首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress is a key mechanism underlying ozone-induced lung injury. Mitochondria can release mitochondrial reactive oxidative species (mtROS), which may lead to the activation of NLRP3 inflammasome. The goal of this study was to examine the roles of mtROS and NLRP3 inflammasome in acute ozone-induced airway inflammation and bronchial hyperresponsiveness (BHR). C57/BL6 mice (n?=?8/group) were intraperitoneally treated with vehicle (phosphate buffered saline, PBS) or mitoTEMPO (mtROS inhibitor, 20?mg/kg), or orally treated with VX-765 (caspse-1 inhibitor, 100?mg/kg) 1?h before the ozone exposure (2.5?ppm, 3?h). Compared to the PBS-treated ozone-exposed mice, mitoTEMPO reduced the level of total malondialdehyde in bronchoalveolar lavage (BAL) fluid and increased the expression of mitochondrial complexes II and IV in the lung 24?h after single ozone exposure. VX-765 inhibited ozone-induced BHR, BAL total cells including neutrophils and eosinophils, and BAL inflammatory cytokines including IL-1α, IL-1β, KC, and IL-6. Both mitoTEMPO and VX-765 reduced ozone-induced mtROS and inhibited capase-1 activity in lung tissue whilst VX-765 further inhibited DRP1 and MFF expression, increased MFN2 expression, and down-regulated caspase-1 expression in the lung tissue. These results indicate that acute ozone exposure induces mitochondrial dysfunction and NLRP3 inflammasome activation, while the latter has a critical role in the pathogenesis of ozone-induced airway inflammation and BHR.  相似文献   

2.
This study was designed to investigate the mechanisms through which tumor necrosis factor (Tnf) modulates ozone (O(3))-induced pulmonary injury in susceptible C57BL/6J (B6) mice. B6 [wild-type (wt)] mice and B6 mice with targeted disruption (knockout) of the genes for the p55 TNF receptor [TNFR1(-/-)], the p75 TNF receptor [TNFR2(-/-)], or both receptors [TNFR1/TNFR2(-/-)] were exposed to 0.3 parts/million O(3) for 48 h (subacute), and lung responses were determined by bronchoalveolar lavage. All TNFR(-/-) mice had significantly less O(3)-induced inflammation and epithelial damage but not lung hyperpermeability than wt mice. Compared with air-exposed control mice, O(3) elicited upregulation of lung TNFR1 and TNFR2 mRNAs in wt mice and downregulated TNFR1 and TNFR2 mRNAs in TNFR2(-/-) and TNFR1(-/-) mice, respectively. Airway hyperreactivity induced by acute O(3) exposure (2 parts/million for 3 h) was diminished in knockout mice compared with that in wt mice, although lung inflammation and permeability remained elevated. Results suggested a critical role for TNFR signaling in subacute O(3)-induced pulmonary epithelial injury and inflammation and in acute O(3)-induced airway hyperreactivity.  相似文献   

3.
Vitamin D deficiency is increasing in incidence around the world. Vitamin D, a fat-soluble vitamin, has documented effects on the innate and adaptive immune system, including macrophage and T regulatory (Treg) cell function. Since Treg cells are important in acute lung injury resolution, we hypothesized that vitamin D deficiency increases the severity of injury and delays injury resolution in lipopolysaccharide (LPS) induced acute lung injury. Vitamin D deficient mice were generated, using C57BL/6 mice, through diet modification and limited exposure to ultraviolet light. At 8 weeks of age, vitamin D deficient and sufficient mice received 2.5 g/kg of LPS or saline intratracheal. At 1 day, 3 days and 10 days, mice were anesthetized and lung elastance measured. Mice were euthanized and bronchoalveolar lavage fluid, lungs and serum were collected. Ex vivo neutrophil chemotaxis was evaluated, using neutrophils from vitamin D sufficient and deficient mice exposed to the chemoattractants, KC/CXCL1 and C5a, and to bronchoalveolar lavage fluid from LPS-exposed mice. We found no difference in the degree of lung injury. Leukocytes were mildly decreased in the bronchoalveolar fluid of vitamin D deficient mice at 1 day. Ex-vivo, neutrophils from vitamin D deficient mice showed impaired chemotaxis to KC but not to C5a. Vitamin D deficiency modestly impairs neutrophil chemotaxis; however, it does not affect lung injury or its resolution in an LPS model of acute lung injury.  相似文献   

