首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhao H  Zhuang F  Stoltz JF  Wang X 《Biorheology》2003,40(1-3):179-187
Interaction of lymphocyte function-associated antigen-1 (LFA-1) with intercellular adhesive molecule-1 (ICAM-1) is important in a number of cellular events, including inflammation, adhesion, transendothelial migration. The aim of this work was to study comparatively the adhesive interaction between LFA-1 and ICAM-1 by a micropipette technique and a flow chamber method, and also to explore the effects of tumor necrosis factor (TNF-alpha), phytohemagglutinin (PHA), and tetramethylpyrazine (TMP) on this interaction. The adhesion probability (Pa) between a lymphocyte cell line SKW-3 expressing LFA-1 and a red blood cell (RBC) coated with soluble ICAM-1 was approached by the micropipette technique, while the flow chamber allowed to observe the firm adhesion of SKW-3 on human umbilical vein endothelial cells (HUVECs). Experimental results show that PHA stimulation of lymphocytes resulted in significant increases in the adhesion probability (Pa) and in number of firmly adhered lymphocytes to HUVECs, but TMP treatment could significantly inhibit such increases.  相似文献   

2.
3.
Summary Intercellular adhesion molecule-1, a member of the immunoglobulin supergene family, is the ligand for the integrin lymphocyte function associated antigen-1. Intercellular adhesion molecule-1 and lymphocyte function associated antigen-1 binding interactions mediate leukocyte adherence and migration. Previous work has shown that the adherence of lymphocyte function associated antigen-1 is directed to the first immunoglobulinlike domain of the endothelial cell surface protein intracellular adhesion molecule-1. We have constructed a truncated intercellular adhesion molecule-1 gene encoding the first 185 amino acids from the amino terminus and overexpressed it inEscherichia coli. The recombinant protein was purified from insoluble inclusion bodies and refolded into an active conformation by a denaturation/renaturation cycle. The identity of the protein was confirmed by microsequencing and by Western blot analysis using a polyclonal antibody to ICAM-1. We have demonstrated that this soluble region of the otherwise membrane-bound ligand is an inhibitor of Molt or HL-60 cell adhesion to cytokine-stimulated endothelial cells.  相似文献   

4.
The staphylococcal enterotoxins and related microbial T cell mitogens stimulate T cells by cross-linking variable parts of the T cell receptor (TCR) with MHC class II molecules on accessory or target cells. We have used cloned human T cells and defined tumor cells as accessory cells (AC) to study the requirements for T cell activation by these toxins. On AC expressing high levels of CD54 (intercellular adhesion molecule-1, ICAM-1) and CD58 (lymphocyte function-associated antigen-3, LFA-3), mAb to CD2 were relatively ineffective in inhibiting the response to the toxins and antibodies to the lymphocyte function-associated antigen-1 (LFA-1) did not inhibit at all. If added together, however, these mAb inhibited the response completely. Similar results were obtained using antibodies to the target structures of CD2 and LFA-1. In contrast, on cells expressing low levels of LFA-3, mAb to LFA-1 but not to CD2 were strongly inhibitory. The same pattern of inhibition was found when these same cells were used as presenters of specific antigen to the T cells. These data show that adhesions via CD2 or LFA-1 are alternatively required for the stimulation of the T cells by superantigenic toxins and demonstrate another similarity between T cell stimulation by superantigens and by specific antigen recognition.  相似文献   

5.
Soluble intercellular adhesion molecule-1 (sICAM-1): an overview   总被引:10,自引:0,他引:10  
Soluble intercellular adhesion molecule-1 (sICAM-1) represents a circulating form of ICAM-1 that is constitutively expressed or is inducible on the cell surface of different cell lines. It serves as a counter-receptor for the lymphocyte function-associated antigen (LFA-1). Interaction between ICAM-1, present on endothelial cells, and LFA-1 facilitates leukocyte adhesion and migration across the endothelium. ICAM-1 and its circulating form have been implicated in the development of any number of diseases.  相似文献   

