首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Overall changes in the host cellular proteome upon retroviral infection intensify from the initial entry of the virus to the incorporation of viral DNA into the host genome, and finally to the consistent latent state of infection. The host cell reacts to both the entry of viral elements and the manipulation of host cellular machinery, resulting in a cascade of signaling events and pathway activation. Cell type- and tissue-specific responses are also characteristic of infection and can be classified based on the differential expression of genes and proteins between normal and disease states. The characterization of differentially expressed proteins upon infection is also critical in identifying potential biomarkers within infected bodily fluids. Biomarkers can be used to monitor the progression of infection, track the effectiveness of specific treatments and characterize the mechanisms of disease pathogenesis. Standard proteomic approaches have been applied to monitor the changes in global protein expression and localization in infected cells, tissues and fluids. Here we report on recent investigations into the characterization of proteomes in response to retroviral infection.  相似文献   

2.
Mass spectrometry analysis was used to target three different aspects of the viral infection process: the expression kinetics of viral proteins, changes in the expression levels of cellular proteins, and the changes in cellular metabolites in response to viral infection. The combination of these methods represents a new, more comprehensive approach to the study of viral infection revealing the complexity of these events within the infected cell. The proteins associated with measles virus (MV) infection of human HeLa cells were measured using a label-free approach. On the other hand, the regulation of cellular and Flock House Virus (FHV) proteins in response to FHV infection of Drosophila cells was monitored using stable isotope labeling. Three complementary techniques were used to monitor changes in viral protein expression in the cell and host protein expression. A total of 1500 host proteins was identified and quantified, of which over 200 proteins were either up- or down-regulated in response to viral infection, such as the up-regulation of the Drosophila apoptotic croquemort protein, and the down-regulation of proteins that inhibited cell death. These analyses also demonstrated the up-regulation of viral proteins functioning in replication, inhibition of RNA interference, viral assembly, and RNA encapsidation. Over 1000 unique metabolites were also observed with significant changes in over 30, such as the down-regulated cellular phospholipids possibly reflecting the initial events in cell death and viral release. Overall, the cellular transformation that occurs upon viral infection is a process involving hundreds of proteins and metabolites, many of which are structurally and functionally uncharacterized.  相似文献   

3.
Viruses interact with various permissive and restrictive factors in host cells throughout their replication cycle. Cell lines that are non-permissive to viral infection have been particularly useful in discovering host cell proteins involved in viral life cycles. Here we describe the characterization of a human myeloid leukemia cell line, KG-1, that is resistant to infection by retroviruses and a Rhabdovirus. We show that KG-1 cells are resistant to infection by Vesicular Stomatits Virus as well as VSV Glycoprotein (VSVG) pseudotyped retroviruses due to a defect in binding. Moreover our results indicate that entry by xenotropic retroviral envelope glycoprotein RD114 is impaired in KG-1 cells. Finally we characterize a post- entry block in the early phase of the retroviral life cycle in KG-1 cells that renders the cell line refractory to infection. This cell line will have utility in discovering proteins involved in infection by VSV and HIV-1.  相似文献   

4.
Inside the adenovirus virion, the genome forms a chromatin-like structure with viral basic core proteins. Core protein VII is the major DNA binding protein and was shown to remain associated with viral genomes upon virus entry even after nuclear delivery. It has been suggested that protein VII plays a regulatory role in viral gene expression and is a functional component of viral chromatin complexes in host cells. As such, protein VII could be used as a maker to track adenoviral chromatin complexes in vivo. In this study, we characterize a new monoclonal antibody against protein VII that stains incoming viral chromatin complexes following nuclear import. Furthermore, we describe the development of a novel imaging system that uses Template Activating Factor-I (TAF-I/SET), a cellular chromatin protein tightly bound to protein VII upon infection. This setup allows us not only to rapidly visualize protein VII foci in fixed cells but also to monitor their movement in living cells. These powerful tools can provide novel insights into the spatio-temporal regulation of incoming adenoviral chromatin complexes.  相似文献   

5.
Many host cell surface proteins, including viral receptors, are incorporated into enveloped viruses. To address the functional significance of these host proteins, murine leukemia viruses containing the cellular receptors for Rous sarcoma virus (Tva) or ecotropic murine leukemia virus (MCAT-1) were produced. These receptor-pseudotyped viruses efficiently infect cells expressing the cognate viral envelope glycoproteins, with titers of up to 105 infectious units per milliliter for the Tva pseudotypes. Receptor and viral glycoprotein specificity and functional requirements are maintained, suggesting that receptor pseudotype infection recapitulates events of normal viral entry. The ability of the Tva and MCAT-1 pseudotypes to infect cells efficiently suggests that, in contrast to human immunodeficiency virus type 1 entry, neither of these retroviral receptors requires a coreceptor for membrane fusion. In addition, the ability of receptor pseudotypes to target infected cells suggests that they may be useful therapeutic reagents for directing infection of viral vectors. Receptor-pseudotyped viruses may be useful for identifying new viral receptors or for defining functional requirements of known receptors. Moreover, this work suggests that the production of receptor pseudotypes in vivo could provide a mechanism for expanded viral tropism with potential effects on the pathogenesis and evolution of the virus.  相似文献   

