首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biofilm production is an important step in the pathogenesis ofStaphylococcus epidermidis associated biomaterial infections.Staphylococcus epidermidis strains isolated from dialysis fluid (n=9) and needle cultures (n=14) were phenotyped and genotyped for extracellular polysaccharide production and were examined for their ability to produce slime in a medium at various pH levels (3, 5, 7, 9 and 12) and with ethanol supplementation (0, 2, 5, 10 and 15%) using a semi-quantitative adherence assay. A total of 23 clinicalicaADBC positiveS. epidermidis, one reference strain (S. epidermidis CIP 106510) used as positive control, and oneicaADBC negative strain (E21) were investigated. Qualitative biofilm production analysis revealed that 15 of the 23icaADBC positive strains (65.21%) produced slime on Congo Red agar plates. Quantitative biofilm was determined by measuring the optical density at 570 nm (OD570). The results show that the slime production depended on the pH value of the medium and the ethanol concentration. At highly acidic (pH 3) and alkaline (pH 12) levels, the OD570 was lower, while at pH 7 the adhesion was moderate. In addition the cells adhered strongly with 2% ethanol than with the other concentrations. Our results suggest that pH and ethanol were stress factors that led toS. epidermidis biofilm formation and also play a possible role in the pathogenesis of biomaterial-related infections.  相似文献   

2.
Staphylococcus epidermidis is a clinically important opportunistic pathogen that forms biofilm infections on nearly all types of indwelling medical devices. The biofilm forming capability of S. epidermidis has been linked to the presence of the ica operon in the genome, and the amount of biofilm formation measured by the crystal violet (CV) adherence assay. Six S. epidermidis strains were characterized for their ica status using PCR, and their biofilm forming ability over 6 days, using the CV assay and a flow cell system. Ica-negative strains characterized as ‘negative for biofilm formation’ based on the CV assay were demonstrated to form strongly attached biofilms after 6 days. However, the biofilms were not as extensive as the ica-positive strains. It was concluded that ica is not required for biofilm formation, nor is the 24-h CV assay generalizable for predicting the 6-day biofilm-forming ability for all S. epidermidis strains.  相似文献   

3.
Abstract

It has been proposed that the virulence of nosocomial Staphylococcus infections associated with indwelling medical devices is related to the ability of the bacterium to colonise these materials by forming a biofilm composed of multilayered cell clusters embedded in a slime matrix. However, the pathogenic role of exopolysaccharide biofilms is not fully understood. A new method was sought for differentiating the structure of slime from two closely related bacterial strains, Staphylococcus aureus and Staphylococcus epidermidis. Using PCR it was confirmed that these strains were positive for the icaA and icaD genes and the complete ica operon (2.7 kb). Monosaccharide analysis by thin-layer chromatography revealed an identical profile for both strains, with xylose and glucose present among the four visible bands. Using Fourier-transformed infrared spectroscopy and hierarchical cluster analysis, three of four S. aureus samples (75%), and four of five S. epidermidis samples were grouped according to species. A novel FTIR approach in classifying slime produced by S. aureus and S. epidermidis is reported.  相似文献   

4.
Human and nonhuman primate strains ofStaphylococcus haemolyticus andS. warneri were examined for relatedness to each other and other members of the genusStaphylococcus by using DNA-DNA hybridization techniques. The results indicate that human and nonhuman primate strains have diverged and are members of separate DNA homology groups or subspecies inS. haemolyticus and inS. warneri. There is partial evidence that members of the primateS. epidermidis species group are more closely related to one another than to other species. The preliminary data presented in this report are in agreement with the hypothesis that at least certain staphylococci have evolved concurrently with their hosts (conjugate evolution).  相似文献   

