首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostaglandin E(2) (PGE(2)) is a potent suppressor of fibroblast activity. We previously reported that bleomycin-induced pulmonary fibrosis was exaggerated in granulocyte-macrophage colony-stimulating factor knockout (GM-CSF(-/-)) mice compared with wild-type (GM-CSF(+/+)) mice and that increased fibrosis was associated with decreased PGE(2) levels in lung homogenates and alveolar macrophage cultures. Pulmonary fibroblasts and alveolar epithelial cells (AECs) represent additional cellular sources of PGE(2) within the lung. Therefore, we examined fibroblasts and AECs from GM-CSF(-/-) mice, and we found that they elaborated significantly less PGE(2) than did cells from GM-CSF(+/+) mice. This defect was associated with reduced expression of cyclooxygenase-1 and -2 (COX-1 and COX-2), key enzymes in the biosynthesis of PGE(2). Additionally, proliferation of GM-CSF(-/-) fibroblasts was greater than that of GM-CSF(+/+) fibroblasts, and GM-CSF(-/-) AECs were impaired in their ability to inhibit fibroblast proliferation in coculture. The addition of GM-CSF to fibroblasts from GM-CSF(-/-) mice increased PGE(2) production and decreased proliferation. Similarly, AECs isolated from GM-CSF(-/-) mice with transgenic expression of GM-CSF under the surfactant protein C promoter (SpC-GM mice) produced more PGE(2) than did AEC from control mice. Finally, SpC-GM mice were protected from fluorescein isothiocyanate-induced pulmonary fibrosis. In conclusion, these data demonstrate that GM-CSF regulates PGE(2) production in pulmonary fibroblasts and AECs and thus plays an important role in limiting fibroproliferation.  相似文献   

2.
Pulmonary surfactant protein D (SP-D) is expressed in alveolar type II and bronchiolar epithelial cells and is secreted into alveoli and conducting airways. However, SP-D has also been measured in serum and is increased in patients with acute respiratory distress syndrome, pulmonary fibrosis, and alveolar proteinosis. To demonstrate that SP-D can be measured in rat serum, we instilled rats with keratinocyte growth factor, which produces type II cell hyperplasia and an increase in SP-D in bronchoalveolar lavage fluid (BALF). To evaluate serum SP-D as a biomarker of lung injury, we examined several injury models. In rats treated with 1 unit of bleomycin, serum SP-D was elevated on days 3, 7, 14, and 28 after instillation, and SP-D mRNA was increased in focal areas as detected by in situ hybridization. However, there was no increase in whole lung SP-D mRNA when the expression was normalized to whole lung 18S rRNA. After instillation of 2 units of bleomycin, the serum levels of SP-D were higher, and SP-D was also increased in BALF and lung homogenates. In another model of subacute injury, serum SP-D was increased in rats treated with paraquat plus oxygen. Finally to evaluate acute lung injury, we instilled rats with HCl; SP-D was increased at 4 h after instillation. Our data indicate that serum SP-D may be a useful indicator of lung injury and type II cell hyperplasia in rats.  相似文献   

3.
The response of alveolar epithelial cells (AECs) to lung injury plays a central role in the pathogenesis of pulmonary fibrosis, but the mechanisms by which AECs regulate fibrotic processes are not well defined. We aimed to elucidate how transforming growth factor-β (TGFβ) signaling in lung epithelium impacts lung fibrosis in the intratracheal bleomycin model. Mice with selective deficiency of TGFβ receptor 2 (TGFβR2) in lung epithelium were generated and crossed to cell fate reporter mice that express β-galactosidase (β-gal) in cells of lung epithelial lineage. Mice were given intratracheal bleomycin (0.08 U), and the following parameters were assessed: AEC death by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay, inflammation by total and differential cell counts from bronchoalveolar lavage, fibrosis by scoring of trichrome-stained lung sections, and total lung collagen content. Mice with lung epithelial deficiency of TGFβR2 had improved AEC survival, despite greater lung inflammation, after bleomycin administration. At 3 wk after bleomycin administration, mice with epithelial TGFβR2 deficiency showed a significantly attenuated fibrotic response in the lungs, as determined by semiquantitatve scoring and total collagen content. The reduction in lung fibrosis in these mice was associated with a marked decrease in the lung fibroblast population, both total lung fibroblasts and epithelial-to-mesenchymal transition-derived (S100A4(+)/β-gal(+)) fibroblasts. Attenuation of TGFβ signaling in lung epithelium provides protection from bleomycin-induced fibrosis, indicating a critical role for the epithelium in transducing the profibrotic effects of this cytokine.  相似文献   