4.
5.
Hyaluronan is a high-molecular mass component of pulmonary extracelluar matrix, and lung injury can generate a low-molecular mass hyaluronan (HA) fragment that functions as endogenous ligand to cell surface receptors CD44 and TLR4. This leads to activation of intracellular NF-κB signaling and proinflammatory cytokine production. Based on previous information that ozone exposure causes increased HA in bronchial alveolar lavage fluid and ozone pre-exposure primes immune response to inhaled LPS, we hypothesized that HA production during ozone exposure augments the inflammatory response to LPS. We demonstrate that acute ozone exposure at 1 part per million for 3 h primes the immune response to low-dose aerosolized LPS in C57BL/6J mice, resulting in increased neutrophil recruitment into the airspaces, increased levels of protein and proinflammatory cytokines in the bronchoalveolar lavage fluid, and increased airway hyperresponsiveness. Intratracheal instillation of endotoxin-free HA (25 μg) enhances the biological response to inhaled LPS in a manner similar to ozone pre-exposure. In vitro studies using bone marrow-derived macrophages indicate that HA enhances LPS responses measured by TNF-α production, while immunofluorescence staining of murine alveolar macrophages demonstrates that HA induces TLR4 peripheralization and lipid raft colocalization. Collectively, our observations support that ozone primes macrophage responsiveness to low-dose LPS, in part, due to HA-induced TLR4 peripheralization in lung macrophages.  相似文献   

6.
The purpose of this study was to quantitate cell populations recovered by lung lavage up to 6 weeks following thoracic irradiation (24 Gy) as an index of the acute inflammatory response within lung structures. Additionally, rats were treated five times weekly with intraperitoneal saline (0.3 cc) or methylprednisolone (7.5 mg/kg/week). Lung lavage of irradiated rats recovered increased numbers of total cells compared to controls beginning 3 weeks after irradiation (P less than 0.05). The initial increase in number of cells recovered was attributable to an influx of neutrophils (P less than 0.05), and further increases at 4 and 6 weeks were associated with increased numbers of recovered macrophages (P less than 0.05). Lung lavage of steroid-treated rats at 6 weeks after irradiation recovered increased numbers of all cell populations compared to controls (P less than 0.05); however, numbers of recovered total cells, macrophages, neutrophils, and lymphocytes were all significantly decreased compared to saline-treated rats (P less than 0.05). The number of inflammatory cells recovered by lung lavage during acute radiation-induced lung injury is significantly diminished by corticosteroid treatment. Changes in cells recovered by lung lavage can also be correlated with alteration in body weight and respiration rate subsequent to treatment with thoracic irradiation and/or corticosteroids.  相似文献   

7.
D K Hansen  M E Hodes 《Teratology》1983,28(2):175-179
Inbred strains of mice differ in their response to the embryopathic effects of phenytoin (PHT). A/J animals, the most susceptible strain, were mated to C57BL/6J mice, the most resistant strain. The susceptibility of the F1 hybrid offspring was determined by the susceptibility of the mother. B6AF1 animals were as resistant as C57BL/6J parental mice, and AB6F1 hybrids were as susceptible as A/J mice. This was especially evident when orofacial anomalies were tallied. (B6A)F2 hybrid offspring were as resistant as their C57BL/6J grandparents.  相似文献   

8.

Aims

Anethole, the major component of the essential oil of star anise, has been reported to have antioxidant, antibacterial, antifungal, anti-inflammatory, and anesthetic properties. In this study, we investigated the anti-inflammatory effects of anethole in a mouse model of acute lung injury induced by lipopolysaccharide (LPS).