5.
Staphylococcus epidermidis is a commensal inhabitant of the healthy human skin, but in the recent years, it has been recognized as a nosocomial pathogen especially in immunocompromised patients. The pathogenesis of S. epidermidis is thought to be based on its capacity to form biofilms on the surface of medical devices, where bacterial cells may persist, protected from host defence and antimicrobial agents. Rifampin has been shown to be one of the most active antimicrobial agents in the eradication of the staphylococcal biofilm. However, this antibiotic should not be used in monotherapy. Therefore, one of the objectives of our research was to study the efficacy of the tigecycline/rifampin combination against methicillin-resistant S. epidermidis embedded in biofilms. Of the 80 clinically significant S. epidermidis isolates, 75 strains possess the ability to form a biofilm. These bacteria formed the biofilm via ica-dependent mechanisms. However, other biofilm-associated genes, including aap (encoding accumulation-associated protein) and bhp (coding cell wall-associated protein), were present in 85 and 29 % of isolates, respectively. The biofilm structures of S. epidermidis strains were also analyzed in confocal laser scanning microscopy (CLSM) and the obtained image demonstrated differences in their architecture. In vitro studies showed that the MIC value for tigecycline against S. epidermidis growing in the biofilm ranged from 0.125 to 2 μg/mL. Tigecycline in combination with rifampin demonstrated higher activity against bacteria embedded in biofilms than tigecycline alone.  相似文献   

6.
DNA-DNA-homology values were determined under restrictive to relaxed reassociation conditions with type strains and some additional strains of coagulase-negative staphylococci belonging to ten different species. The immunological relationship of the catalases present in the type strains of these species was also determined by applying double immunodiffusion and microcomplement fixation. The results of these studies support the previous proposal to subdivide the coagulase-negative staphylococci into at least ten separate species. However, it is evident that some of the species are more closely related than others and can form species groups. According to the results presented in this study, the coagulase-negative staphylococci can be combined into five species groups: The Staphylococcus saprophyticus group is composed of S. saprophyticus, S. xylosus and S. cohnii. The S. epidermidis group comprises S. epidermis, S. capitis and S. warneri. The S. hominis group which exhibits a significant relationship to S. epidermidis includes S. hominis and S. haemolyticus. The species group S. sciuri consists of S. sciuri ssp. sciuri and S. sciuri ssp. lentus and the species group S. simulans is presently represented by the corresponding single species.Abbreviations G+C guanosine + cytosine - SSC standard saline citrate buffer This work was supported by Deutsche Forschungsgemeinschaft  相似文献   

7.
This study aimed to correlate the presence of ica genes, biofilm formation and antimicrobial resistance in 107 strains of Staphylococcus epidermidis isolated from blood cultures. The isolates were analysed to determine their methicillin resistance, staphylococcal cassette chromosome mec (SCCmec) type, ica genes and biofilm formation and the vancomycin minimum inhibitory concentration (MIC) was measured for isolates and subpopulations growing on vancomycin screen agar. The mecA gene was detected in 81.3% of the S. epidermidis isolated and 48.2% carried SCCmec type III. The complete icaADBC operon was observed in 38.3% of the isolates; of these, 58.5% produced a biofilm. Furthermore, 47.7% of the isolates grew on vancomycin screen agar, with an increase in the MIC in 75.9% of the isolates. Determination of the MIC of subpopulations revealed that 64.7% had an MIC ≥ 4 μg mL-1, including 15.7% with an MIC of 8 μg mL-1 and 2% with an MIC of 16 μg mL-1. The presence of the icaADBC operon, biofilm production and reduced susceptibility to vancomycin were associated with methicillin resistance. This study reveals a high level of methicillin resistance, biofilm formation and reduced susceptibility to vancomycin in subpopulations of S. epidermidis. These findings may explain the selection of multidrug-resistant isolates in hospital settings and the consequent failure of antimicrobial treatment.  相似文献   