6.
Flowcytometry demonstrated that murine endothelial cell line F-2 expresses MHC class I antigen, FcR II, Mac-1 and vascular cell adhesion molecule-1 (VCAM-1), but not intercellular adhesion molecule-1 (ICAM-1) and class II antigen. However, co-culturing with TNF-α for 24 hr resulted in the increased expression of ICAM-1, and the decreased expression of VCAM-1. IL-1α and IFN-γ exerted this regulatory effect on VCAM-1 but not on ICAM-1. T (Con A blast) and B (LPS blast) cells adhered to F-2 cells at almost equal levels, and the adhesion was enhanced 20 to 50% when the cells were precultured with TNF-α for 24 hr. The inhibition assay using either (anti-ICAM-1 + anti-LFA-1, lymphocyte function-associated antigen-1) or (anti-VCAM-1 + anti-VLA-4, very late antigen-4) mAbs demonstrated that the ICAM-1 system was utilized more preferentially by T than B blasts when F-2 cells were stimulated with TNF-α, and the VCAM-1 system was vice versa under the unstimulated and stimulated conditions. Granulocytes also adhered to F-2 cells, but no mAbs could inhibit the adhesion. Although F-2 cells produced a considerable amount of IL-6, GM-CSF and neutrophil chemotactic activity, a 24 hr incubation with TNF-α resulted in an increase of 12 fold in IL-6 and 3 fold in neutrophil chemotactic activity production.  相似文献   

7.
We have previously reported that stimulation of human fibroblasts (FB) with interferon-gamma (IFN-gamma) leads to their increased adhesiveness for resting peripheral blood T lymphocytes. With the use of blocking monoclonal antibodies, we determined that intercellular adhesion molecule-1 (ICAM-1) and its T cell ligand, lymphocyte function-associated antigen-1 (LFA-1) are the major, if not only ligands involved in this system. Using an ELISA, we have confirmed earlier reported observations that IFN-gamma induces an increase of ICAM-1 expression on the surface of FB suggesting that this increase mediates lymphocyte adhesion. However, we show that treatment of FB with IL-1, while leading to comparable increases in ICAM-1 synthesis and expression, failed to induce increased adhesion. In contrast, treatment of fibroblasts with the phorbol ester, TPA, stimulated ICAM-1-dependent adhesion without an increase in ICAM-1 surface expression. This suggested that the detection of ICAM-1 by monoclonal antibody techniques may not always correlate with its functional capabilities. The contrasting effects of IFN-gamma and IL-1 on ICAM-1-dependent FB adhesion suggest that qualitative as well as quantitative alterations of the ICAM-1 molecule may regulate ligand interaction.  相似文献   

8.
《The Journal of cell biology》1993,123(4):1007-1016
The interaction of lymphocyte function-associated antigen-1 (LFA-1) with its ligands mediates multiple cell adhesion processes of capital importance during immune responses. We have obtained three anti-ICAM-3 mAbs which recognize two different epitopes (A and B) on the intercellular adhesion molecule-3 (ICAM-3) as demonstrated by sequential immunoprecipitation and cross-competitive mAb-binding experiments. Immunoaffinity purified ICAM-3-coated surfaces were able to support T lymphoblast attachment upon cell stimulation with both phorbol esters and cross-linked CD3, as well as by mAb engagement of the LFA-1 molecule with the activating anti-LFA-1 NKI-L16 mAb. T cell adhesion to purified ICAM-3 was completely inhibited by cell pretreatment with mAbs to the LFA-1 alpha (CD11a) or the LFA-beta (CD18) integrin chains. Anti-ICAM-3 mAbs specific for epitope A, but not those specific for epitope B, were able to trigger T lymphoblast homotypic aggregation. ICAM-3-mediated cell aggregation was dependent on the LFA-1/ICAM-1 pathway as demonstrated by blocking experiments with mAbs specific for the LFA-1 and ICAM-1 molecules. Furthermore, immunofluorescence studies on ICAM-3-induced cell aggregates revealed that both LFA-1 and ICAM-1 were mainly located at intercellular boundaries. ICAM-3 was located at cellular uropods, which in small aggregates appeared to be implicated in cell-cell contacts, whereas in large aggregates it appeared to be excluded from cell-cell contact areas. Experiments of T cell adhesion to a chimeric ICAM-1-Fc molecule revealed that the proaggregatory anti-ICAM-3 HP2/19 mAb was able to increase T lymphoblast attachment to ICAM-1, suggesting that T cell aggregation induced by this mAb could be mediated by increasing the avidity of LFA-1 for ICAM-1. Moreover, the HP2/19 mAb was costimulatory with anti-CD3 mAb for T lymphocyte proliferation, indicating that enhancement of T cell activation could be involved in ICAM-3-mediated adhesive phenomena. Altogether, our results indicate that ICAM-3 has a regulatory role on the LFA-1/ICAM-1 pathway of intercellular adhesion.  相似文献   

