首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tannase producing strain Aspergillus heteromorphus MTCC 8818 was used in the present study for the production of tannase under solid state fermentation using Rosewood (Dalbergia sissoo) sawdust—a timber industry waste—as substrate. Various physico-chemical parameters were optimized for extracellular yield of tannase. Maximum tannase (1.84 U/g dry substrate) and gallic acid (5.4 mg/g ds) was observed at 30 °C after 96 h of incubation. Czapek dox medium was found to be the best moistening agent, with pH and relative humidity of 5.5 and 70 %, respectively. The constituents of Czapek dox medium were varied to enhance enzyme production. The optimum concentration of modified Czapek dox constituents contained 0.2 % NaNO3, 0.05 % K2HPO4 and MgSO4, 0.15 % KCl. Among the additional salts supplemented to Czapek dox medium, ZnSO4 and CuSO4 were found to have a stimulating effect, with a relative tannase activity of 116 and 111 %, respectively. Glucose as an external carbon source was found to be a repressor of enzyme production.  相似文献   

2.
A novel agro-residue, tea stalks, was tested for the production of tannase under solid-state fermentation (SSF) using Aspergillus niger JMU-TS528. Maximum yield of tannase was obtained when SSF was carried out at 28 °C, pH 6.0, liquid-to-solid ratio (v/w) 1.8, inoculum size 2 ml (1?×?108 spores/ml), 5 % (w/v) ammonium chloride as nitrogen source and 5 % (w/v) lactose as additional carbon source. Under optimum conditions, tannase production reached 62 U/g dry substrate after 96 h of fermentation. Results from the study are promising for the economic utilization and value addition of tea stalks.  相似文献   

3.
The optimization of tannase production by Lactobacillus plantarum CIR1 was carried out following the Taguchi methodology. The orthogonal array employed was L18 (21 × 35) considering six important factors (pH and temperature, also phosphate, nitrogen, magnesium, and carbon sources) for tannase biosynthesis. The experimental results obtained from 18 trials were processed using the software Statistical version 7.1 using the character higher the better. Optimal culture conditions were pH, 6; temperature, 40 °C; tannic acid, 15.0 g/L; KH2PO4, 1.5 g/L; NH4Cl, 7.0 g/L; and MgSO4, 1.5 g/L which were obtained and further validated resulting in an enhance tannase yield of 2.52-fold compared with unoptimized conditions. Tannase production was further carried out in a 1-L gas-lift bioreactor where two nitrogen flows (0.5 and 1.0 vvm) were used to provide anaerobic conditions. Taguchi methodology allowed obtaining the optimal culture conditions for the production of tannase by L. plantarum CIR1. At the gas-lift bioreactor the tannase productivity yields increase 5.17 and 8.08-fold for the flow rates of 0.5 and 1.0 vvm, respectively. Lactobacillus plantarum CIR1 has the capability to produce tannase at laboratory-scale. This is the first report for bacterial tannase production using a gas-lift bioreactor.  相似文献   

4.
Tannase producing fungal strains were isolated from different locations including garbages, forests and orchards, etc. The strain giving maximum enzyme yield was identified to be Aspergillus ruber. Enzyme production was studied under solid state fermentation using different tannin rich substrates like ber leaves (Zyzyphus mauritiana), jamun leaves (Syzygium cumini), amla leaves (Phyllanthus emblica) and jawar leaves (Sorghum vulgaris). Jamun leaves were found to be the best substrate for enzyme production under solid-state fermentation (SSF). In SSF with jamun leaves, the maximum production of tannase was found to be at 30 °C after 96 h of incubation. Tap water was found to be the best moistening agent, with pH 5.5 in ratio of 1:2 (w/v) with substrate. Addition of carbon and nitrogen sources to the medium did not increase tannase production. Under optimum conditions as standardized here, the enzyme production was 69 U/g dry substrate. This is the first report on production of tannase by A. ruber, giving higher yield under SSF with agro-waste as the substrate.  相似文献   