8.
In clinicalStaphylococcus aureus strains, the presence of theica genes, biofilm formation and susceptibility to antibiotics are considered important factors of virulence. In this study, 35 strains ofS. aureus, isolated from auricular infection, were investigated for slime production using Congo red agar (CRA) method, antibiotic susceptibility, presence ofmecA gene, and presence oficaA andicaD gene. The results show that 60% of strains weremecA positive when tested by PCR although 25.7% of strains were oxacillin resistant when tested with ATB STAPH. Qualitative slime production ofS. aureus using CRA revealed that 74.3% ofS. aureus were slime producers. All the strains carried theica gene.  相似文献   

9.
Staphylococcus epidermidis strains were isolated from the expressed human breast milk (EHM) of 14 healthy donor mothers. Genetic diversity was evaluated using RAPD-PCR REP-PCR and pulse-field gel electrophoresis (PFGE). PFGE allowed the best discrimination of the isolates, since it provided for the greatest diversity of the analyzed genomes. Among the S. epidermidis strains, resistance to gentamicin, tetracycline, erythromycin, clindamycin or vancomycin was detected, whilst four isolates were multiresistant. The results from our study demonstrate that staphylococci from EHM could be reservoirs of resistance genes, since we showed that tetK could be transferred from EHM staphylococci to Gram-negative Escherichia coli. Most of the staphylococcal strains displayed excellent proteolytic and lipolytic activities. Additionally, the presence of ica genes, which was related to their ability to form a biofilm on tissue culture plates, and the presence of virulence factors including autolysin/adhesin AtLE, point to their pathogenic potential.  相似文献   

10.
11.
Many serious diseases caused by Staphylococcus aureus appear to be associated with biofilms. Therefore, we investigated the biofilm-forming ability of the methicillin-resistant S. aureus (MRSA) isolates collected from hospitalized patients. As many as 96?% strains had the ability to form biofilm in vitro. The majority of S. aureus strains formed biofilm in ica-dependent mechanism. However, 23?% of MRSA isolates formed biofilm in ica-independent mechanism. Half of these strains carried fnbB genes encoding surface proteins fibronectin-binding protein B involved in intercellular accumulation and biofilm development in S. aureus strains. The biofilm structures were examined via confocal laser scanning microscopy (CLSM) and three-dimensional structures were reconstructed. The images obtained in CLSM revealed that the biofilm created by ica-positive strains was different from biofilm formed by ica-negative strains. The MRSA population showed a large genetic diversity and we did not find a single clone that occurred preferentially in hospital environment. Our results demonstrated the variation in genes encoding adhesins for the host matrix proteins (elastin, laminin, collagen, fibronectin, and fibrinogen) and in the gene involved in biofilm formation (icaA) within the majority of S. aureus clones.  相似文献   

12.
本文旨在分离筛选出在高盐环境中具有潜在应用可能性的菌株。在筛选耐盐酵母的过程中分离出一株耐盐菌株,采用形态特征观察、生理生化实验和16S rDNA基因测序进行菌株鉴定,鉴定结果显示该菌为沃氏葡萄球菌(Staphylooccus warneri),命名为SW-1。进一步对其药敏特性、耐盐性和表面疏水性进行检测,结果表明,该菌株对大部分抗生素极敏感,在含20%(质量分数)NaCl的LB培养基中仍能良好生长,对氯仿、乙酸乙酯和正丁醇的疏水率依次为43%、34%和39%。沃氏葡萄球菌SW-1在高盐条件下能快速适应环境积累生物量,具有优良的生物学特性,为开发和利用耐盐菌株提供参考。  相似文献   