Main methods

BALB/C mice were intraperitoneally administered anethole (62.5, 125, 250, or 500 mg/kg) 1 h before intratracheal treatment with LPS (1.5 mg/kg) and sacrificed after 4 h. The anti-inflammatory effects of anethole were assessed by measuring total protein and cell levels and inflammatory mediator production and by histological evaluation and Western blot analysis.

Key findings

LPS significantly increased total protein levels; numbers of total cells, including macrophages and neutrophils; and the production of inflammatory mediators such as matrix metalloproteinase 9 (MMP-9), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and nitric oxide (NO) in bronchoalveolar lavage fluid. Anethole (250 mg/kg) decreased total protein concentrations; numbers of inflammatory cells, including neutrophils and macrophages; and the inflammatory mediators MMP-9, TNF-α and NO. In addition, pretreatment with anethole decreased LPS-induced histopathological changes. The anti-inflammatory mechanism of anethole in LPS-induced acute lung injury was assessed by investigating the effects of anethole on NF-κB activation. Anethole suppressed the activation of NF-κB by blocking IκB-α degradation.

Significance

These results, showing that anethole prevents LPS-induced acute lung inflammation in mice, suggest that anethole may be therapeutically effective in inflammatory conditions in humans.  相似文献   

9.
Adrenomedullin (AM), an endogenous peptide, has been shown to have a variety of protective effects on the cardiovascular system. However, the effect of AM on acute lung injury remains unknown. Accordingly, we investigated whether AM infusion ameliorates lipopolysaccharide (LPS)-induced acute lung injury in rats. Rats were randomized to receive continuous intravenous infusion of AM (0.1 microg x kg(-1) x min(-1)) or vehicle through a microosmotic pump. The animals were intratracheally injected with either LPS (1 mg/kg) or saline. At 6 and 18 h after intratracheal instillation, we performed histological examination and bronchoalveolar lavage and assessed the lung wet/dry weight ratio as an index of acute lung injury. Then we measured the numbers of total cells and neutrophils and the levels of tumor necrosis factor (TNF)-alpha and cytokine-induced neutrophil chemoattractant (CINC) in bronchoalveolar lavage fluid (BALF). In addition, we evaluated BALF total protein and albumin levels as indexes of lung permeability. LPS instillation caused severe acute lung injury, as indicated by the histological findings and the lung wet/dry weight ratio. However, AM infusion attenuated these LPS-induced abnormalities. AM decreased the numbers of total cells and neutrophils and the levels of TNF-alpha and CINC in BALF. AM also reduced BALF total protein and albumin levels. In addition, AM significantly suppressed apoptosis of alveolar wall cells as indicated by cleaved caspase-3 staining. In conclusion, continuous infusion of AM ameliorated LPS-induced acute lung injury in rats. This beneficial effect of AM on acute lung injury may be mediated by inhibition of inflammation, hyperpermeability, and alveolar wall cell apoptosis.  相似文献   

10.
Mice deficient in inducible nitric oxide synthase (iNOS; C57Bl/6Ai-[KO]NOS2 N5) or wild-type C57Bl/6 mice were exposed to 1 part/million of ozone 8 h/night or to filtered air for three consecutive nights. Endpoints measured included lavagable total protein, macrophage inflammatory protein (MIP)-2, matrix metalloproteinase (MMP)-9, cell content, and tyrosine nitration of whole lung proteins. Ozone exposure caused acute edema and an inflammatory response in the lungs of wild-type mice, as indicated by significant increases in lavage protein content, MIP-2 and MMP-9 content, and polymorphonuclear leukocytes. The iNOS knockout mice showed significantly greater levels of lung injury by all of these criteria than did the wild-type mice. We conclude that iNOS knockout mice are more susceptible to acute lung damage induced by exposure to ozone than are wild-type C57Bl/6 mice and that protein nitration is associated with the degree of inflammation and not dependent on iNOS-derived nitric oxide.  相似文献   

11.

Background

Proline-rich tyrosine kinase 2 (Pyk2) is essential in neutrophil degranulation and chemotaxis in vitro. However, its effect on the process of lung inflammation and edema formation during LPS induced acute lung injury (ALI) remains unknown. The goal of the present study was to determine the effect of inhibiting Pyk2 on LPS-induced acute lung inflammation and injury in vivo.