4.
Abnormal TGF-β1/Smad3 activation plays an important role in the pathogenesis of pulmonary fibrosis, which can be prevented by paclitaxel (PTX). This study aimed to investigate an antifibrotic effect of the low-dose PTX (10 to 50 nM in vitro, and 0.6 mg/kg in vivo). PTX treatment resulted in phenotype reversion of epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs) with increase of miR-140. PTX resulted in an amelioration of bleomycin (BLM)-induced pulmonary fibrosis in rats with reduction of the wet lung weight to body weight ratios and the collagen deposition. Our results further demonstrated that PTX inhibited the effect of TGF-β1 on regulating the expression of Smad3 and phosphorylated Smad3 (p-Smad3), and restored the levels of E-cadherin, vimentin and α-SMA. Moreover, lower miR-140 levels were found in idiopathic pulmonary fibrosis (IPF) patients, TGF-β1-treated AECs and BLM-instilled rat lungs. Through decreasing Smad3/p-Smad3 expression and upregulating miR-140, PTX treatment could significantly reverse the EMT of AECs and prevent pulmonary fibrosis of rats. The action of PTX to ameliorate TGF-β1-induced EMT was promoted by miR-140, which increased E-cadherin levels and reduced the expression of vimentin, Smad3 and p-Smad3. Collectively, our results demonstrate that low-dose PTX prevents pulmonary fibrosis by suppressing the TGF-β1/Smad3 pathway via upregulating miR-140.  相似文献   

5.
Acute lung injury results in damage to the alveolar epithelium, leading to leak of proteins into the alveolar space and impaired gas exchange. Lung function can be restored only if the epithelial layer is restored. The process of reepithelialization requires migration of lung epithelial cells to cover denuded basement membranes. The factors that control the migration of lung epithelial cells are incompletely understood. We examined isolated murine type II alveolar epithelial cells (AECs) for expression of CC chemokine receptor 2 (CCR2) and functional consequences of the binding of the main CCR2 ligand monocyte chemoattractant protein-1 (MCP-1). We found that primary AECs bound MCP-1 and expressed CCR2 mRNA. These cells demonstrated functional consequences of CCR2 expression with migration in response to MCP-1 in chemotaxis/haptotaxis assays. Primary AECs cultured from mice lacking CCR2 did not respond to MCP-1. Monolayers of AECs lacking CCR2 demonstrated delayed closure of mechanical wounds compared with AEC monolayers expressing CCR2. Delayed closure of mechanical wounds of wild-type AECs was also demonstrated in the presence of anti-MCP-1 antibody. These data demonstrate for the first time that AECs express CCR2 and are capable of using this receptor for chemotaxis and healing of wounds. CCR2-MCP-1 interactions may be important in the process of reepithelialization after lung injury.  相似文献   

6.
Epithelial–mesenchymal transition (EMT) is a complex biological program during which cells loss epithelial phenotype and acquire mesenchymal features. EMT is thought to be involved in the pathogenesis of various fibrotic diseases including pulmonary fibrosis (PF). Recent studies suggest that endoplasmic reticulum (ER) stress is associated with EMT in the progression of PF. However, the exact mechanism is unclear. Here, we developed a PF model with bleomycin (BLM) administration in rats and conducted several simulation experiments in alveolar epithelial cell (AECs) RLE-6TN to unravel the role of inositol-requiring protein 1 (IRE1) – X-box-binding protein 1 (XBP1) signal pathway in ER stress-induced EMT in PF. First, we observed that ER stress was occurred in type II AECs accompanied by EMT in BLM-induced PF. Then we explored the role of IRE1-XBP1-snail pathway in transforming growth factor (TGF)-β1/tunicamycin (TM)-induced EMT. When TGF-β1/TM was treated on AECs, IRE1 and XBP1 were overexpressed, meanwhile, snail expression was upregulated accompanied with EMT. However, when IRE1 or XBP1 was knockdown, TGF-β1/TM-induced EMT were blocked while the expression of snail was inhibited. Then we silenced snail and found that TGF-β1/TM-induced EMT were also suppressed, but it had no effect on the up-regulated expression of IRE1 and XBP1. Thus, we concluded that IRE1-XBP1 pathway promotes EMT via mediating snail expression in PF.  相似文献   

