首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Introduction: Neuroinflammation is a crucial mechanism in the pathophysiology of neurodegenerative diseases pathophysiology. Cerebrospinal fluid (CSF) YKL-40 – an indicator of microglial activation ? has recently been identified by proteomic studies as a candidate biomarker for Alzheimer’s disease (AD).

Areas covered: We review the impact of CSF YKL-40 as a pathophysiological biomarker for AD and other neurodegenerative diseases. CSF YKL-40 concentrations have been shown to predict progression from prodromal mild cognitive impairment to AD dementia. Moreover, a positive association between CSF YKL-40 and other biomarkers of neurodegeneration – particularly total tau protein ? has been reported during the asymptomatic preclinical stage of AD and other neurodegenerative diseases. Albeit preliminary, current data do not support an association between APOE-ε4 status and CSF YKL-40 concentrations. When interpreting the diagnostic/prognostic significance of CSF YKL-40 concentrations in neurodegenerative diseases, potential confounders – including age, metabolic and cardiovascular risk factors, diagnostic criteria for selecting cases/controls – need to be considered.

Expert opinion/commentary: CSF YKL-40 represents a pathophysiological biomarker reflecting immune/inflammatory mechanisms in neurodegenerative diseases, associated with tau protein pathology. Besides being associated with tau pathology, CSF YKL-40 adds to the growing array of biomarkers reflecting distinct molecular brain mechanisms potentially useful for stratifying individuals for biomarker-guided, targeted anti-inflammatory therapies emerging from precision medicine.  相似文献   

2.
Our ageing society is confronted with a dramatic increase in incidence of age-related neurodegenerative diseases; biomedical research leading to novel therapeutic strategies is crucial to address this problem. Animal models of neurodegenerative conditions are invaluable in improving our understanding of the molecular basis of pathology, potentially revealing novel targets for intervention. Here, we review transgenic animal models of Alzheimer’s and Parkinson’s disease reported in mice, zebrafish, Caenorhabditis elegans and Drosophila melanogaster. This information will enable researchers to compare different animal models targeting disease-associated molecules by genomic engineering and to facilitate the development of novel animal models for any particular study, depending on the ultimate research goals.  相似文献   

3.
Studies of neurodegenerative disorders attract much attention of the world scientific community due to increasing dissemination of Alzheimer’s disease. The reason for such pathologies consists in transition of a “healthy” molecule or peptide from its native conformation into a very stable “pathological” form. During this process, molecules existing in the “pathological” conformation aggregate and form amyloid fibrils that can undergo an uncontrolled increase. Novel knowledge is required on sporadic forms of Alzheimer’s disease, on the nature of triggering mechanisms of the conformational transitions of beta-amyloid fragments from normally functioning proteins into new structure, nano-beta-amyloids, that escape of neuronal and whole-body control resulted in the loss of neurons. This review summarized results of studies on the formation of amyloid fibrils and their role in pathogenesis of amyloid diseases.  相似文献   

4.
Summary. The pathogenesis of several neurodegenerative diseases, including Alzheimer’s disease, has been linked to a condition of oxidative and nitrosative stress, arising from the imbalance between increased reactive oxygen species (ROS) and reactive nitrogen species (RNS) production and antioxidant defences or efficiency of repair or removal systems. The effects of free radicals are expressed by the accumulation of oxidative damage to biomolecules: nucleic acids, lipids and proteins. In this review we focused our attention on the large body of evidence of oxidative damage to protein in Alzheimer’s disease brain and peripheral cells as well as in their role in signalling pathways. The progress in the understanding of the molecular alterations underlying Alzheimer’s disease will be useful in developing successful preventive and therapeutic strategies, since available drugs can only temporarily stabilize the disease, but are not able to block the neurodegenerative process.  相似文献   

5.
Retinal neurodegeneration and visual dysfunctions have been reported in a majority of Alzheimer’s and Parkinson’s patients, and, in light of the quest for novel biomarkers for these neurodegenerative proteinopathies, the retina has been receiving increasing attention as an organ for diagnosing, monitoring, and understanding disease. Thinning of retinal layers, abnormalities in vasculature, and protein deposition can be imaged at unprecedented resolution, which offers a unique systems biology view on the cellular and molecular changes underlying these pathologies. It makes the retina not only a promising target for biomarker development, but it also suggests that novel fundamental insights into the pathophysiology of Alzheimer’s and Parkinson’s disease can be obtained by studying the retina–brain axis.  相似文献   