9.
Neutrophils’ adhesion to the endothelium during inflammatory is a well-known processes. In contrast the interaction of neutrophils with cells of the neurovascular unit after they have been transmigrated into the brain is less clear. Recently, lymphocyte function-associated antigen-1 (LFA-1) dependent subendothelial crawling of neutrophils has been observed in vivo. This is mediated by intracellular adhesion molecule-1 (ICAM-1), which is expressed on the cell surface of pericytes. In our work we demonstrated in vitro a cell–cell interaction between porcine brain capillary pericytes (PBCPs) and neutrophils, with further characterization of the initial contact between these cells. PBCPs increase ICAM-1 protein expression in response to the cytokine tumor necrosis factor-alpha (TNF-α). Furthermore, an increase in neutrophil adhesion to PBCPs was determined by immunofluorescence staining. By means of scanning force microscopy (SFM), we could additionally show that pericytes as well as neutrophils form cell extensions towards the neighboring cell. Interestingly, these extensions differ for different cell types.  相似文献   

10.
The interaction between integrin lymphocyte function-associated antigen-1 (LFA-1) and its ligand intercellular adhesion molecule-1 (ICAM-1) is critical in immunological and inflammatory reactions but, like other adhesive interactions, is of low affinity. Here, multiple rational design methods were used to engineer ICAM-1 mutants with enhanced affinity for LFA-1. Five amino acid substitutions 1) enhance the hydrophobicity and packing of residues surrounding Glu-34 of ICAM-1, which coordinates to a Mg2+ in the LFA-1 I domain, and 2) alter associations at the edges of the binding interface. The affinity of the most improved ICAM-1 mutant for intermediate- and high-affinity LFA-1 I domains was increased by 19-fold and 22-fold, respectively, relative to wild type. Moreover, potency was similarly enhanced for inhibition of LFA-1-dependent ligand binding and cell adhesion. Thus, rational design can be used to engineer novel adhesion molecules with high monomeric affinity; furthermore, the ICAM-1 mutant holds promise for targeting LFA-1-ICAM-1 interaction for biological studies and therapeutic purposes.  相似文献   

11.
In response to external stimuli, cells modulate their adhesive state by regulating the number and intrinsic affinity of receptor/ligand bonds. A number of studies have shown that cell adhesion is dramatically reduced at room or lower temperatures as compared with physiological temperature. However, the underlying mechanism that modulates adhesion is still unclear. Here, we investigated the adhesion of the monocytic cell line THP-1 to a surface coated with intercellular adhesion molecule-1 (ICAM-1) as a function of temperature. THP-1 cells express the integrin lymphocyte function-associated antigen-1 (LFA-1), a receptor for ICAM-1. Direct force measurements of cell adhesion and cell elasticity were carried out by atomic force microscopy. Force measurements revealed an increase of the work of de-adhesion with temperature that was coupled to a gradual decrease in cellular stiffness. Of interest, single-molecule measurements revealed that the rupture force of the LFA-1/ICAM-1 complex decreased with temperature. A detailed analysis of the force curves indicated that temperature-modulated cell adhesion was mainly due to the enhanced ability of cells to deform and to form a greater number of longer membrane tethers at physiological temperatures. Together, these results emphasize the importance of cell mechanics and membrane-cytoskeleton interaction on the modulation of cell adhesion.  相似文献   