7.
Found in inflammatory zone (FIZZ)1, also known as resistin-like molecule alpha, belongs to a novel class of cysteine-rich secreted protein family, named FIZZ/resistin-like molecule, with unique tissue expression patterns. FIZZ1 is induced in alveolar type II epithelial cells (AECs) in bleomycin (BLM)-induced lung fibrosis, and found to induce myofibroblast differentiation in vitro. The objective of this study was to elucidate the regulation of AEC FIZZ1 expression in pulmonary fibrosis. AECs were isolated from rat lungs and the effects of a number of cytokines on FIZZ1 expression were evaluated by RT-PCR. Of all cytokines examined, only IL-4 and IL-13 were effective in stimulating FIZZ1 expression in AECs. Stimulation by IL-4/IL-13 was accompanied by increases in phosphorylated STAT6 and JAK1. FIZZ1 expression was also stimulated by transfection with a STAT6 expression plasmid, but was inhibited by antisense oligonucleotides directed against STAT6. In vivo studies showed that compared with wild-type controls, both IL-4- and IL-13-deficient mice showed reduced BLM-induced lung FIZZ1 expression and fibrosis, which were essentially abolished in IL-4 and IL-13 doubly deficient mice. Furthermore, STAT6-deficient mice showed marked reduction in BLM-induced lung FIZZ1 expression. Thus, IL-4 and IL-13 are potent inducers of AEC FIZZ1 expression via STAT6 and play key roles in BLM-induced lung FIZZ1 expression and fibrosis. This represents a potential mechanism by which IL-4/IL-13 could play a role in the pathogenesis of lung fibrosis.  相似文献   

8.
Exposure to bleomycin in rodents induces lung injury and fibrosis. Alveolar epithelial cell death has been hypothesized as an initiating mechanism underlying bleomycin-induced lung injury and fibrosis. In the present study we evaluated the contribution of mitochondrial and receptor-meditated death pathways in bleomycin-induced death of mouse alveolar epithelial cells (MLE-12 cells) and primary rat alveolar type II cells. Control MLE-12 cells and primary rat alveolar type II cells died after 48 h of exposure to bleomycin. Both MLE-12 cells and rat alveolar type II cells overexpressing Bcl-X(L) did not undergo cell death in response to bleomycin. Dominant negative Fas-associating protein with a death domain failed to prevent bleomycin-induced cell death in MLE-12 cells. Caspase-8 inhibitor CrmA did not prevent bleomycin-induced cell death in primary rat alveolar type II cells. Furthermore, fibroblast cells deficient in Bax and Bak, but not Bid, were resistant to bleomycin-induced cell death. To determine whether the stress kinase JNK was an upstream regulator of Bax activation, MLE-12 cells were exposed to bleomycin in the presence of an adenovirus encoding a dominant negative JNK. Bleomycin-induced Bax activation was prevented by the expression of a dominant negative JNK in MLE-12 cells. Dominant negative JNK prevented cell death in MLE-12 cells and in primary rat alveolar type II cells exposed to bleomycin. These data indicate that bleomycin induces cell death through a JNK-dependent mitochondrial death pathway in alveolar epithelial cells.  相似文献   

9.
The pathogenesis of pulmonary fibrosis remains unclear. The receptor for advanced glycation end-products (RAGE) is a multi-ligand receptor known to be involved in the process of fibrotic change in several organs, such as peritoneal fibrosis and kidney fibrosis. The aim of this study was to examine the contribution of RAGE during the acute inflammation and chronic fibrotic phases of lung injury induced by intratracheal instillation of bleomycin in mice. Bleomycin-induced lung fibrosis was evaluated in wild-type and RAGE-deficient (RAGE-/-) mice. Bleomycin administration to wild-type mice caused an initial pneumonitis that evolved into fibrosis. While RAGE-/- mice developed a similar early inflammatory response, the mice were largely protected from the late fibrotic effects of bleomycin. The protection afforded by RAGE deficiency was accompanied by reduced pulmonary levels of the potent RAGE-inducible profibrotic cytokines transforming growth factor (TGF)-beta and PDGF. In addition, bleomycin administration induced high mobility group box 1 (HMGB-1) production, one of the ligands of RAGE, from inflammatory cells that accumulated within the air space. Coculture with HMGB-1 induced epithelial-mesenchymal transition (EMT) in alveolar type II epithelial cells from wild-type mice. However, alveolar type II epithelial cells derived from RAGE-/- mice did not respond to HMGB-1 treatment, such that the RAGE/HMGB-1 axis may play an important role in EMT. Also, bleomycin administration induced profibrotic cytokines TGF-beta and PDGF only in wild-type mouse lungs. Our results suggested that RAGE contributes to bleomycin-induced lung fibrosis through EMT and profibrotic cytokine production. Thus, RAGE may be a new therapeutic target for pulmonary fibrosis.  相似文献   

