- 1.2 yr, body mass index 22.2 +/- 0.5 kg/m(2)) and seven female normal subjects (28.0 +/- 0.8 yr, 20.1 +/- 0.7 kg/m(2)) before and after 36 h of fasting. In the fed state, 8-h mean GH and leptin concentrations were higher in females (P < 0.05 and P < 0. 0001, respectively). Fasting increased GH and decreased leptin in both sexes. There was significant interaction between gender and fasting (P < 0.05 for GH and P < 0.005 for leptin). Females showed a slighter increase in GH but a more marked decrease in leptin, so that there was no significant gender-related difference in GH and leptin after fasting. Fasting did not modify insulin-like growth factor (IGF) I, IGF binding protein (IGFBP)-3, acid-labile subunit, or GH binding protein; increased IGFBP-1 and free fatty acids (P < 0.0001) but decreased glucose (P < 0.001) and insulin levels (P < 0.05). In males, insulin levels were higher (P < 0.05) in the fed state and underwent deeper reduction after fasting (interaction P < 0.03). In conclusion, GH and leptin secretions are higher in women than in men in the fed but not in the fasting condition, which abolishes these gender-related differences in humans.  相似文献   

12.
Leptin-deficient obese mice (ob/ob) have decreased circulating growth hormone (GH) and pituitary GH and ghrelin receptor (GHS-R) mRNA levels, whereas hypothalamic GH-releasing hormone (GHRH) and somatostatin (SST) expression do not differ from lean controls. Given the fact that GH is suppressed in diet-induced obesity (a state of hyperleptinemia), it remains to be determined whether the absence of leptin contributes to changes in the GH axis of ob/ob mice. Therefore, to study the impact of leptin replacement on the hypothalamic-pituitary GH axis of ob/ob mice, leptin was infused for 7 days (sc), resulting in circulating leptin levels that were similar to wild-type controls (approximately 1 ng/ml). Leptin treatment reduced food intake, body weight, and circulating insulin while elevating circulating n-octanoyl ghrelin concentrations. Leptin treatment did not alter hypothalamic GHRH, SST, or GHS-R mRNA levels compared with vehicle-treated controls. However, leptin significantly increased pituitary GH and GHRH-R expression and tended to enhance circulating GH levels, but this latter effect did not reach statistical significance. In vitro, leptin (1 ng/ml, 24 h) did not affect pituitary GH, GHRH-R, or GHS-R mRNA but did enhance GH release. The in vivo effects of leptin on circulating hormone and pituitary mRNA levels were not replicated by pair feeding ob/ob mice to match the food intake of leptin-treated mice. However, leptin did prevent the fall in hypothalamic GHRH mRNA and circulating IGF-I levels observed in pair-fed mice. These results demonstrate that leptin replacement has positive effects on multiple levels of GH axis function in ob/ob mice.  相似文献   

13.
Intra-abdominal fat accumulation is involved in development of the metabolic syndrome, which is associated with insulin and leptin resistance. We show here that ectopic expression of very low levels of uncoupling protein 1 (UCP1) in epididymal fat (Epi) reverses both insulin and leptin resistance. UCP1 expression in Epi improved glucose tolerance and decreased food intake in both diet-induced and genetically obese mouse models. In contrast, UCP1 expression in Epi of leptin-receptor mutant mice did not alter food intake, though it significantly decreased blood glucose and insulin levels. Thus, hypophagia induction requires a leptin signal, while the improved insulin sensitivity appears to be leptin independent. In wild-type mice, local-nerve dissection in the epididymis or pharmacological afferent blockade blunted the decrease in food intake, suggesting that afferent-nerve signals from intra-abdominal fat tissue regulate food intake by modulating hypothalamic leptin sensitivity. These novel signals are potential therapeutic targets for the metabolic syndrome.  相似文献   

14.
Variation in the insulin responsive element (IRE) of the APOC3 promoter has been shown to be associated with insulin and glucose concentrations after an oral glucose tolerance test (OGTT) in young healthy men. We evaluated two variants in the IRE (-455T>C and -482C>T) in the Ely study, a prospective cohort study of middle-aged men (n=223) and women (n=279), to determine if the effect of these variants on glucose homeostasis could be explained by altered nonesterified fatty acid (NEFA) levels and if these effects are modulated by age and gender. Both variants had significant effects on the 30-min insulin incremental response in men alone (-482C>T, P=0.007; -455T>C, P=0.0155), with rare allele homozygotes having a 33.3% and 23.3% lower insulin increment as compared to common allele homozygotes, respectively. Thirty-minute NEFA concentrations were also significantly associated with genotype in men and levels were approximately 10% higher in carriers homozygous for the rare alleles as compared to subjects homozygous for the common alleles (-482C>T, P=0.04; -455T>C, P=0.006). In addition, there was a strong interaction between both variants and cigarette smoking affecting fasting triglyceride levels in both men (interaction: -455T>C, P=0.02; -482C>T, P=0.008) and women (interaction: -455T>C, P=0.007; -482C>T, P=0.013). Taken together, the data shows that men who carry the rare alleles of the IRE variants have disturbed glucose homeostasis and an unfavourable lipid phenotype. The finding of an elevated 30-min NEFA may be an important mechanistic link between triglyceride-rich lipoprotein (TRL) metabolism and glucose homeostasis.  相似文献   