5.
Low-energy ion implantation as a novel mutagen has been increasingly applied in the microbial mutagenesis for its higher mutation frequency and wider mutation spectra. In this work, N+ ion beam implantation was used to enhance Aspergillus niger TA9701 in tannase yield. The optimization of process parameters under submerged fermentation was carried out to further improve the tannase yield of the mutant, Aspergillus niger J-T18. The results indicate that an excellent mutant J-T18 with a yield of 38.5 IU/mL, that is five times that of the original strain, was achieved by nine successive implantations under the conditions of 10 keV and 30–40 (×2.6?×?1013) ions/cm2. This optimization further increased the yield of the mutant by 42 %, i.e. 53.6 U/mL which occurred in the mutant cultivated in the optimal fermentation culture medium composed of: rice flour 5 %; ammonium sulfate 1 %; tannic acid 2 %; calcium carbonate 0.5 %; manganese sulfate 0.1 %; and dipotassium phosphate 0.3 %; incubated at 30°C and 180 rpm for 72 h.  相似文献   

6.
The gene in the locus GALLO_1609 from Streptococcus gallolyticus UCN34 was cloned and expressed as an active protein in Escherichia coli BL21 (DE3). The protein was named TanSg1 since it shows similarity to bacterial tannases previously described. The recombinant strain produced His-tagged TanSg1 which was purified by affinity chromatography. Purified TanSg1 protein showed tannase activity, having a specific activity of 577 U/mg which is 41 % higher than the activity of Lactobacillus plantarum tannase. Remarkably, TanSg1 displayed optimum catalytic activity at pH 6–8 and 50–70 °C and showed high stability over a broad range of temperatures. It retained 25 % of its relative activity after prolonged incubation at 45 °C. The specific activity of TanSg1 is enhanced by the divalent cation Ca2+ and is dramatically reduced by Zn2+ and Hg2+. The enzyme was highly specific for gallate and protocatechuate esters and showed no catalytic activity against other phenolic esters. The protein TanSg1 hydrolyzes efficiently tannic acid, a complex and polymeric gallotanin, allowing its complete conversion to gallic acid, a potent antioxidant. From its biochemical properties, TanSg1 is a tannase with potential industrial interest regarding the biodegradation of tannin waste or its bioconversion into biologically active products.  相似文献   

7.
The dynamics of mesophilic and thermophilic bacterial population of compost was studied. The bacteria population in the compost ranged from 109 to 105 CFU g?1 and was found to be maximum during mesophilic phase, and then decreased during the thermophilic, the cooling and maturation phases. Assessment of culturable bacteria by 16S rDNA revealed phylogenetic lineage of different polymorphic class bacilli, γ, β-proteobacteria and actinobacteria. Bacterial isolates produced extracellular enzymes: proteases, cellulase, xylanase, pectinase, tannase and amylase. Among them, mesophilic bacteria exhibited xylanolytic (81.25 %) and cellulolytic (63 %) activity. Thermophilic bacteria showed cellulolytic (75 %) and xylanolytic (66.6 %) activity, but a few isolates also produced tannase and pectinase. All bacterial isolates were observed to cause inhibition of three isolates of Bacillus pumilus and one isolate each of Staphylococcus sciuri and Kocuria sp. The physiological effect of compost on shoot length, leaf size and fruit maturation of tomato have been evaluated; the compost (75 g/pot) improved these parameters as compared to known compost (SOM). The efficacy of compost and SOM on photochemistry of tomato leaves was studied, based on imaging-PAM of the chlorophyll fluorescence parameters. Fv/Fm and electron transport rate (ETR) were increased significantly in compost (75 g) amended pot within 30 days of growth. Likewise, highest Y (II) of photosystem II (PS II) yield was found in compost (75 g) pot in 15 days. The findings of this study proved that the compost comprising of various bacteria involved in degradation of substrates was found to be beneficial for enhancement of tomato growth and development.  相似文献   