10.
The dysfunction of alveolar barriers is a critical factor in the development of lung injury and subsequent fibrosis, but the underlying molecular mechanisms remain poorly understood. To clarify the pathogenic roles of tight junctions in lung injury and fibrosis, we examined the altered expression of claudins, the major components of tight junctions, in the lungs of disease models with pulmonary fibrosis. Among the 24 known claudins, claudin-1, claudin-3, claudin-4, claudin-7, and claudin-10 were identified as components of airway tight junctions. Claudin-5 and claudin-18 were identified as components of alveolar tight junctions and were expressed in endothelial and alveolar epithelial cells, respectively. In experimental bleomycin-induced lung injury, the levels of mRNA encoding tight junction proteins were reduced, particularly those of claudin-18. The integrity of the epithelial tight junctions was disturbed in the fibrotic lesions 14 days after the intraperitoneal instillation of bleomycin. These results suggest that bleomycin mainly injured alveolar epithelial cells and impaired alveolar barrier function. In addition, we analyzed the influence of transforming growth factor-β (TGF-β), a critical mediator of pulmonary fibrosis that is upregulated after bleomycin-induced lung injury, on tight junctions in vitro. The addition of TGF-β decreased the expression of claudin-5 in human umbilical vein endothelial cells and disrupted the tight junctions of epithelial cells (A549). These results suggest that bleomycin-induced lung injury causes pathogenic alterations in tight junctions and that such alterations seem to be induced by TGF-β.  相似文献   

11.
The mammalian target of rapamycin (mTOR) signaling pathway in pulmonary fibrosis was investigated in cell and animal models. mTOR overactivation in alveolar epithelial cells (AECs) was achieved in the conditional and inducible Tsc1 knock-down mice SPC-rtTA/TetO-Cre/Tsc1 fx/+ (STT). Doxycycline caused Tsc1 knock-down and consequently mTOR activation in AECs for the STT mice. Mice treated with bleomycin exhibited increased mortality and pulmonary fibrosis compared with control mice. In wild-type C57BL/6J mice, pretreatment with rapamycin attenuated the bleomycin-mediated mortality and fibrosis. Rapamycin-mediated mouse survival benefit was inhibited by chloroquine, an autophagy inhibitor. Autophagosomes were decreased in the lungs after bleomycin exposure. Rapamycin induced the production of autophagosomes and diminished p62. We concluded that mTOR overactivation in AECs and compromised autophagy in the lungs are involved in the pathogenesis of pulmonary fibrosis. The suppression of mTOR and enhancement of autophagy may be used for treatment of pulmonary fibrosis.  相似文献   

12.
Recent evidence suggests that dysfunctional type II alveolar epithelial cells (AECs) contribute to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Based on the hypothesis that disease-causing mutations in surfactant protein C (SFTPC) provide an important paradigm for studying IPF, we investigated a potential mechanism of AEC dysfunction suggested to result from mutant SFTPC expression: induction of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). We evaluated biopsies from 23 IPF patients (including 3 family members with L188Q SFTPC mutations, 10 individuals with familial interstitial pneumonia without SFTPC mutations, and 10 individuals with sporadic IPF) and sections from 10 control lungs. After demonstrating UPR activation in cultured A549 cells expressing mutant SFTPC, we identified prominent expression of UPR markers in AECs in the lungs of patients with SFTPC mutation-associated fibrosis. In individuals with familial interstitial pneumonia without SFTPC mutations and patients with sporadic IPF, we also found UPR activation selectively in AECs lining areas of fibrotic remodeling. Because herpesviruses are found frequently in IPF lungs and can induce ER stress, we investigated expression of viral proteins in lung biopsies. Herpesvirus protein expression was found in AECs from 15/23 IPF patients and colocalized with UPR markers in AECs from these patients. ER stress and UPR activation are found in the alveolar epithelium in patients with IPF and could contribute to disease progression. Activation of these pathways may result from altered surfactant protein processing or chronic herpesvirus infection.  相似文献   

13.

Background

Catalase is preferentially expressed in bronchiolar and alveolar epithelial cells, and acts as an endogenous antioxidant enzyme in normal lungs. We thus postulated epithelial damage would be associated with a functional deficiency of catalase during the development of lung fibrosis.