15.
In eight insulin dependent diabetic patients treated by continuous subcutaneous insulin infusion (1.1 +/- 0.2 U/h), the levels (measured hourly from 23 h to 05 h) of blood glucose, non esterified fatty acids (NEFA), glycerol and 3-OH-butyrate (3-OH-B) have been correlated to the circulating levels of free insulin (FIRI), glucagon, growth hormone or cortisol, in two experimental conditions: A. Insulin being infused as usual (physiological FIRI levels) and B. Progressively declining FIRI levels (insulin infusion arrested at 23 h). In condition A, blood glucose levels correlated significantly to both insulin and glucagon; NEFA, glycerol and 3OH-B correlated only to insulin. In condition B, blood glucose was significantly correlated to insulin but not to glucagon while NEFA, glycerol and 3-OH-B were significantly correlated to both hormones but not to growth hormone or cortisol. Therefore, on the metabolic deterioration that follows insulin withdrawal, growth hormone and cortisol seem to play a minor role, the main role being played by the decrease in circulating insulin levels and to a lesser extent by the increase in glucagon levels.  相似文献   

16.
Circulating GH, IGF-I, IGFBP-3, and sex steroid concentrations decrease with age. GH or sex steroid treatment increases IGFBP-3, but little is known regarding the effects of these hormones on other IGFBPs. We assessed the effects of 26 wk of administration of GH, sex steroids, or GH + sex steroids on AM levels of IGF-I, IGFBPs 1-5, insulin, glucose, and osteocalcin and 2-h urinary excretion of deoxypyridinolline (DPD) cross-links in 53 women and 71 men aged 65-88 yr. Before treatment, in women and men, IGF-I was directly related to IGFBP-3 (P < 0.001 and P < 0.0001) and IGFBP-1 to IGFBP-2 (P = 0.0001). In women, IGFBP-1 was inversely related to insulin (P < 0.0005) and glucose (P < 0.005) and IGFBP-4 to osteocalcin (P < 0.01). IGFBP-4 and IGFBP-5 were not significantly related to DPD cross-links. GH and/or sex steroid increased IGF-I levels in both sexes, with higher concentrations in men (P < 0.001). In women, the IGF-I increment after GH was attenuated by hormone replacement therapy (HRT) coadministration (P < 0.05). Hormone administration also increased IGFBP-3. IGFBP-1 was unaffected by GH + sex steroids, whereas GH decreased IGFBP-2 by 15% in men (P < 0.05). Hormone administration did not change IGFBP-4, whereas in men IGFBP-5 increased by 20% after GH (P < 0.05) and 56% after GH + testosterone (P = 0.0003). These data demonstrate sexually dimorphic IGFBP responses to GH. Additionally, HRT attenuated or prevented GH-mediated increases in IGF-I and IGFBP-3. Whether GH and/or sex steroid administration alters local tissue production of IGFBPs and whether the latter influence autocrine or paracrine actions of IGF-I remain to be determined.  相似文献   

17.
We investigated in six men the impact of 17 days of head-down bed rest (HDBR) on the daily rhythms of the hormones involved in hydroelectrolytic regulation. This HDBR study was designed to mimic a real space flight. Urine samples were collected at each voiding before, during and after HDBR. Urinary excretion of Growth Hormone (GH), Cortisol, 6 Sulfatoxymelatonin, Normetadrenaline (NMN) and Metadrenaline (NM) was determined. A decrease in urinary cortisol excretion during the night of HDBR was noted. For GH, a rhythm was found before and during HDBR. The rhythm of melatonin, evaluated with the urine excretion of 6 Sulfatoxymelatonin (aMT6S), the main hepatic metabolite, persisted throughout the experiment without any modification to the level of phase. A decrease during the night was noted for normetadrenaline urinary derivates, but only during the HDBR.  相似文献   