13.
The aim of this study is to determine antibiotic resistance patterns and slime production characteristics of coagulase-negative Staphylococci (CoNS) caused nosocomial bacteremia. A total of 200 CoNS strains were isolated from blood samples of patients with true bacteremia who were hospitalized in intensive care units and in other departments of Istanbul University Cerrahpasa Medical Hospital between 1999 and 2006. Among 200 CoNS isolates, Staphylococcus epidermidis was the most prevalent species (87) followed by Staphylococcus haemolyticus (23), Staphylococcus hominis (19), Staphylococcus lugdunensis (18), Staphylococcus capitis (15), Staphylococcus xylosus (10), Staphylococcus warneri (8), Staphylococcus saprophyticus (5), Staphylococcus lentus (5), Staphylococcus simulans (4), Staphylococcus chromogenes (3), Staphylococcus cohnii (1), Staphylococcus schleiferi (1), and Staphylococcus auricularis (1). Resistance to methicillin was detected in 67.5% of CoNS isolates. Methicillin-resistant CoNS strains were determined to be more resistant to antibiotics than methicillin-susceptible CoNS strains. Resistance rates of methicillin-resistant and methicillin-susceptible CoNS strains to the antibacterial agents, respectively, were as follows: gentamicin 90% and 17%, erythromycin 80% and 37%, clindamycin 72% and 18%, trimethoprim-sulfamethoxazole 68% and 38%, ciprofloxacin 67% and 23%, tetracycline 60% and 45%, chloramphenicol 56% and 13% and fusidic acid 25% and 15%. None of the strains were resistant to vancomycin and teicoplanin. Slime production was detected in 86 of 200 CoNS strains. Resistance to methicillin was found in 81% of slime-positive and in 57% of slime-negative strains. Our results indicated that there is a high level of resistance to widely used agents in causative methicillin-resistant CoNS strains. However fusidic acid has the smallest resistance ratio, with the exception of glycopeptides. Additionally, most S. epidermidis strains were slime-positive, with statistically significant (p<0.001) association between methicillin resistance and slime production.  相似文献   

14.
Vagina which is one of the important reservoirs for Staphylococcus and in pregnant women pathogenic strains may infect the child during the birth or by vertical transmission. A total of 68 presumptive Staphylococcus strains isolated from human vagina were found to be gram-positive cocci, and only 32 (47%) isolates were found beta-hemolytic. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) results confirmed 33 isolates belonged to Staphylococcus which consisting of 6 species, i.e., S. aureus (14), S. vitulinus (7), S. epidermidis (4), S cohnii (3), S. equorum (3), and S. succinus (2). Further, the result of antibiotic susceptibility tests showed that large proportions (76%–100%) of the isolates were resistant to multiple antibiotics and more often resistant to penicillin (100%), ampicillin (100%), oxacillin (97%), oxytetracycline (97%), vancomycin (97%), rifampin (85%), erythromycin (82%), and streptomycin (76%). In the present study, only the sec enterotoxin gene was detected in four S. aureus strains. DNA fingerprints of the 33 isolates that were generated using random amplified polymorphic DNA (RAPD) and enterobacterial repetitive intergenic consensus (ERIC) PCR analysis revealed great genetic relatedness of isolates. High prevalence of vaginal colonization with multiple antibiotic-resistant staphylococci among pregnant women was observed which were emerged from the single respective species clones that underwent evolution. The vertical transmission of these multiple antibiotic-resistant Staphylococcus species to the infant is possible; therefore, the findings of this study emphasize the need for regular surveillance of antibiotic-resistant bacterial strains in pregnant women in this area.  相似文献   

15.
In clinical staphylococci, the presence of the ica genes and biofilm formation are considered important for virulence. Biofilm formation may also be of importance for survival and virulence in food-related staphylococci. In the present work, staphylococci from the food industry were found to differ greatly in their abilities to form biofilms on polystyrene. A total of 7 and 21 of 144 food-related strains were found to be strong and weak biofilm formers, respectively. Glucose and sodium chloride stimulated biofilm formation. The biofilm-forming strains belonged to nine different coagulase-negative species of Staphylococcus. The icaA gene of the intercellular adhesion locus was detected by Southern blotting and hybridization in 38 of 67 food-related strains tested. The presence of icaA was positively correlated with strong biofilm formation. The icaA gene was partly sequenced for 22 food-related strains from nine different species of Staphylococcus, and their icaA genes were found to have DNA similarities to previously sequenced icaA genes of 69 to 100%. Northern blot analysis indicated that the expression of the ica genes was higher in strong biofilm formers than that seen with strains not forming biofilms. Biofilm formation on polystyrene was positively correlated with biofilm formation on stainless steel and with resistance to quaternary ammonium compounds, a group of disinfectants.  相似文献   