Methods

The present study evaluates the expression of catalase mRNA and protein in human interstitial pneumonias and in mouse bleomycin-induced lung injury. We examined the degree of bleomycin-induced inflammation and fibrosis in the mice with lowered catalase activity.

Results

In humans, catalase was decreased at the levels of activity, protein content and mRNA expression in fibrotic lungs (n = 12) compared to control lungs (n = 10). Immunohistochemistry revealed a decrease in catalase in bronchiolar epithelium and abnormal re-epithelialization in fibrotic areas. In C57BL/6J mice, catalase activity was suppressed along with downregulation of catalase mRNA in whole lung homogenates after bleomycin administration. In acatalasemic mice, neutrophilic inflammation was prolonged until 14 days, and there was a higher degree of lung fibrosis in association with a higher level of transforming growth factor-β expression and total collagen content following bleomycin treatment compared to wild-type mice.

Conclusions

Taken together, these findings demonstrate diminished catalase expression and activity in human pulmonary fibrosis and suggest the protective role of catalase against bleomycin-induced inflammation and subsequent fibrosis.  相似文献   

14.
Idiopathic pulmonary fibrosis (IPF) is a progressive fatal fibrotic lung disease. Transforming growth factor (TGF)-beta1 is present in a biologically active conformation in the epithelial cells lining lesions with advanced IPF. To determine the role of aberrant expression of biologically active TGF-beta1 by alveolar epithelial cells (AECs), the AECs of explanted normal rat lungs were transfected with the TGF-beta1 gene using the retrovirus pMX-L-s223,225-TGF-beta1. In situ hybridization using a digoxigenin-labeled cDNA of the puromycin resistance gene contained in the pMX demonstrated that pMX-L-s233,225-TGF-beta1 was selectively transfected into AECs of the explants. Conditioned media overlying explants obtained 7 days after being treated with pMX-L-s223,225-TGF-beta1 contained 14.5 +/- 3.15 pg/ml of active TGF-beta1. With the use of Masson's trichrome staining of explant sections obtained 14 days after transfection, there were lesions similar to those in IPF, characterized by type II AEC hyperplasia, interstitial thickening, extensive increase in interstitial and subepithelial collagen, an increase in the number of fibroblasts, and areas resembling fibroblast buds. Collagens I, III, IV, and V and fibronectin were increased in explants treated with pMX-L-s223,225-TGF-beta1. The findings in the current study suggest that IPF may be a disorder of epithelial cells and not inflammatory cells.  相似文献   

15.
To characterize the role of GM-CSF in pulmonary fibrosis, we have studied bleomycin-induced fibrosis in wild-type mice vs mice with a targeted deletion of the GM-CSF gene (GM-CSF-/- mice). Without GM-CSF, pulmonary fibrosis was worse both histologically and quantitatively. These changes were not related to enhanced recruitment of inflammatory cells because wild-type and GM-CSF-/- mice recruited equivalent numbers of cells to the lung following bleomycin. Interestingly, recruitment of eosinophils was absent in GM-CSF-/- mice. We investigated whether the enhanced fibrotic response in GM-CSF-/- animals was due to a deficiency in an endogenous down-regulator of fibrogenesis. Analysis of whole lung homogenates from saline- or bleomycin-treated mice revealed that GM-CSF-/- animals had reduced levels of PGE2. Additionally, alveolar macrophages were harvested from wild-type and GM-CSF-/- mice that had been exposed to bleomycin. Although bleomycin treatment impaired the ability of alveolar macrophages from wild-type mice to synthesize PGE2, alveolar macrophages from GM-CSF-/- mice exhibited a significantly greater defect in PGE2 synthesis than did wild-type cells. Exogenous addition of GM-CSF to alveolar macrophages reversed the PGE2 synthesis defect in vitro. Administration of the PG synthesis inhibitor, indomethacin, to wild-type mice during the fibrogenic phase postbleomycin worsened the severity of fibrosis, implying a causal role for PGE2 deficiency in the evolution of the fibrotic lesion. These data demonstrate that GM-CSF deficiency results in enhanced fibrogenesis in bleomycin-induced pulmonary fibrosis and indicate that one mechanism for this effect is impaired production of the potent antifibrotic eicosanoid, PGE2.  相似文献   