Methods

C57BL6 mice were given either 10 mg/kg LPS or saline intratracheally. Inhibition of Pyk2 was effected by intraperitoneal administration TAT-Pyk2-CT 1 h before challenge. Bronchoalveolar lavage analysis of cell counts, lung histology and protein concentration in BAL were analyzed at 18 h after LPS treatment. KC and MIP-2 concentrations in BAL were measured by a mouse cytokine multiplex kit. The static lung compliance was determined by pressure-volume curve using a computer-controlled small animal ventilator. The extravasated Evans blue concentration in lung homogenate was determined spectrophotometrically.

Results

Intratracheal instillation of LPS induced significant neutrophil infiltration into the lung interstitium and alveolar space, which was attenuated by pre-treatment with TAT-Pyk2-CT. TAT-Pyk2-CT pretreatment also attenuated 1) myeloperoxidase content in lung tissues, 2) vascular leakage as measured by Evans blue dye extravasation in the lungs and the increase in protein concentration in bronchoalveolar lavage, and 3) the decrease in lung compliance. In each paradigm, treatment with control protein TAT-GFP had no blocking effect. By contrast, production of neutrophil chemokines MIP-2 and keratinocyte-derived chemokine in the bronchoalveolar lavage was not reduced by TAT-Pyk2-CT. Western blot analysis confirmed that tyrosine phosphorylation of Pyk2 in LPS-challenged lungs was reduced to control levels by TAT-Pyk2-CT pretreatment.

Conclusions

These results suggest that Pyk2 plays an important role in the development of acute lung injury in mice and that pharmacological inhibition of Pyk2 might provide a potential therapeutic strategy in the pretreatment for patients at imminent risk of developing acute lung injury.  相似文献   

12.
Genetic determinants of lung structure and function have been demonstrated by differential phenotypes among inbred mice strains. For example, previous studies have reported phenotypic variation in baseline ventilatory measurements of standard inbred murine strains as well as segregant and nonsegregant offspring of C3H/HeJ (C3) and C57BL/6J (B6) progenitors. One purpose of the present study is to test the hypothesis that a genetic basis for differential baseline breathing pattern is due to variation in lung mechanical properties. Quasi-static pressure-volume curves were performed on standard and recombinant inbred strains to explore the interactive role of lung mechanics in determination of functional baseline ventilatory outcomes. At airway pressures between 0 and 30 cmH2O, lung volumes are significantly (P < 0.01) greater in C3 mice relative to the B6 and A/J strains. In addition, the B6C3F1/J offspring demonstrate lung mechanical properties significantly (P < 0.01) different from the C3 progenitor but not distinguishable from the B6 progenitor. With the use of recombinant inbred strains derived from C3 and B6 progenitors, cosegregation analysis between inspiratory timing and measurements of lung volume and compliance indicate that strain differences in baseline breathing pattern and pressure-volume relationships are not genetically associated. Although strain differences in lung volume and compliance between C3 and B6 mice are inheritable, this study supports a dissociation between differential inspiratory time at baseline, a trait linked to a putative genomic region on mouse chromosome 3, and differential lung mechanics among C3 and B6 progenitors and their progeny.  相似文献   

13.
Excessive inflammatory response induced by lipopolysaccharide (LPS) plays a critical role in the development of acute lung injury (ALI). Paralemmin-3 (PALM3) is a novel protein that can modulate LPS-stimulated inflammatory responses in alveolar epithelial A549 cells. However, it remains unclear whether it is involved in the progression of ALI in vivo. Therefore, we studied the role of PALM3 in the pathogenesis of ALI induced by LPS. ALI was induced by LPS peritoneal injection in C57BL/6J mice. Lentivirus-mediated small interfering RNA (siRNA) targeting the mouse PALM3 gene and a negative control siRNA were intranasally administered to the mice. We found that the expression of PALM3 was up-regulated in the lung tissues obtained from the mouse model of LPS-induced ALI. The LPS-evoked inflammatory response (neutrophils and the concentrations of proinflammatory cytokines [IL-6, IL-1β, TNF-α, MIP-2] in the bronchoalveolar lavage fluid [BALF]), histologic lung injury (lung injury score), permeability of the alveolar capillary barrier (lung wet/dry weight ratio and BALF protein concentration) and mortality rates were attenuated in the PALM3 siRNA-treated mice. These results indicate that PALM3 contributes to the development of ALI in mice challenged with LPS. Inhibiting PALM3 through the intranasal application of specific siRNA protected against LPS-induced ALI.  相似文献   