8.
Hyper tannase and pectinase-producing yeast Rhodotorula glutinis MP-10 was isolated from persimmon (Diospyros kaki L.) fruits. The main pectinase activity of yeast was exo-polygalacturonase. No pectin methyl esterase and too low pectin lyase activities were detected for this yeast. The maximum exo-activities of tannase and polygalacturonase were determined as 15.2 and 26.9 U/mL for free cells and 19.8 and 28.6 U/mL for immobilized cells, respectively. Immobilized cells could be reused in 13 successive reaction cycles without any loss in the maximum tannase and polygalacturonase activities. Besides, too little decreases in activities of these enzymes were recorded between 14 and 18 cycles. At the end of 18 successive reaction cycles, total 503.1 U/mL of polygalacturonase and 349.6 U/mL of tannase could be produced using the same immobilized cells. This is the first report on the use of free and/or immobilized cells of a microorganism for the co-production of tannase and pectinase.  相似文献   

9.
《Fungal biology》2022,126(8):471-479
The enzyme tannase is of great industrial and biotechnological importance for the hydrolysis of vegetable tannins, reducing their undesirable effects and generating products for a wide range of processes. Thus, the search for new microorganisms that permit more stable tannase production is of considerable importance. A strain of P. mangiferae isolated from cocoa leaves was selected and investigated for its capacity to produce tannase enzymes and gallic acid through submerged fermentation. The assessment of the variables affecting tannase production by P. mangiferae showed that tannic acid, ammonium nitrate and temperature were the most significant (8.4 U/mL). The variables were analyzed using Response Surface Methodology - RSM (Box-Behnken design), with the best conditions for tannase production being: 1.9% carbon source, 1% nitrogen source and temperature of 23 °C. Tannase activity doubled (16.9 U/mL) after the optimization process when compared to the initial fermentation. A pH of 7.0 was optimal for the tannase and it presented stability above 80% with pH between 4.0 and 7.0 after 2h of incubation. The optimal temperature was 30 °C and activity remained at above 80% at 40–60 °C after 1 h. Production of gallic acid was achieved with 1% tannic acid (0.9 mg/mL) and P. mangiferae had not used up the gallic acid produced by tannic acid hydrolysis after 144 h of fermentation. A 5% tannic acid concentration was the best for gallic acid production (1.6 mg/mL). These results demonstrate P. mangiferae’s potential for tannase and gallic acid production for biotechnological applications.  相似文献   

10.
A tannase yielding fungal culture identified as Aspergillus fumigatus MA was isolated from the effluent collected from a local small scale tannery. The fungal culture produced high yields of extracellular tannase under solid-state fermentation (SSF) using different agro forest residues such as Amla leaves (Phyllanthus emblica), Ber leaves (Zyzyphus mauritiana), Jamun leaves (Syzygium cumini), Jamoa leaves (Syzygium sp.) and Keekar leaves (Acacia nilotica). Among different substrates used, Jamun leaves yielded maximal extra-cellular production of tannase. Various parameters were studied to optimize the extracellular yield of tannase under SSF. The maximum yield of 174.32 U g−1 was obtained at 25°C after 96 h of incubation at pH 5.0. The tap water was used as a moistening agent. A substrate to tap water ratio of 1:1 was found to best for tannase production. Supplementation of the medium with ammonium sulfate as nitrogen source had enhanced tannase production whereas glucose had decreased the enzyme production. This is the first report on production of tannase by Aspergillus fumigatus MA, giving a much higher yield of enzyme under SSF with Jamun leaves as the substrate.  相似文献   

11.
An acidophilic β-mannanase-encoding gene (Auman5A) from Aspergillus usamii YL-01-78 was amplified and inserted into pPIC9K and pPICZαA vectors. The resulting recombinant vector, pPIC9K-Auman5A, was transformed into Pichia pastoris GS115. One strain having the highest recombinant β-mannanase activity of 54.6 U/ml, labeled GSKM4-8, was chosen from the first-batch P. pastoris transformants. Then, the pPICZαA-Auman5A was transformed into GSKM4-8 again. From the second-batch transformants, one strain (GSKZαM4-2) with the highest β-mannanase activity of 78.1 U/ml was obtained, and used to optimize expression conditions. As GSKZαM4-2 was induced under the optimized conditions (initial pH value 6.5, induction period 120 h, methanol concentration 1.5 %, and induction temperature 32 °C), β-mannanase activity reached 162.8 U/ml. Protein and carbohydrate assays showed that the β-mannanase, a glycoprotein with an apparent molecular weight of 49.8 kDa and a carbohydrate content of 21.3 %, was extracellularly expressed. It displayed the maximum activity at pH 3.0 and 70 °C, and was stable at a pH range of 3.0–7.0 and at 60 °C. Its activity was not significantly affected by metal ions tested and EDTA, but inhibited by Ag+ and Hg2+. Its most favorable substrate was locust bean gum, followed by konjac flour and guar gum. The K m and V max towards locust bean gum were 1.36 mg/ml and 415.8 U/mg, respectively. These results suggested that the β-mannanase can be expressed with higher level and possesses superior enzymatic properties, making it a good candidate in industrial processes.  相似文献   