12.
Murine anti-CD14 mAb which recognize different CD14 epitopes induced marked homotypic adhesion of normal human monocytes. Induction of aggregation by anti-CD14 mAb required Mg2+, occurred at an optimal temperature of 37 degrees C, but not at 4 degrees C, and exhibited a kinetics which differed from adhesion triggered by IFN-gamma and anti-CD43 mAb. Monocyte adhesion induced by anti-CD14 mAb required neither Fcy gamma R engagement nor cross-linking of CD14, because adhesion was induced by F(ab)'2 fragments, as well as by monovalent F(ab) fragments of anti-CD14 mAb. mAb to CD11a, CD18, and intercellular adhesion molecule-1 (ICAM-1), but not antibodies to CD11b and CD11c, inhibited monocyte adhesion induced by CD14 engagement. These results indicate that CD14-dependent adhesion is mediated by lymphocyte function-associated Ag-1/ICAM-1 interactions. This was confirmed by the absence of aggregation in anti-CD14-stimulated cells from a patient with leukocyte adhesion deficiency. Monocyte adhesion upon CD14 engagement was blocked by an inhibitor of protein kinases, sphingosine. This suggests that protein kinases play a role in the intracellular signaling pathway(s) which couple CD14 to lymphocyte function-associated Ag-1/ICAM-1.  相似文献   

13.
While intercellular adhesion molecule-1 (ICAM-1) is a transmembrane protein, two types of extracellular ICAM-1 have been detected in cell culture supernatants as well as in the serum: a soluble form of ICAM-1 (sICAM-1) and a membranous form of ICAM-1 (mICAM-1) associated with exosomes. Previous observations have demonstrated that sICAM-1 cannot exert potent immune modulatory activity due to its low affinity for leukocyte function-associated antigen-1 (LFA-1) or membrane attack complex-1. In this report, we initially observed that human cancer cells shed mICAM-1(+)-exosomes but were devoid of vascular cell adhesion molecule-1 and E-selectin. We demonstrate that mICAM-1 on exosomes retained its topology similar to that of cell surface ICAM-1, and could bind to leukocytes. In addition, we show that exosomal mICAM-1 exhibits potent anti-leukocyte adhesion activity to tumor necrosis factor-α-activated endothelial cells compared to that of sICAM-1. Taken together with previous findings, our results indicate that mICAM-1 on exosomes exhibits potent immune modulatory activity.  相似文献   

14.
Adhesion between osteoblasts and osteoclast precursors is established via an interaction involving intercellular adhesion molecule-1 (ICAM-1) on osteoblasts and leukocyte function-associated antigen-1 (LFA-1) on osteoclast precursors. The latter cells also express ICAM-1, but little is known about the expression over time and its possible role during osteoclastogenesis. In the present study we investigated the expression of ICAM-1 on both human osteoblast-like cells and osteoclast precursors in a co-culture. The protein expression on osteoclast precursors strongly increased whereas the osteoblast-like cells became ICAM-1 negative. Interestingly, ICAM-1 on osteoclast precursors manifested as clusters which localized at the baso-lateral membrane. Furthermore, clustered ICAM-1 was associated with F-actin and remained present for several days. Our data suggest that osteoblastic ICAM-1 is mainly involved in the initial adhesion of osteoclast precursors whereas clustered ICAM-1 on osteoclast precursors and its association with F-actin suggest an involvement in cell movement at a later stage.  相似文献   

15.
Lipopolysaccharide (LPS)-induced lung inflammation is known to increase pulmonary intercellular adhesion molecule-1 (ICAM-1) expression. In the present study, L2 cells, a cell line of alveolar epithelial cells, were stimulated with LPS, and ICAM-1 expression was studied. ICAM-1 protein on L2 cells peaked at 6 (38% increase; P < 0.01) and 10 (48% increase; P < 0.001) h after stimulation with Escherichia coli and Pseudomonas aeruginosa LPS, respectively. ICAM-1 mRNA expression was markedly increased, with a peak at 2-4 (E. coli) and 4-6 (P. aeruginosa) h. Adherence assays of neutrophils to LPS-stimulated L2 cells showed a threefold increase in adherence (P < 0.001). Pretreatment of the neutrophils with anti-lymphocyte function-associated antigen-1 and anti-Mac-1 antibodies reduced adherence by 54% (P < 0.001). Analysis of immunofluorescence staining for ICAM-1 showed an exclusive apical expression of ICAM-1. These results indicate that LPS upregulates functional active ICAM-1 on the apical part of the membrane in rat pneumocytes.  相似文献   