14.
Vitronectin is present in large concentrations in serum and participates in regulation of humoral responses, including coagulation, fibrinolysis, and complement activation. Because alterations in coagulation and fibrinolysis are common in acute lung injury, we examined the role of vitronectin in LPS-induced pulmonary inflammation. Vitronectin concentrations were significantly increased in the lungs after LPS administration. Neutrophil numbers and proinflammatory cytokine levels, including IL-1beta, MIP-2, KC, and IL-6, were significantly reduced in bronchoalveolar lavage fluid from vitronectin-deficient (vitronectin(-/-)) mice, as compared with vitronectin(+/+) mice, after LPS exposure. Similarly, LPS induced increases in lung edema, myeloperoxidase-concentrations, and pulmonary proinflammatory cytokine concentrations were significantly lower in vitronectin(-/-) mice. Vitronectin(-/-) neutrophils demonstrated decreased KC-induced chemotaxis as compared with neutrophils from vitronectin(+/+) mice, and incubation of vitronectin(+/+) neutrophils with vitronectin was associated with increased chemotaxis. Vitronectin(-/-) neutrophils consistently produced more TNF-alpha, MIP-2, and IL-1beta after LPS exposure than did vitronectin(+/+) neutrophils and also showed greater degradation of IkappaB-alpha and increased LPS-induced nuclear accumulation of NF-kappaB compared with vitronectin(+/+) neutrophils. These findings provide a novel vitronectin-dependent mechanism contributing to the development of acute lung injury.  相似文献   

15.

Introduction

Post influenza pneumonia is a leading cause of mortality and morbidity, with mortality rates approaching 60% when bacterial infections are secondary to multi-drug resistant (MDR) pathogens. Staphylococcus aureus, in particular community acquired MRSA (cMRSA), has emerged as a leading cause of post influenza pneumonia.

Hypothesis

Linezolid (LZD) prevents acute lung injury in murine model of post influenza bacterial pneumonia

Methods

Mice were infected with HINI strain of influenza and then challenged with cMRSA at day 7, treated with antibiotics (LZD or Vanco) or vehicle 6 hours post bacterial challenge and lungs and bronchoalveolar lavage fluid (BAL) harvested at 24 hours for bacterial clearance, inflammatory cell influx, cytokine/chemokine analysis and assessment of lung injury.

Results

Mice treated with LZD or Vanco had lower bacterial burden in the lung and no systemic dissemination, as compared to the control (no antibiotic) group at 24 hours post bacterial challenge. As compared to animals receiving Vanco, LZD group had significantly lower numbers of neutrophils in the BAL (9×103 vs. 2.3×104, p < 0.01), which was associated with reduced levels of chemotactic chemokines and inflammatory cytokines KC, MIP-2, IFN-γ, TNF-α and IL-1β in the BAL. Interestingly, LZD treatment also protected mice from lung injury, as assessed by albumin concentration in the BAL post treatment with H1N1 and cMRSA when compared to vanco treatment. Moreover, treatment with LZD was associated with significantly lower levels of PVL toxin in lungs.