6.
Disbalance of zinc (Zn2+) and copper (Cu2+) ions in the central nervous system is involved in the pathogenesis of numerous neurodegenerative disorders such as multisystem atrophy, amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, Wilson-Konovalov disease, Alzheimer’s disease, and Parkinson’s disease. Among these, Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most frequent age-related neurodegenerative pathologies with disorders in Zn2+ and Cu2+ homeostasis playing a pivotal role in the mechanisms of pathogenesis. In this review we generalized and systematized current literature data concerning this problem. The interactions of Zn2+ and Cu2+ with amyloid precursor protein (APP), β-amyloid (Abeta), tau-protein, metallothioneins, and GSK3β are considered, as well as the role of these interactions in the generation of free radicals in AD and PD. Analysis of the literature suggests that the main factors of AD and PD pathogenesis (oxidative stress, structural disorders and aggregation of proteins, mitochondrial dysfunction, energy deficiency) that initiate a cascade of events resulting finally in the dysfunction of neuronal networks are mediated by the disbalance of Zn2+ and Cu2+.  相似文献   

7.
Alzheimer’s disease (AD) is a major cause of dementia in the elderly. Pathologically, AD is characterized by the accumulation of insoluble aggregates of Aβ-peptides that are proteolytic cleavage products of the amyloid-β precursor protein (“plaques”) and by insoluble filaments composed of hyperphosphorylated tau protein (“tangles”). Familial forms of AD often display increased production of Aβ peptides and/or altered activity of presenilins, the catalytic subunits of γ-secretase that produce Aβ peptides. Although the pathogenesis of AD remains unclear, recent studies have highlighted two major themes that are likely important. First, oligomeric Aβ species have strong detrimental effects on synapse function and structure, particularly on the postsynaptic side. Second, decreased presenilin function impairs synaptic transmission and promotes neurodegeneration. The mechanisms underlying these processes are beginning to be elucidated, and, although their relevance to AD remains debated, understanding these processes will likely allow new therapeutic avenues to AD.Alzheimer’s disease (AD) is a common neurodegenerative disease of the elderly, first described by the physician-pathologist Alois Alzheimer in 1907 (Maurer and Maurer 2003). Clinically, AD is characterized by progressive impairment of memory (particularly short-term memory in early stages) and other cognitive disabilities, personality changes, and ultimately, complete dependence on others. The most prevalent cause of dementia worldwide, AD afflicts >5 million people in the United States and >25 million globally (Alzheimer’s Association, http://www.alz.org). Age is the most important risk factor, with the prevalence of AD rising exponentially after 65 (Blennow et al. 2006). However, many cases of so-called AD above 80 yr of age may result from a combination of pathological dementia processes (Fotuhi et al. 2009). The apolipoprotein E (ApoE) gene is the most important genetic susceptibility factor for AD, with the relatively common ApoE4 allele (prevalence ∼16%) increasing the risk for AD threefold to fourfold in heterozygous dose (Kim et al. 2009).The histopathological hallmarks of AD are amyloid plaques (extracellular deposits consisting largely of aggregated amyloid beta [Aβ] peptide that are typically surrounded by neurons with dystrophic neurites) and neurofibrillary tangles (NFTs, intracellular filamentous aggregates of hyperphosphorylated tau, a microtubule-binding protein) (Blennow et al. 2006). The development of amyloid plaques typically precedes clinically significant symptoms by at least 10–15 yr. Amyloid plaques are found in a minority of nondemented elderly patients, who may represent a “presymptomatic” AD population. As AD progresses, cognitive function worsens, synapse loss and neuronal cell death become prominent, and there is substantial reduction in brain volume, especially in the entorhinal cortex and hippocampus. The best correlation between dementia and histopathological changes is observed with neurofibrillary tangles, whereas the relationship between the density of amyloid plaques and loss of cognition is weaker (Braak and Braak 1990; Nagy et al. 1995). In addition to amyloid plaques and neurofibrillary tangles, many AD cases exhibit widespread Lewy body pathology. (Lewy bodies are intracellular inclusion bodies that contain aggregates of α-synuclein and other proteins.) Particularly in very old patients, considerable overlap between AD, frontotemporal dementia, Lewy body dementia, and vascular disease is observed, and pure AD may be rare (Fotuhi et al. 2009).  相似文献   

8.
Autophagy is an essential degradation pathway in clearing abnormal protein aggregates in mammalian cells and is responsible for protein homeostasis and neuronal health. Several studies have shown that autophagy deficits occurred in early stage of Alzheimer’s disease (AD). Autophagy plays an important role in generation and metabolism of β-amyloid (Aβ), assembling of tau and thus its malfunction may lead to the progress of AD. By considering the above evidences, autophagy may be a new target in developing drugs for AD. So far, a number of mammalian target of rapamycin (mTOR)-dependent and independent autophagy modulators have been identified to have positive effects in AD treatment. In this review, we summarized the latest progress supporting the role for autophagy deficits in AD and the potential therapeutic effects of autophagy modulators in AD.  相似文献   