6.
7.
8.
9.
Rabies is a neurotropic virus that causes a life threatening acute viral encephalitis. The complex relationship of rabies virus (RV) with the host leads to its replication and spreading toward the neural network, where viral pathogenic effects appeared as neuronal dysfunction. In order to better understand the molecular basis of this relationship, a proteomics study on baby hamster kidney cells infected with challenge virus standard strain of RV was performed. This cell line is an in vitro model for rabies infection and is commonly used for viral seed preparation. The direct effect of the virus on cellular protein machinery was investigated by 2‐DE proteome mapping of infected versus control cells followed by LC‐MS/MS identification. This analysis revealed significant changes in expression of 14 proteins, seven of these proteins were viral and the remaining were host proteins with different known functions: cytoskeletal (capping protein, vimentin), anti‐oxidative stress (superoxide dismutase), regulatory (Stathmin), and protein synthesis (P0). Despite of limited changes appeared upon rabies infection, they present a set of interesting biochemical pathways for further investigation on viral‐host interaction.  相似文献   

10.
11.
Roles for host factors in plant viral pathogenicity   总被引:5,自引:0,他引:5  
The simple, obligate nature of viruses requires them to usurp or divert cellular resources, including host factors, away from their normal functions. The characterization of host proteins, membranes, and nucleic acids that are implicated in viral infection cycles, together with other recent discoveries, is providing fundamental clues about the molecular bases of viral susceptibility. As viruses invade susceptible plants, they create conditions that favor systemic infections by suppressing multiple layers of innate host defenses. When viruses meddle in these defense mechanisms, which are interlinked with basic cellular functions, phenotypic changes can result that contribute to disease symptoms.  相似文献   

12.
Retrovirus infection is normally limited to cells within a specific host range which express a cognate receptor that is recognized by the product of the env gene. We describe retrovirus infection of cells outside of their normal host range when the infection is performed in the presence of a replication-defective adenovirus (dl312). In the presence of adenovirus, several different ecotropic vectors are shown to infect human cell lines (HeLa and PLC/PRF), and a xenotropic vector is shown to infect murine cells (NIH 3T3). Infectivity is demonstrated by 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal) staining, selection with G418 for neomycin resistance, and PCR identification of the provirus in infected cells. Infectivity is quantitatively dependent upon both the concentration of adenovirus (10(6) to 10(8) PFU/ml) and the concentration of retrovirus. Infection requires the simultaneous presence of adenovirus in the retrovirus infection medium and is not stimulated by preincubation and removal of adenovirus from the cells before retrovirus infection. The presence of adenovirus is shown to enhance the uptake of fluorescently labeled retrovirus particles into cells outside of their normal host range, demonstrating that the adenovirus enhances viral entry into cells in the absence of the recognized cognate receptor. This observation suggests new opportunities for developing safe retroviral vectors for gene therapy and new mechanisms for the pathogenesis of retroviral disease.  相似文献   

13.
14.
Human Cytomegalovirus (HCMV), an ubiquitous β-herpesvirus, is a significant pathogen that causes medically severe diseases in immunocompromised individuals and in congenitally infected neonates. RhoB belongs to the family of Rho GTPases, which regulates diverse cellular processes. Rho proteins are implicated in the entry and egress from the host cell of mainly α- and γ-herpesviruses, whereas β-herpesviruses are the least studied in this regard. Here, we studied the role of RhoB GTPase during HCMV lytic infection. Microscopy analysis, both in fixed and live infected cells showed that RhoB was translocated to the assembly complex/compartment (AC) of HCMV, a cytoplasmic zone in infected cells where many viral structural proteins are known to accumulate and assembly of new virions takes place. Furthermore, RhoB was localized at the AC even when the expression of the late HCMV AC proteins was inhibited. At the very late stages of infection, cellular projections were formed containing RhoB and HCMV virions, potentially contributing to the successful viral spread. Interestingly, the knockdown of RhoB in HCMV-infected cells resulted in a significant reduction of the virus titer and could also affect the accumulation of AC viral proteins at this subcellular compartment. RhoB knockdown also affected actin fibers'' structure. Actin reorganization was observed at late stages of infection originating from the viral AC and surrounding the cellular projections, implying a potential interplay between RhoB and actin during HCMV assembly and egress. In conclusion, our results demonstrate for the first time that RhoB is a constituent of the viral AC and is required for HCMV productive infection.  相似文献   