16.
Aims: To test some safety‐related properties within 321 staphylococci strains isolated from food and food environments. Methods and Results: The isolates were identified as Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Staphylococcus pasteuri, Staphylococcus sciuri, Staphylococcus warneri and Staphylococcus xylosus. Decarboxylase activity was quite common for the various Staphylococcus spp., and tyrosine was the most frequently decarboxylated amino acid. The frequency of antibiotic resistance was highest in Staph. pasteuri and Staph. xylosus. Several of the isolates were tolerant to QAC compounds, and in some cases, QAC tolerance was present in antibiotic‐resistant strains. Most of the strains displayed moderate to high adhesion rates to stainless steel and Teflon®. The strains that readily formed biofilms belonged to the species Staph. aureus, Staph. epidermidis and Staph. pasteuri. Conclusions: An high incidence of some safety hazards was found within the staphylococcal strains of food origin tested in this study. In particular, amino acid decarboxylase activity and biofilm‐forming ability were common within strains, and antibiotic resistance and tolerance to QAC‐based compounds occurred frequently as well. These characteristics are an important safety concern for food industry. Significance and Impact of the Study: This work gives a first picture of safety hazards within staphylococcal species isolated from food environments. The presence of disinfectant‐resistant staphylococci is a concern because resistance can be genetically transferred between the various Staphylococcus species. This could lead an increase and spread of resistant enterotoxic staphylococci and/or pathogenic staphylococci.  相似文献   

17.
Bacteria of the genus Staphylococcus were isolated from air sampled from living spaces in Kraków (Poland). In total, 55 strains belonging to the genus Staphylococcus were isolated from 45 sites, and 13 species of coagulase-negative staphylococci were identified. The species composition of studied airborne microbiota contains Staphylococcus species that are rarely infectious to humans. Most commonly isolated species comprised S. hominis and S. warneri. The disk-diffusion tests showed that the collected isolates were most frequently resistant to erythromycin. The PCR technique was employed to search for genes conferring the resistance in staphylococci to antibiotics from the group of macrolides, lincosamides and streptogramins. The analyzed Staphylococcus isolates possessed simultaneously 4 different resistance genes. The molecular analysis with the use of specific primers allowed to determine the most prevalent gene which is mphC, responsible for the resistance to macrolides and for the enzymatic inactivation of the drug by phosphotransferase. The second most often detected gene was msrA1, which confers the resistance of staphylococci to macrolides and is responsible for active pumping of antimicrobial particles out of bacterial cells.  相似文献   

18.
Methicillin-resistant Staphylococcus remains a severe public health problem worldwide. This research was intended to identify the presence of methicillin-resistant coagulase-negative staphylococci clones and their staphylococcal cassette chromosome mec (SCCmec)-type isolate from patients with haematologic diseases presenting bacterial infections who were treated at the Blood Bank of the state of Amazonas in Brazil. Phenotypic and genotypic tests, such as SCCmec types and multilocus sequence typing (MLST), were developed to detect and characterise methicillin-resistant isolates. A total of 26 Gram-positive bacteria were isolated, such as: Staphylococcus epidermidis (8/27), Staphylococcus intermedius (4/27) and Staphylococcus aureus (4/27). Ten methicillin-resistant staphylococcal isolates were identified. MLST revealed three different sequence types: S. aureus ST243, S. epidermidis ST2 and a new clone of S. epidermidis, ST365. These findings reinforce the potential of dissemination presented by multi-resistant Staphylococcus and they suggest the introduction of monitoring actions to reduce the spread of pathogenic clonal lineages of S. aureus and S. epidermidis to avoid hospital infections and mortality risks.  相似文献   