12.
Thirty-nine strains representing 12 diverse phylogenetic clades of Aureobasidium pullulans were surveyed for lipase production using a quantitative assay. Strains in clades 4 and 10 produced 0.2–0.3 U lipase/ml, while color variant strain NRRL Y-2311-1 in clade 8 produced 0.54 U lipase/ml. Strains in clade 9, which exhibit a dark olivaceous pigment, produced the highest levels of lipase, with strain NRRL 62034 yielding 0.57 U lipase/ml. By comparison, Candida cylindracea strain NRRL Y-17506 produced 0.05 U lipase/ml under identical conditions. A. pullulans strain NRRL 62034 reached maximal lipase levels in 5 days on lipase induction medium, while A. pullulans strain NRRL Y-2311-1 and strains in clades 4 and 10 were highest after 6 days. A. pullulans strain NRRL Y-2311-1 and strains in clade 9 produced two extracellular proteins in common, at >50 and <37 kDa.  相似文献   

13.
《Journal of Asia》2022,25(4):102005
Acrobasis nuxvorella Neuzing (Lepidoptera: Pyralidae), or the Pecan Nut Casebearer (PNC), is a monophagous pecan nut [Carya illinoinensis (Wang) K. Koch] herbivore. This insect has caused major crop losses, despite pecan nut trees producing a high concentration of tannins, which are deterrent compounds for insects. The PNC consumes and processes tannin-rich tissues without any negative effects on its nutrition. Certain bacterial species of the herbivore gut microbiota have been proven to produce tannase, therefore, we hypothesize that the PNC has symbiotic bacteria that produce tannase for the digestion of tannin contained in their food.In this work, live PNC larvae were extracted from pecan nutlets. The larval guts were dissected and their contents were cultured to obtain the cultivable bacteria. A total of 224 bacterial isolates were recovered, 19 of which tested positive for tannase activity. Isolates LB66, LB24, TT29, and TP8 displayed comparable activity to the control strain Pseudomonas aeruginosa. Further enzyme semi-purification steps showed specific tannase activity values in the range of 39.5–3.7 U/mg of protein. The isolates were identified as Bacillus pumilus strain TT29, Bacillus pumilus strain LB66, Bacillus pumilus strain LB24 and Sthaphylococcus warneri (TP8) by 16S ribosomal RNA gene sequencing. Our findings indicate that PNC larvae contain gut bacteria able to produce tannase that hydrolyze the galloyl ester bonds in tannins.  相似文献   

14.
A solventogenic strain of Clostridium sp. BOH3 produces extracellular α-amylase (7.15 U/mg protein) in reinforced clostridial medium supplemented with sugarcane bagasse hydrolysate (1 % w/v) and a small amount of starch (0.1 % w/v), which is essential for the expression of α-amylase. In the presence of α-amylase, BOH3 utilizes starch directly without any pretreatment and produces butanol almost equivalent (~90 %) to the production of butanol from glucose. α-Amylase can be purified from culture supernatant by using one-step weak anion exchange chromatography with a yield of 43 %. In peptide fingerprinting analysis, this enzyme shows homology with α-amylase produced by Clostridium acetobutylicum ATCC824. However, the molecular weight is 54 kDa, which is smaller than α-amylase of ATCC824 (84 kDa). This enzyme has optimum temperature at 45–50 °C and optimum pH at 4.5–5.5. Under this condition, the enzyme activity is 91.32 U/mg protein, and its K m and V max values are 1.71?±?0.02 mg/ml and 96.13?±?0.15 μmol/min/mg protein, respectively. Activity of this α-amylase can be enhanced (>1.5 times) by addition of Ca2+ and Co2+ and its activity can be maintained at an acidic pH (pH 3–5) for about 24 h. These unique characteristics suggest that this enzyme can be used for saccharification of starch for production of biofuel in one pot.  相似文献   