16.
Cell adhesion molecules (CAMs) have been importantly implicated in the pathobiology of the airway responses in allergic asthma, including inflammatory cell recruitment into the lungs and altered bronchial responsiveness. To elucidate the mechanism of CAM-related mediation of altered airway responsiveness in the atopic asthmatic state, the expressions and actions of intercellular adhesion molecule-1 (ICAM-1) and its counterreceptor ligand lymphocyte function-associated antigen-1 (LFA-1; i.e., CD11a/CD18) were examined in isolated rabbit airway smooth muscle (ASM) tissues and cultured human ASM cells passively sensitized with sera from atopic asthmatic patients or nonatopic nonasthmatic (control) subjects. Relative to control tissues, the atopic asthmatic sensitized ASM exhibited significantly enhanced maximal contractility to acetylcholine and attenuated relaxation responses to isoproterenol. These proasthmatic changes in agonist responsiveness were ablated by pretreating the atopic sensitized tissues with a monoclonal blocking antibody (MAb) to either ICAM-1 or CD11a, whereas a MAb directed against the related beta(2)-integrin Mac-1 had no effect. Moreover, relative to control tissues, atopic asthmatic sensitized ASM cells displayed an autologously upregulated mRNA and cell surface expression of ICAM-1, whereas constitutive expression of CD11a was unaltered. Extended studies further demonstrated that 1) the enhanced expression and release of soluble ICAM-1 by atopic sensitized ASM cells was prevented when cells were pretreated with an interleukin (IL)-5-receptor-alpha blocking antibody and 2) administration of exogenous IL-5 to naive (nonsensitized) ASM cells induced a pronounced soluble ICAM-1 release from the cells. Collectively, these observations provide new evidence demonstrating that activation of the CAM counterreceptor ligands ICAM-1 and LFA-1, both of which are endogenously expressed in ASM cells, elicits autologously upregulated IL-5 release and associated changes in ICAM-1 expression and agonist responsiveness in atopic asthmatic sensitized ASM.  相似文献   

17.
To elucidate the role of the cytoskeleton regulating avidity or affinity changes in the leukocyte adhesion receptor lymphocyte function-associated antigen-1 (LFA-1) (alpha(L)beta(2)), we generated mutant cytoplasmic LFA-1 receptors and expressed these into the erythroleukemic cell line K562. We determined whether intercellular adhesion molecule-1 (ICAM-1)-mediated adhesion of LFA-1, lacking parts of its cytoplasmic tails, is regulated through receptor diffusion/clustering and/or by altered ligand binding affinity. All cytoplasmic deletion mutants that lack the complete beta(2) cytoplasmic tail and/or the conserved KVGFFKR sequence in the alpha(L) cytoplasmic tail were constitutively active and expressed high levels of the activation epitopes NKI-L16 and M24. Surprisingly, whereas these mutants showed a clustered cell surface distribution of LFA-1, the ligand-binding affinity as measured by titration of soluble ligand ICAM-1 remained unaltered. The notion that redistribution of LFA-1 does not alter ligand-binding affinity is further supported by the finding that disruption of the cytoskeleton by cytochalasin D did not alter the binding affinity nor adhesion to ICAM-1 of these mutants. Most cytoplasmic deletion mutants that spontaneously bound ICAM-1 were not capable to spread on ICAM-1, demonstrating that on these mutants LFA-1 is not coupled to the actin cytoskeleton. From these data we conclude that LFA-1-mediated cell adhesion to ICAM-1 is predominantly regulated by receptor clustering and that affinity alterations do not necessarily coincide with strong ICAM-1 binding.  相似文献   