Conclusion

Linezolid has unique immunomodulatory effects on host inflammatory response and lung injury in a murine model of post-viral cMRSA pneumonia.  相似文献   

16.
Lemay, A-M. and Haston, C. K. Radiation-Induced Lung Response of AcB/BcA Recombinant Congenic Mice. Radiat. Res. 170, 299-306 (2008).The genetic factors that influence the development of radiotherapy-induced lung disease are largely unknown. Herein we identified a strain difference in lung response to radiation wherein A/J mice developed alveolitis with increased levels of pulmonary mast cells and cells in bronchoalveolar lavage while the phenotype in C57BL/6J mice was fibrosis with fewer inflammatory cells. To identify genomic loci that may influence these phenotypes, we assessed recombinant congenic (RC) mice derived from the A/J and C57BL/6J strains for their propensity to develop alveolitis or fibrosis after 18 Gy whole-thorax irradiation. Mouse survival, lung histopathology and bronchoalveolar lavage cell types were recorded. Informative strains for each of mast cell influx, bronchoalveolar cell numbers, alveolitis and fibrosis were identified. In mice with the A/J strain background, the severity of alveolitis correlated with increased mast cell numbers while in C57BL/6J background strain mice fibrosis was correlated with the percentage of neutrophils in lavage. The data for RC mice support the association of specific inflammatory cells with the development of radiation-induced lung disease and provide informative strains with which to dissect the genetic basis of these complex traits.  相似文献   

17.
Previous work by others suggests that there is a strain-dependent variation in the susceptibility to inflammatory lung injury in mice. Specifically, the 129/J mice appear to be more resistant to asbestos-induced pulmonary fibrosis than the C57BL/6 strain. A separate line of evidence suggests that extracellular superoxide dismutase (ecSOD) may play an important role in protecting the lung from such injuries. We have recently reported that the 129/J strain of mice has an ecSOD genotype and phenotype distinctly different from those of the C57BL/6 mice. In order to identify ecSOD as a potential "asbestos-injury resistance" gene, we bred congenic mice, on the C57BL/6 background, carrying the wild type (sod3wt) or the 129/J (sod3129) allele for ecSOD. This allowed us to examine the role of ecSOD polymorphism in susceptibility to lung injury in an otherwise identical genetic background. Interestingly, asbestos treatment induces a significant (~40%) increase in plasma ecSOD activity in the sod3129 mice, but not in the sod3wt mice. Asbestos administration results in a loss of ecSOD activity and protein from lung tissue of both congenic strains, but the lung ecSOD activity remains significantly higher in sod3129 mice. As expected, asbestos treatment results in a significant recovery of ecSOD protein in bronchoalveolar lavage fluid (BALF). The BALF of sod3129 mice also have significantly lower levels of proteins and inflammatory cells, especially neutrophils, accompanied by a significantly lower extent of lung injury, as measured by a pathology index score or hydroxyproline content. Immunohistochemistry reveals a significant loss of ecSOD from the tips of the respiratory epithelial cells in response to asbestos treatment and that the loss of immunodetectable ecSOD is compensated for by enzyme expression by infiltrating cells, especially in the sod3wt mice. Our studies thus identify ecSOD as an important anti-inflammatory gene, responsible for most, if not all of the resistance to asbestos-induced lung injury reported for the 129/J strain of mice. The data further suggest allele-specific differences in the regulation of ecSOD expression. These congenic mice therefore represent a very useful model to study the role of this enzyme in all inflammatory diseases. Polymorphisms in human ecSOD have also been reported and it appears logical to assume that such variations may have a profound effect on disease susceptibility.  相似文献   

18.

Background

Ozone, a pollutant known to induce airway hyper-responsiveness (AHR), increases morbidity and mortality in patients with obstructive airway diseases and asthma. We postulate oxidized lipids mediate in vivo ozone-induced AHR in murine airways.

Methodology/Principal Findings

Male BALB/c mice were exposed to ozone (3 or 6 ppm) or filtered air (controls) for 2 h. Precision cut lung slices (PCLS; 250 µm thickness) containing an intrapulmonary airway (∼0.01 mm2 lumen area) were prepared immediately after exposure or 16 h later. After 24 h, airways were contracted to carbachol (CCh). Log EC50 and Emax values were then calculated by measuring the airway lumen area with respect to baseline. In parallel studies, dexamethasone (2.5 mg/kg), or 1-aminobenzotriazol (ABT) (50 mg/kg) were given intraperitoneal injection to naïve mice 18 h prior to ozone exposure. Indomethacin (10 mg/kg) was administered 2 h prior. Cell counts, cytokine levels and liquid chromatography-mass spectrometry (LC-MS) for lipid analysis were assessed in bronchoalveolar lavage (BAL) fluid from ozone exposed and control mice. Ozone acutely induced AHR to CCh. Dexamethasone or indomethacin had little effect on the ozone-induced AHR; while, ABT, a cytochrome P450 inhibitor, markedly attenuated airway sensitivity. BAL fluid from ozone exposed animals, which did not contain an increase in neutrophils or interleukin (IL)-6 levels, increased airway sensitivity following in vitro incubation with a naïve PCLS. In parallel, significant increases in oxidized lipids were also identified using LC-MS with increases of 20-HETE that were decreased following ABT treatment.