18.
Nucleic acids have been known to have biological effects on the digestive and immune systems, although less attention has been paid to the action on metabolism. In the present study, in order to investigate the effects of oral ingestion of uridylic acid (5'-uridine monophosphate, 5'-UMP) on hormonal and metabolic levels, we measured changes in the plasma concentrations of leptin, insulin, glucose, non-esterified fatty acids (NEFA), weights of the liver and abdominal fat and fat accumulation in the liver and M. gastrocnemius in male rats. Intragastric administration of 5'-UMP via a stomach tube at a dose of 44 mg/day for 7 days slightly (P=0.098) blunted the body weight gain without causing a significant change in food intake. The administration significantly reduced the plasma concentrations of glucose (P=0.004) and NEFA (P=0.004), whereas it significantly increased (P=0.03) plasma leptin concentration. The weights of perirenal (but not epididymal) fat (P=0.083) and the liver (P=0.061) were slightly increased. The triacylglyceride concentration in M. gastrocnemius was slightly increased (P=0.097), although the muscle weight was not significantly changed (P=0.197). In summary, acute oral administration of 5'-UMP was effective in the rat in reducing plasma concentrations of glucose and NEFA, an effect that was accompanied by an elevated plasma leptin concentration.  相似文献   

19.
The contribution of hyperthermia to the differential leukocytosis of exercise remains obscure. This study examined changes in circulating sympathoadrenal hormone concentrations and patterns of leukocyte and lymphocyte subset (CD3(+), CD4(+), CD8(+), CD19(+), CD3(-)16(+)/56(+)) redistribution during exercise, with and without a significant rise of rectal temperature (T(re)). Ten healthy men [age 26.9 +/- 5.7 (SD) yr, body mass 76.0 +/- 10.9 kg, body fat 13.9 +/- 4.6%, peak O(2) consumption: 48.0 +/- 12.4 ml x kg(-1) x min(-1)] exercised for 40 min (65% peak O(2) consumption) during water immersion at 39 or 18 degrees C. T(re) increased from 37.2 to 39.3 degrees C (P < 0.0001) after 40 min of exercise in 39 degrees C water but was held constant to an increment of 0.5 degrees C during exercise in 18 degrees C water. Application of this thermal clamp reduced exercise-associated increments of plasma epinephrine (Epi) and norepinephrine (NE) by >50% (P < 0.05) and abolished the postexercise increase in cortisol. Thermal clamping also reduced the exercise-induced leukocytosis and lymphocytosis. Multiple regression demonstrated that T(re) had no direct association with lymphocyte subset mobilization but was significantly (P < 0.0001) correlated with hormone levels. Epi was an important determinant of total leukocytes, lymphocytes, and CD3(+), CD4(+), CD8(+), and CD3(-)CD16(+)/56(+) subset redistribution. The relationship between NE and lymphocyte subsets was weaker than that with Epi, with the exception of CD3(-)CD16(+)/56(+) counts, which were positively (P < 0.0001) related to NE. Cortisol was negatively associated with leukocytes, CD14(+) monocytes, and CD19(+) B- and CD4(+) T-cell subsets but was positively related to granulocytes. We conclude that hyperthermia mediates exercise-induced immune cell redistribution to the extent that it causes sympathoadrenal activation, with alterations in circulating Epi, NE, and cortisol.  相似文献   

20.
Using a continuous subcutaneous octreotide infusion to create constant supraphysiological somatostatinergic tone, we have previously shown that growth hormone (GH) pulse generation in women is independent of endogenous somatostatin (SRIH) declines. Generalization of these results to men is problematic, because GH regulation is sexually dimorphic. We have therefore studied nine healthy young men (age 26 +/- 6 yr, body mass index 23.3 +/- 1.2 kg/m2) during normal saline and octreotide infusion (8.4 microg/h) that provided stable plasma octreotide levels (764.5 +/- 11.6 pg/ml). GH was measured in blood samples obtained every 10 min for 24 h. Octreotide suppressed 24-h mean GH by 52 +/- 13% (P = 0.016), GH pulse amplitude by 47 +/- 12% (P = 0.012), and trough GH by 39 +/- 12% (P = 0.030), whereas GH pulse frequency and the diurnal rhythm of GH secretion remained essentially unchanged. The response of GH to GH-releasing hormone (GHRH) was suppressed by 38 +/- 15% (P = 0.012), but the GH response to GH-releasing peptide-2 was unaffected. We conclude that, in men as in women, declines in hypothalamic SRIH secretion are not required for pulse generation and are not the cause of the nocturnal augmentation of GH secretion. We propose that GH pulses are driven primarily by GHRH, whereas ghrelin might be responsible for the diurnal rhythm of GH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号