15.
Vegetable wastes (VW) and food wastes (FW) are generated in large quantities by municipal markets, restaurants and hotels. Waste slurries (250 ml) in 300 ml BOD bottles, containing 3, 5 and 7 % total solids (TS) were hydrolyzed with bacterial mixtures composed of: Bacillus, Acinetobacter, Exiguobacterium, Pseudomonas, Stenotrophomonas and Sphingobacterium species. Each of these bacteria had high activities for the hydrolytic enzymes: amylase, protease and lipase. Hydrolysate of biowaste slurries were subjected to defined mixture of H2 producers and culture enriched for methanogens. The impact of hydrolysis of VW and FW was observed as 2.6- and 2.8-fold enhancement in H2 yield, respectively. Direct biomethanation of hydrolysates of VW and FW resulted in 3.0- and 1.15-fold improvement in CH4 yield, respectively. A positive effect of hydrolysis was also observed with biomethanation of effluent of H2 production stage, to the extent of 1.2- and 3.5-fold with FW and VW, respectively. The effective H2 yields were 17 and 85 l/kg TS fed, whereas effective CH4 yields were 61.7 and 63.3 l/kg TS fed, from VW and FW, respectively. This ecobiotechnological strategy can help to improve the conversion efficiency of biowastes to biofuels.  相似文献   

16.
Strain improvement of Pichia angophorae KCTC 17574 was successfully carried out for bioethanol fermentation of seaweed slurry with high salt concentration. P. angophorae KCTC 17574 was cultured under increasing salinity from five practical salinity unit (psu, ‰) to as high as 100 psu for 723 h. The seaweed, Undaria pinnatifida (sea mustard, Miyuk), was fermented to produce bioethanol using high-salt acclimated yeast. The pretreatment of U. pinnatifida was optimized using thermal acid hydrolysis to obtain a high monosaccharide yield. Optimal pretreatment conditions of 75 mM H2SO4 and 13 % (w/v) slurry at 121 °C for 60 min were determined using response surface methodology. A maximum monosaccharide content of 28.65 g/L and the viscosity of 33.19 cP were obtained. The yeasts cultured under various salinity concentrations were collected and inoculated to the pretreated seaweed slurry after the neutralization using 5 N NaOH. The pretreated slurry was fermented with the inoculation of 0.1 g dcw/L of P. angophorae KCTC 17574 strain obtained at 90 psu. The maximum ethanol concentration of 9.42 g/L with 27 % yield of theoretical case of ethanol production from total carbohydrate of U. pinnatifida was obtained.  相似文献   

17.
This study describes the isolation and characterization of a novel fungus, Aspergillus flavus BS1 and its cellulolytic activities with special emphasis on endoglucanase production. Preliminary screening studies showed that A. flavus BS1 was a potent strain for the production of cellulase. To study the cellulolytic activities in detail by submerged fermentation (SmF), productions of endoglucanase, exoglucanase, and β-glucosidase were estimated from the basal salt medium (BSM) supplemented with 1 % carboxy methyl cellulose (CMC). CMC medium supported the maximum yield of endoglucanase (2,793 U/ml) on day 5 of incubation at 28 °C and 150 rpm, which was higher than that obtained with naturally available supplements (flour) from banana, tapioca, potato, or banana peel. During cellulase production by solid-state fermentation, 10 % (w/w) tapioca flour in sawdust (teak wood) moisturized with BSM (1:2, w/v) supported maximum cellulase yield (5,408 U/g dry substrate) on day 3 at 28 °C, which was 2-fold higher than that obtained during SmF. The active cellulase was qualitatively estimated by polyacrylamide gel electrophoresis (PAGE). Native-PAGE (0.25 % CMC impregnated on the 10 % gel) activity staining with congo-red showed a clear zone for CMCase activity, whereas SDS-PAGE showed a distinct band. In conclusion, this study showed that A. flavus strain BS1 is a potent strain for the production of cellulase on lignocellulosic media, the hot enzyme for bioethanol production from the lignocellulosic biomass by SSF.  相似文献   