Conclusions/Significance

These data show that ozone acutely induces AHR to CCh independent of inflammation and is insensitive to steroid treatment or cyclooxygenase (COX) inhibition. BAL fluid from ozone exposed mice mimicked the effects of in vivo ozone exposure that were associated with marked increases in oxidized lipids. 20-HETE plays a pivotal role in mediating acute ozone-induced AHR.  相似文献   

19.
Acute lung injury caused by smoke inhalation is a common severe clinical syndrome. This study aimed to investigate the potential expression of circular RNAs during acute lung injury triggered by smoke inhalation. The acute lung injury rat model was established with smoke inhalation from a self-made smoke generator. The occurrence of acute lung injury was validated by an analysis of the bronchoalveolar lavage fluid and hematoxylin-eosin (HE) staining of lung tissues. Next-generation sequencing and quantitative PCR were performed to identify the differentially expressed circular RNAs associated with acute lung injury that was caused by smoke inhalation. The circular form of the identified RNAs was finally verified by multiple RT-PCR-based assays. The bronchoalveolar lavage fluid (BALF) and lung tissue analysis showed that smoke inhalation successfully induced acute injury in rats, as evidenced by the significantly altered cell numbers, including macrophages, neutrophils, and red blood cells, disrupted cell lining, and increased levels of interleukin-1β, tumor necrosis factor-alpha, and IL-8 in lung tissues. Ten significantly differentially expressed circular RNAs were identified with next-generation sequencing and RT-PCR. The circular form of these RNAs was verified by multiple RT-PCR-based assays. In conclusion, the identified circular RNAs were prevalently and differentially expressed in rat lungs after acute lung injury caused by smoke inhalation.  相似文献   

20.
Neutrophils have been implicated in the pathogenesis of many inflammatory lung diseases, including chronic obstructive pulmonary disease and asthma. With this study, we investigated how disruption of cAMP signaling impacts the function of neutrophil recruitment to the lung. Four genes code for type 4 phosphodiesterases (PDE4s), enzymes critical for regulation of cAMP levels and cell signaling. Ablation of two of these genes, PDE4B and PDE4D, but not PDE4A, has profound effects on neutrophil function. In a paradigm of mouse lung injury induced by endotoxin inhalation, the number of neutrophils recovered in the bronchoalveolar lavage was markedly decreased in PDE4D(-/-) and PDE4B(-/-) mice 4 and 24 h after exposure to LPS. Acute PDE4 inhibition with rolipram had additional inhibitory effects on neutrophil migration in PDE4B(-/-) and, to a lesser extent, PDE4D(-/-) mice. This decreased neutrophil recruitment occurred without major changes in chemokine accumulation in bronchoalveolar lavage, suggesting a dysfunction intrinsic to neutrophils. This hypothesis was confirmed by investigating the expression of adhesion molecules on the surface of neutrophils and chemotaxis in vitro. CD18 expression was decreased after ablation of both PDE4B and PDE4D, whereas CD11 expression was not significantly affected. Chemotaxis in response to KC and macrophage inflammatory protein-2 was markedly reduced in PDE4B(-/-) and PDE4D(-/-) neutrophils. The effect of PDE4 ablation on chemotaxis was comparable, but not additive, to the effects of acute PDE4 inhibition with rolipram. These data demonstrate that PDE4B and PDE4D play complementary, but not redundant, roles in the control of neutrophil function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号