9.
10.
In less than a decade, beginning with the demonstration by Floyd, Stadtman, Markesbery et al. of increased reactive carbonyls in the brains of patients with Alzheimer's disease (AD), oxidative damage has been established as a feature of the disease. Here, we review the types of oxidative damage seen in AD, sites involved, possible origin, relationship to lesions, and compensatory changes, and we also consider other neurodegenerative diseases where oxidative stress has been implicated. Although much data remain to be collected, the broad spectrum of changes found in AD are only seen, albeit to a lesser extent, in normal aging with other neurodegenerative diseases showing distinct spectrums of change.  相似文献   

11.
Autophagy is a preserved cytoplasmic self-degradation process and endorses recycling of intracellular constituents into bioenergetics for the controlling of cellular homeostasis. Functional autophagy process is essential in eliminating cytoplasmic waste components and helps in the recycling of some of its constituents. Studies have revealed that neurodegenerative disorders may be caused by mutations in autophagy-related genes and alterations of autophagic flux. Alzheimer’s disease (AD) is an irrevocable deleterious neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles (NFTs) in the hippocampus and cortex. In the central nervous system of healthy people, there is no accretion of amyloid β (Aβ) peptides due to the balance between generation and degradation of Aβ. However, for AD patients, the generation of Aβ peptides is higher than lysis that causes accretion of Aβ. Likewise, the maturation of autophagolysosomes and inhibition of their retrograde transport creates favorable conditions for Aβ accumulation. Furthermore, increasing mammalian target of rapamycin (mTOR) signaling raises tau levels as well as phosphorylation. Alteration of mTOR activity occurs in the early stage of AD. In addition, copious evidence links autophagic/lysosomal dysfunction in AD. Compromised mitophagy is also accountable for dysfunctional mitochondria that raises Alzheimer’s pathology. Therefore, autophagic dysfunction might lead to the deposit of atypical proteins in the AD brain and manipulation of autophagy could be considered as an emerging therapeutic target. This review highlights the critical linkage of autophagy in the pathogenesis of AD, and avows a new insight to search for therapeutic target for blocking Alzheimer’s pathogenesis.  相似文献   

12.
Microglial cells are the resident phagocytic cells of the central nervous system (CNS). They possess a wide range of receptors allowing them to identify and internalize numerous pathogens. We will discuss here the role of the most important receptors of microglia involved in non-opsonin-dependent phagocytosis (mannose receptor, β-glucan receptor, scavenger receptor) and that of receptors involved in the opsonin-dependent phagocytosis, namely the complement 3 (CR3) and the Fcγ receptors (FcγR). First, the molecular and cellular mechanisms induced when these receptors are conducting a phagocytic event are presented. In the second part, we will discuss the role these receptors may play in multiple sclerosis and Alzheimer’s disease, in the elimination by phagocytosis of myelin and beta amyloid peptide respectively. The first two authors contributed equally to this work.  相似文献   

13.
Alzheimer’s disease (AD) is a most common neurodegenerative disorder, which associates with impaired cognition. Gut microbiota can modulate host brain function and behavior via microbiota-gut-brain axis, including cognitive behavior. Germ-free animals, antibiotics, probiotics intervention and diet can induce alterations of gut microbiota and gut physiology and also host cognitive behavior, increasing or decreasing risks of AD. The increased permeability of intestine and blood-brain barrier induced by gut microbiota disturbance will increase the incidence of neurodegeneration disorders. Gut microbial metabolites and their effects on host neurochemical changes may increase or decrease the risk of AD. Pathogenic microbes infection will also increase the risk of AD, and meanwhile, the onset of AD support the “hygiene hypothesis”. All the results suggest that AD may begin in the gut, and is closely related to the imbalance of gut microbiota. Modulation of gut microbiota through personalized diet or beneficial microbiota intervention will probably become a new treatment for AD.  相似文献   

14.
This brief review discusses copper transport in humans, with an emphasis on knowledge learned from one of the simplest model organisms, yeast. There is a further focus on copper transport in Alzheimer’s Disease (AD). Copper homeostasis is essential for the well-being of all organisms, from bacteria to yeast to humans: survival depends on maintaining the required supply of copper for the many enzymes, dependent on copper for activity, while ensuring that there is no excess free copper, which would cause toxicity. A virtual orchestra of proteins are required to achieve copper homeostasis. For copper uptake, Cu(II) is first reduced to Cu(I) via a membrane-bound reductase. The reduced copper can then be internalised by a copper transporter where it is transferred to copper chaperones for transport and specific delivery to various organelles. Of significance are internal copper transporters, ATP7A and ATP7B, notable for their role in disorders of copper deficiency and toxicity, Menkes and Wilson’s disease, respectively. Metallothioneins and Cu/Zn superoxide dismutase can protect against excess copper in cells. It is clear too, increasing age, environmental and lifestyle factors impact on brain copper. Studies on AD suggest an important role for copper in the brain, with some AD therapies focusing on mobilising copper in AD brains. The transport of copper into the brain is complex and involves numerous players, including amyloid precursor protein, Aβ peptide and cholesterol.  相似文献   