18.
Integrative processes for the production of bioenergy and biopolymers are gaining importance in recent years as alternatives to fossil fuels and synthetic plastics. In the present study, Bacillus thuringiensis strain EGU45 has been used to generate hydrogen (H2), polyhydroxybutyrate (PHB) and new co-polymers (NP). Under batch culture conditions with 250 ml synthetic media, B. thuringiensis EGU45 produced up to 0.58 mol H2/mol of glucose. Effluent from the H2 production stage was incubated under shaking conditions leading to the production of PHB up to 95 mg/l along with NP of levulinic acid up to 190 mg/l. A twofold to fourfold enhancement in PHB and up to 1.5 fold increase in NP yields was observed on synthetic medium (mixture of M-9+GM-2 medium in 1:1 ratio) containing at 1–2 % glucose concentration. The novelty of this work lies in developing modified physiological conditions, which induce bacterial culture to produce NP.  相似文献   

19.
Abstract

A novel tannase and gallic acid-producing Penicillium rolfsii (CCMB 714) was isolated from cocoa leaves from the South of Bahia. The influence of nutritional sources and the simultaneous effect of parameters involved in the fermentation process were available. Tannase (9.97 U?mL?1) and gallic acid (9?mg mL?1) production were obtained in 48?h by submerged fermentation in non-optimized conditions. Among the carbon sources, tested gallic acid and tannic acid showed the highest tannase production (p<.05) when compared with methyl gallate and glucose. After optimization using the temperature and tannic acid concentration as variables with the Central Compound Rotational Design (CCRD), the maximal tannase production (25.6?U mL?1) was obtained at 29.8?°C and 12.7%, respectively, which represents an increase of 2.56 times in relation to the initial activity. The parameters optimized for the maximum production of gallic acid (21.51?mg mL?1) were 30?°C and 10% tannic acid. P. rolfsii CCMB 714 is a new strain with a high tannase and gallic acid production and the gallic acid produced is very important, mainly for its applications in the food and pharmaceutical industry.  相似文献   

20.
Viridibacillus arenosi strain IHB B 7171 identified based on 16S rRNA gene sequence produced colony forming units (cfu/ml) ranging from 3.3 × 104 to 1.2 × 1010 under pH 5–11, 2.2 × 102 to 1.4 × 1010 for temperature 5–40 °C, 2.4 × 102 to 1.1 × 1010 for PEG 6000 10–30%, 2.2 × 102 to 1.4 × 1010 for 2.5–10% NaCl, 3.1 × 103 to 1.7 × 109 for 2.5–7.5 mM CaCl2, 2.2 × 102 to 1.4 × 107 for 2.5–7.5 mM AlCl3, and 3.2 × 102 to 1.2 × 107 for 2.5–7.5 mM FeCl3. The activities of plant growth-promoting attributes with the increasing acidity, desiccation and salinity ranged from 408 to 101, 20 to 8, 14 to 5 µg/ml P-liberated from tri-calcium phosphate, aluminium phosphate and iron phosphate, 20–9% siderophore units, 14–4 µg/ml IAA and 190–16 α-ketobutyrate h/mg protein ACC-deaminase activity. Plant height, leaf number, and leaf weight on treatment with bacterial inoculum showed an increment of 9.5, 17.6, 54.5 and 31.0% in tea seedlings, respectively. The bacterium also enhanced plant height and yield by 10 and 13% in pea and 2.8 and 13.9% in wheat. The results exhibited stress-tolerance and plant growth-promoting activities by the strain under stressed growth-conditions with potential as a broad-spectrum plant growth-promoting rhizobacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号