15.
The mechanisms linking HIV-1 replication, macrophage biology, and multinucleated giant cell formation are incompletely understood. With the advent of functional proteomics, the characterization, regulation, and transformation of HIV-1-infected macrophage-secreted proteins can be ascertained. To these ends, we performed proteomic analyses of culture fluids derived from HIV-1 infected monocyte-derived macrophages. Robust reorganization, phosphorylation, and exosomal secretion of the cytoskeletal proteins profilin 1 and actin were observed in conjunction with productive viral replication and giant cell formation. Actin and profilin 1 recruitment to the macrophage plasma membrane paralleled virus-induced cytopathicity, podosome formation, and cellular fusion. Poly-l-proline, an inhibitor of profilin 1-mediated actin polymerization, inhibited cytoskeletal transformations and suppressed, in part, progeny virion production. These data support the idea that actin and profilin 1 rearrangement along with exosomal secretion affect viral replication and cytopathicity. Such events favor the virus over the host cell and provide insights into macrophage defense mechanisms used to contain viral growth and how they may be affected during progressive HIV-1 infection.  相似文献   

16.
Viral proteomics.   总被引:1,自引:0,他引:1  
Viruses have long been studied not only for their pathology and associated disease but also as model systems for molecular processes and as tools for identifying important cellular regulatory proteins and pathways. Recent advances in mass spectrometry methods coupled with the development of proteomic approaches have greatly facilitated the detection of virion components, protein interactions in infected cells, and virally induced changes in the cellular proteome, resulting in a more comprehensive understanding of viral infection. In addition, a rapidly increasing number of high-resolution structures for viral proteins have provided valuable information on the mechanism of action of these proteins as well as aided in the design and understanding of specific inhibitors that could be used in antiviral therapies. In this paper, we discuss proteomic studies conducted on all eukaryotic viruses and bacteriophages, covering virion composition, viral protein structures, virus-virus and virus-host protein interactions, and changes in the cellular proteome upon viral infection.  相似文献   

17.
18.
Coronavirus disease 19 (COVID-19) is caused by a highly contagious RNA virus Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2), originated in December 2019 in Wuhan, China. Since then, it has become a global public health concern and leads the disease table with the highest mortality rate, highlighting the necessity for a thorough understanding of its biological properties. The intricate interaction between the virus and the host immune system gives rise to diverse implications of COVID-19. RNA viruses are known to hijack the host epigenetic mechanisms of immune cells to regulate antiviral defence. Epigenetics involves processes that alter gene expression without changing the DNA sequence, leading to heritable phenotypic changes. The epigenetic landscape consists of reversible modifications like chromatin remodelling, DNA/RNA methylation, and histone methylation/acetylation that regulates gene expression. The epigenetic machinery contributes to many aspects of SARS-CoV-2 pathogenesis, like global DNA methylation and receptor angiotensin-converting enzyme 2 (ACE2) methylation determines the viral entry inside the host, viral replication, and infection efficiency. Further, it is also reported to epigenetically regulate the expression of different host cytokines affecting antiviral response. The viral proteins of SARS-CoV-2 interact with various host epigenetic enzymes like histone deacetylases (HDACs) and bromodomain-containing proteins to antagonize cellular signalling. The central role of epigenetic factors in SARS-CoV-2 pathogenesis is now exploited as promising biomarkers and therapeutic targets against COVID-19. This review article highlights the ability of SARS-CoV-2 in regulating the host epigenetic landscape during infection leading to immune evasion. It also discusses the ongoing therapeutic approaches to curtail and control the viral outbreak.  相似文献   

19.
CD46 and CD134 mediate attachment of Human Herpesvirus 6A (HHV-6A) and HHV-6B to host cell, respectively. But many cell types interfere with viral infection through rapid degradation of viral DNA. Hence, not all cells expressing these receptors are permissive to HHV-6 DNA replication and production of infective virions suggesting the involvement of additional factors that influence HHV-6 propagation. Here, we used a proteomics approach to identify other host cell proteins necessary for HHV-6 binding and entry. We found host cell chaperone protein GP96 to interact with HHV-6A and HHV-6B and to interfere with virus propagation within the host cell. In human peripheral blood mononuclear cells (PBMCs), GP96 is transported to the cell surface upon infection with HHV-6 and interacts with HHV-6A and -6B through its C-terminal end. Suppression of GP96 expression decreased initial viral binding but increased viral DNA replication. Transient expression of human GP96 allowed HHV-6 entry into CHO-K1 cells even in the absence of CD46. Thus, our results suggest an important role for GP96 during HHV-6 infection, which possibly supports the cellular degradation of the virus.  相似文献   

20.
Mori Y 《Uirusu》2007,57(2):151-158
Herpesvirus entry into host cells occurs by recognition of specific cellular receptor(s) with viral envelope glycoproteins. Nucleocapsids formed in nucleus are released into cytoplasm, and acquire tegument proteins there. Nucleocapsids with tegument proteins bud into intracellular vesicles formed in infected cells, which are thought to be derived from Golgi apparatus, trans-Golgi network or endosomes. However, the precise mechanisms involved in virus final envelopment are poorly understood. Here, I review our current knowledge regarding herpesvirus entry into host cells and virus assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号