15.
New insights into how Ca2+ regulates learning and memory have begun to provide clues as to how the amyloid-dependent remodelling of neuronal Ca2+ signalling pathways can disrupt the mechanisms of learning and memory in Alzheimer’s disease (AD). The calcium hypothesis of AD proposes that activation of the amyloidogenic pathway remodels the neuronal Ca2+ signalling pathways responsible for cognition by enhancing the entry of Ca2+ and/or the release of internal Ca2+ by ryanodine receptors or InsP3 receptors. The specific proposal is that Ca2+ signalling remodelling results in a persistent elevation in the level of Ca2+ that constantly erases newly acquired memories by enhancing the mechanism of long-term depression (LTD). Neurons can still form memories through the process of LTP, but this stored information is rapidly removed by the persistent activation of LTD. Further dysregulation in Ca2+ signalling will then go on to induce the neurodegeneration that characterizes the later stages of dementia.  相似文献   

16.
17.
Chasing genes in Alzheimer’s and Parkinson’s disease   总被引:4,自引:0,他引:4  
Alzheimers disease (AD), the most common type of dementia, and Parkinsons disease (PD), the most common movement disorder, are both neurodegenerative adult-onset diseases characterized by the progressive loss of specific neuronal populations and the accumulation of intraneuronal inclusions. The search for genetic and environmental factors that determine the fate of neurons during the ageing process has been a widespread approach in the battle against neurodegenerative disorders. Genetic studies of AD and PD initially focused on the search for genes involved in the aetiological mechanisms of monogenic forms of these diseases. They later expanded to study hundreds of patients, affected relative-pairs and population-based studies, sometimes performed on special isolated populations. A growing number of genes (and pathogenic mutations) is being identified that cause or increase susceptibility to AD and PD. This review discusses the way in which strategies of gene hunting have evolved during the last few years and the significance of finding genes such as the presenilins, -synuclein, parkin and DJ-1. In addition, we discuss possible links between these two neurodegenerative disorders. The clinical, pathological and genetic presentation of AD and PD suggests the involvement of a few overlapping interrelated pathways. Their imbricate features point to a spectrum of neurodegeneration (tauopathies, synucleinopathies, amyloidopathies) that need further intense investigation to find the missing links.  相似文献   

18.
Alzheimer’s disease (AD) is the most prevalent chronic neurodegenerative disease. Current approved therapies are symptomatic treatments having some effect on cognitive function. Therapies that target β-amyloid (Aβ) have been the focus of efforts to develop a disease modification treatment for AD but these approaches have failed to show any clinical benefit so far. Beyond the ‘Aβ hypothesis’, there are a number of newer approaches to treat AD with neuroinflammation emerging as a very active area of research based on risk gene analysis. This short review will summarize approved drug therapies, recent clinical trials and new approaches for the treatment of AD.  相似文献   

19.
Alzheimer’s disease (AD) is the leading cause of dementia, a condition that gradually destroys brain cells and leads to progressive decline in mental functions. The disease is characterized by accumulation of misfolded neuronal proteins, amyloid and tau, into insoluble aggregates known as extracellular senile plaques and intracellular neurofibrillary tangles, respectively. However, only tau pathology appears to correlate with the progression of the disease and it is believed to play a central role in the progression of neurodegeneration. In AD, tau protein undergoes various types of posttranslational modifications, most notably hyperphosphorylation and truncation. Using four proteomics approaches we aimed to uncover the key steps leading to neurofibrillary degeneration and thus to identify therapeutic targets for AD. Functional neuroproteomics was employed to generate the first transgenic rat model of AD by expressing a truncated misordered form of tau, “Alzheimer’s tau”. The rat model showed that Alzheimer’s tau toxic gain of function is responsible for the induction of abnormal tau cascade and is the driving force in the development of neurofibrillary degeneration. Structural neuroproteomics allowed us to determine partial 3D structure of the Alzheimer’s filament core at a resolution of 1.6 Å. Signaling neuroproteomics data lead to the identification and characterization of relevant phosphosites (the tau phosphosignalome) contributing to neurodegeneration. Interaction neuroproteomics revealed links to a new group of proteins interacting with Alzheimer’s tau (tau interactome) under normal and pathological conditions, which would provide novel drug targets and novel biomarkers for treatment of AD and other tauopathies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号