18.
Intercellular adhesion molecule-1 (ICAM-1) on the surface of cultured umbilical vein and saphenous vein endothelial cells was upregulated between 2.5- and 40-fold by rIL-1, rTNF, LPS and rIFN gamma corresponding to up to 5 X 10(6) sites/cell. Endothelial cell ICAM-1 was a single band of 90 kD in SDS-PAGE. Purified endothelial cell ICAM-1 reconstituted into liposomes and bound to plastic was an excellent substrate for both JY B lymphoblastoid cell and T lymphoblast adhesion. Adhesion to endothelial cell ICAM-1 in planar membranes was blocked completely by monoclonal antibodies to lymphocyte function associated antigen-1 (LFA-1) or ICAM-1. Adhesion to artificial membranes was most sensitive to ICAM-1 density within the physiological range found on resting and stimulated endothelial cells. Adhesion of JY B lymphoblastoid cells, normal and genetically LFA-1 deficient T lymphoblasts and resting peripheral blood lymphocytes to endothelial cell monolayers was also assayed. In summary, LFA-1 dependent (60-90% of total adhesion) and LFA-1-independent basal adhesion was observed and the use of both adhesion pathways by different interacting cell pairs was increased by monokine or lipopolysaccharide stimulation of endothelial cells. The LFA-1-dependent adhesion could be further subdivided into an LFA-1/ICAM-1-dependent component which was increased by cytokines and a basal LFA-1-dependent, ICAM-1-independent component which did not appear to be affected by cytokines. We conclude that ICAM-1 is a regulated ligand for lymphocyte-endothelial cell adhesion, but at least two other major adhesion pathways exist.  相似文献   

19.
磷脂酰胆碱过氧化物(phosphatidylcholine hydroperoxide,PCOOH)是磷脂酰胆碱(phosphatidylcholine,PC)氧化的最初产物,在包括动脉粥样硬化在内的各种病理条件下,可以在血浆和组织中检测到。为了评定动脉粥样硬化的程度,我们研究了PCOOH对THP-1细胞与内皮细胞黏附分子(intracellular adhesionmolecule-1,ICAM-1)之间粘附状态的影响,发现THP-1细胞与内皮细胞黏附分子的粘附是剂量依赖于PCOOH的。不氧化的PC、sn-2截断的PC和其他过氧化物不影响THP-1细胞与内皮细胞黏附分子的黏附。在PCOOH处理的细胞中,发现了F-肌动蛋白富集的突出膜结构,与淋巴细胞功能关联的抗原(lymphocytefunction-associated antigen-1,LFA-1)定位在突出结构上。细胞松弛素D和肌动蛋白聚合抑制剂能够抑制PCOOH诱导细胞黏附到ICAM-1和膜突起上。我们研究了参与PCOOH诱导THP-1细胞黏附到ICAM-1上的Rho-家族的GTP酶,发现氟伐他汀对异戊二烯的消耗以及GGTI-286对牛儿基转移酶的阻害均能够抑制PCOOH诱导细胞黏附到ICAM-1和膜上。Pull-down方法表明,在PCOOH处理的细胞中,Rac1和Rac2被活化。Pan-Rho-家族的GTP酶抑制剂难辨梭状芽孢杆菌B、Rac特异抑制剂NSC23776和Rac同型体的RNA干扰,均能够减少细胞黏附。这些结果表明,PCOOH诱导的LFA-1调节的细胞黏附到ICAM-1上是通过actin细胞骨架。这一机理可能参与了单核细胞黏附到动脉壁上并启动了动脉粥样硬化。  相似文献   

20.
As an approved vaccine adjuvant for use in humans, alum has vast health implications, but, as it is a crystal, questions remain regarding its mechanism. Furthermore, little is known about the target cells, receptors, and signaling pathways engaged by alum. Here we report that, independent of inflammasome and membrane proteins, alum binds dendritic cell (DC) plasma membrane lipids with substantial force. Subsequent lipid sorting activates an abortive phagocytic response that leads to antigen uptake. Such activated DCs, without further association with alum, show high affinity and stable binding with CD4(+) T cells via the adhesion molecules intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function-associated antigen-1 (LFA-1). We propose that alum triggers DC responses by altering membrane lipid structures. This study therefore suggests an unexpected mechanism for how this crystalline structure interacts with the immune system and how the DC plasma membrane may behave as a general sensor for solid structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号