19.
Aims: The objective of this study was to investigate the detection of SEE, SEG, SEH and SEI in strains of Staphylococcus aureus and coagulase‐negative staphylococci (CNS) using RT‐PCR. Methods and Results: In this study, 90 Staph. aureus strains and 90 CNS strains were analysed by PCR for the detection of genes encoding staphylococcal enterotoxins (SE) E, G, H and I. One or more genes were detected in 54 (60%) Staph. aureus isolates and in 29 (32·2%) CNS isolates. Staphylococcus epidermidis was the most frequently isolated CNS species (n = 64, 71·1%), followed by Staphylococcus warneri (n = 8, 8·9%) and other species (Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus lugdunensis, Staphylococcus simulans, Staphylococcus saprophyticus and Staphylococcus xylosus: n = 18, 20%). The genes studied were detected in Staph. epidermidis, Staph. warneri, Staph. haemolyticus, Staph. hominis, Staph. simulans and Staph. lugdunensis. The highest frequency of genes was observed in Staph. epidermidis and Staph. warneri, a finding indicating differences in the pathogenic potential between CNS species and highlighting the importance of the correct identification of these micro‐organisms. RT‐PCR used for the detection of mRNA revealed the expression of SEG, SEH and/or SEI in 32 (59·3%) of the 90 Staph. aureus isolates, whereas expression of some of these genes was observed in 10 (34·5%) of the 90 CNS isolates. Conclusions: Staphylococcus epidermidis was the most toxigenic CNS species. Among the other species, only Staph. warneri and Staph. lugdunensis presented a positive RT‐PCR result. PCR was efficient in confirming the toxigenic capacity of Staph. aureus and CNS. Significance and Impact of the Study: This study permitted to confirm the toxigenic capacity of CNS to better characterize the pathogenic potential of this group of micro‐organisms. In addition, it permitted the detection of SEG, SEH and SEI, enterotoxins that cannot be detected by commercially available immunological methods.  相似文献   

20.
Antibiotic-resistant Staphylococci are a global issue affecting humans, animals, and numerous natural environments. Antibiotic-resistant Staphylococcus epidermidis is an opportunistic pathogen frequently isolated from patients and healthy individuals. This study aimed to examine the antibiotic resistance of S. epidermidis isolated from patients, healthy students and compare the results with antibiotic-resistant bacteria isolated from pasteurized milk. Clinical strain isolation was performed in several hospitals in the Riyadh. Skin swabs from 100 healthy undergraduate candidate students were obtained at King Saud University. The pasteurized milk samples were obtained from local market (company, X). After isolation, identification and susceptibility tests were performed using an automated system. A multiplex tuf gene-based PCR assay was used to confirm identification. Biofilm production and biofilm-related gene expression were studied. S. epidermidis represented 17% of clinical bacterial isolates, and 1.7% of isolates obtained from healthy students were multiantibiotic-resistant. All patient strains were teicoplanin- and vancomycin-susceptible, while all student strains were gentamicin-, levofloxacin-, moxifloxacin-, and trimethoprim/sulfamethoxazole-susceptible. All the bacteria isolated from pasteurized milk were benzylpenicillin and oxacillin-resistant strains. Of the S. epidermidis strains, 91% could produce biofilms, and mecA, icaADBR, ica-ADB, ica-AD, ica-A only, and ica-C only were expressed in 83, 17.1, 25.7, 37.1, 20, and 0% of the strains, respectively. This work demonstrates that S. epidermidis can be accurately identified using a multiplex tuf-based assay, and that multiantibiotic-resistant S. epidermidis strains are widespread amongst patients and healthy students.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号