16.
Oxidative stress is an important molecular mechanism underlying lung fibrosis. The mitochondrion is a major organelle for oxidative stress in cells. Therefore, blocking the mitochondrial signalling pathway may be the best therapeutic manoeuver to ameliorate lung fibrosis. Astaxanthin (AST) is an excellent antioxidant, but no study has addressed the pathway of AST against pulmonary oxidative stress and free radicals by the mitochondrion‐mediated signalling pathway. In this study, we investigated the antioxidative effects of AST against H2O2‐ or bleomycin (BLM)‐induced mitochondrial dysfunction and reactive oxygen species (ROS) production in alveolar epithelial cells type II (AECs‐II) in vivo and in vitro. Our data show that AST blocks H2O2‐ or BLM‐induced ROS generation and dose‐dependent apoptosis in AECs‐II, as characterized by changes in cell and mitochondria morphology, translocation of apoptotic proteins, inhibition of cytochrome c (Cyt c) release, and the activation of caspase‐9, caspase‐3, Nrf‐2 and other cytoprotective genes. These data suggest that AST inhibits apoptosis in AECs‐II cells through the ROS‐dependent mitochondrial signalling pathway and may be of potential therapeutic value in lung fibrosis treatment.  相似文献   

17.
18.
Immunohistochemical and in vitro studies indicate that caveolin-1, which occurs abundantly in alveolar epithelial type I cells and microvascular endothelial cells of the lung, is selectively downregulated in the alveolar epithelium following exposure to bleomycin. Bleomycin is also known to enhance the expression levels of metalloproteinases and of the metalloproteinase inducer CD147/EMMPRIN in lung cells. Experimental in vitro data has showed that MMP-inducing activity of CD147 is under the control of caveolin-1. We studied the effects of bleomycin on the expression of caveolin-1, CD147 and metalloproteinases using an alveolar epithelial rat cell line R3/1 with properties of both alveolar type I and type II cells and explanted rat lung slices. In parallel, retrospective samples of bleomycin-induced fibrosis in rats and mice as well as samples of wild type and caveolin-1 knockout animals were included for immunohistochemical comparison with in vitro data. Here we report that treatment with bleomycin downregulates caveolin-1 and increases CD147 and MMP-2 and -9 expression/activity in R3/1 cells using RT-PCR, Western blot analysis, MMP-2 activity assay and immunocytochemistry. Immunofluorescence double labeling revealed that caveolin-1 and CD147 were not colocalized in vitro. The in vitro findings were confirmed through immunohistochemical studies of the proteins in paraffin embedded precision-cut rat lung slices and in fibrotic rat lung tissues. The caveolin-1-negative hyperplastic ATII cells exhibited enhanced immunoreactivity for CD147 and MMP-2. Caveolin-1-negative ATI cells of fibrotic samples were mostly CD147 negative. There were no differences in the pulmonary expression of CD147 between the normal and caveolin-1 deficient animals. The results demonstrate that bleomycin-induced lung injury is associated with an increase in CD147 expression and MMP activity, particularly in alveolar epithelial cells. In addition, our data exclude any functional interaction between CD147 and alveolar epithelial caveolin-1.  相似文献   

19.
Pulmonary fibrosis, characterized by excess deposition of extracellular matrix by myofibroblasts, is a serious component of chronic lung diseases. Cadherin-11 (CDH11) is increased in wound healing and fibrotic skin. We hypothesized that CDH11 is increased in pulmonary fibrosis and contributes its development. CDH11 expression was assessed in lung tissue from idiopathic pulmonary fibrosis patients. The role of CDH11 in lung fibrosis was determined using the bleomycin model of pulmonary fibrosis, and in vitro analyses were performed on A549 cells during the process of epithelial to mesenchymal transition (EMT). Immunohistochemical studies demonstrated CDH11 expression on fibroblasts, epithelial cells, and alveolar macrophages of patients with pulmonary fibrosis and mice given bleomycin. Interestingly, CDH11-deficient mice had decreased fibrotic endpoints in the bleomycin model of pulmonary fibrosis compared to wild-type mice. Furthermore, anti-CDH11-neutralizing monoclonal antibodies successfully treated established pulmonary fibrosis induced by bleomycin. TGF-β levels were reduced in bronchoalveolar lavage (BAL) fluid, BAL cells, and primary alveolar macrophages from CDH11-deficient mice. Mechanistic studies demonstrated that TGF-β up-regulated CDH11 expression on A549 cells, and inhibition of CDH11 expression using siRNA reduced TGF-β-induced EMT. Together, these results identify CDH11 as a novel therapeutic target for pulmonary fibrosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号