首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Host manipulation is a common strategy by parasites to reduce host defense responses, enhance development, host exploitation, reproduction and, ultimately, transmission success. As these parasitic modifications can reduce host fitness, increased selection pressure may result in reciprocal adaptations of the host. Whereas the majority of studies on host manipulation have explored resistance against parasites (i.e. ability to prevent or limit an infection), data describing tolerance mechanisms (i.e. ability to limit harm of an infection) are scarce. By comparing differential protein abundance, we provide evidence of host-parasite interactions in the midgut proteomes of N. ceranae-infected and uninfected honey bees from both Nosema-tolerant and Nosema-sensitive lineages. We identified 16 proteins out of 661 protein spots that were differentially abundant between experimental groups. In general, infections of Nosema resulted in an up-regulation of the bee's energy metabolism. Additionally, we identified 8 proteins that were differentially abundant between tolerant and sensitive honey bees regardless of the Nosema infection. Those proteins were linked to metabolism, response to oxidative stress and apoptosis. In addition to bee proteins, we also identified 3 Nosema ceranae proteins. Interestingly, abundance of two of these Nosema proteins were significantly higher in infected Nosema-sensitive honeybees relative to the infected Nosema-tolerant lineage. This may provide a novel candidate for studying the molecular interplay between N. ceranae and its honey bee host in more detail.  相似文献   

2.
3.
The evolution of seeds is a major reason why flowering plants are a dominant life form on Earth. The developing seed is composed of two fertilization products, the embryo and endosperm, which are surrounded by a maternally derived seed coat. Accumulating evidence indicates that efficient communication among all three seed components is required to ensure coordinated seed development. Cell communication within plant seeds has drawn much attention in recent years. In this study, we review current knowledge of cross-talk among the endosperm, embryo, and seed coat during seed development, and highlight recent advances in this field.  相似文献   

4.
5.

Background

Herbivores have the power to shape plant evolutionary trajectories, influence the structure and function of vegetation, devastate entire crops, or halt the spread of invasive weeds, and as a consequence, research into plant–herbivore interactions is pivotal to our understanding of plant ecology and evolution. However, the causes and consequences of seedling herbivory have received remarkably little attention, despite the fact that plants tend to be most susceptible to herbivory during establishment, and this damage can alter community composition and structure.

Scope

In this Viewpoint article we review why herbivory during early plant ontogeny is important and in so doing introduce an Annals of Botany Special Issue that draws together the latest work on the topic. In a synthesis of the existing literature and a collection of new studies, we examine several linked issues. These include the development and expression of seedling defences and patterns of selection by herbivores, and how seedling selection affects plant establishment and community structure. We then examine how disruption of the seedling–herbivore interaction might affect normal patterns of plant community establishment and discuss how an understanding of patterns of seedling herbivory can aid our attempts to restore semi-natural vegetation. We finish by outlining a number of areas where more research is required. These include a need for a deeper consideration of how endogenous and exogenous factors determine investment in seedling defence, particularly for the very youngest plants, and a better understanding of the phylogenetic and biogeographical patterns of seedling defence. There is also much still be to be done on the mechanisms of seedling selection by herbivores, particularly with respect to the possible involvement of volatile cues. These inter-related issues together inform our understanding of how seedling herbivory affects plant regeneration at a time when anthropogenic change is likely to disrupt this long-established, but all-too-often ignored interaction.  相似文献   

6.
7.
8.
With each infectious pandemic or outbreak, the medical community feels the need to revisit basic concepts of immunology to understand and overcome the difficult times brought about by these infections. Regarding viruses, they have historically been responsible for many deaths, and such a peculiarity occurs because they are known to be obligate intracellular parasites that depend upon the host's cell machinery for their replication. Successful infection with the production of essential viral components requires constant viral evolution as a strategy to manipulate the cellular environment, including host internal factors, the host's nonspecific and adaptive immune responses to viruses, the metabolic and energetic state of the infected cell, and changes in the intracellular redox environment during the viral infection cycle. Based on this knowledge, it is fundamental to develop new therapeutic strategies for controlling viral dissemination, by means of antiviral therapies, vaccines, or antioxidants, or by targeting the inhibition or activation of cell signaling pathways or metabolic pathways that are altered during infection. The rapid recovery of altered cellular homeostasis during viral infection is still a major challenge. Here, we review the strategies by which viruses evade the host's immune response and potential tools used to develop more specific antiviral therapies to cure, control, or prevent viral diseases.  相似文献   

9.
10.
11.
12.
The solution structure of human β2-microglobulin (β2-m) was determined by 1H NMR spectroscopy and restrained modeling calculations. Compared to the crystal structure of type I major histocompatibility complex (MHC-I), where the protein is associated to the heavy-chain component, several differences are observed, i.e., increased separation between strands A and B, displacements of strand C′ and loop DE, shortening of strands D and E. These modifications can be considered as the prodromes of the amyloid transition. Even minor charge changes in response to pH, as is the case with H31 imidazole protonation, trigger the transition that starts with unpairing of strand A. The same mechanism accounts for the partial unfolding and fiber formation subsequent to Cu2+ binding which is shown to occur primarily at H31. Solvation of the protected regions in MHC-I decreases the tertiary packing by breaking the contiguity of the surface hydrophobic patches via surface charge cluster. Mutants or truncated forms of β2-m can be designed to remove the instability from H31 titration or to enhance the instability through surface charge suppression. By monitoring the conformational evolution of wild-type protein and variants thereof, either in response or absence of external perturbation, valuable insights into intermediate structure and fibrillogenesis mechanisms are gained.  相似文献   

13.
14.
Neutrophils’ adhesion to the endothelium during inflammatory is a well-known processes. In contrast the interaction of neutrophils with cells of the neurovascular unit after they have been transmigrated into the brain is less clear. Recently, lymphocyte function-associated antigen-1 (LFA-1) dependent subendothelial crawling of neutrophils has been observed in vivo. This is mediated by intracellular adhesion molecule-1 (ICAM-1), which is expressed on the cell surface of pericytes. In our work we demonstrated in vitro a cell–cell interaction between porcine brain capillary pericytes (PBCPs) and neutrophils, with further characterization of the initial contact between these cells. PBCPs increase ICAM-1 protein expression in response to the cytokine tumor necrosis factor-alpha (TNF-α). Furthermore, an increase in neutrophil adhesion to PBCPs was determined by immunofluorescence staining. By means of scanning force microscopy (SFM), we could additionally show that pericytes as well as neutrophils form cell extensions towards the neighboring cell. Interestingly, these extensions differ for different cell types.  相似文献   

15.
Britto DT  Ruth TJ  Lapi S  Kronzucker HJ 《Planta》2004,218(4):615-622
The first analysis of chloride fluxes and compartmentation in a non-excised plant system is presented, examining ten ecologically pertinent conditions. The short-lived radiotracer couple 38Cl/39Cl was used as a Cl tracer in intact barley (Hordeum vulgare L. cv. Klondike) seedlings, which were cultured and investigated under four external [Cl], from abundant (0.1 mM) to potentially toxic (100 mM). Chloride–nitrogen interactions were investigated by varying N source (NO3 or NH4 +) and strength (0.1 or 10 mM), in order to examine, at the subcellular compartmentation level, the antagonism, previously documented at the influx level, between Cl and NO3 , and the potential role of Cl as a counterion for NH4 + under conditions in which cytosolic [NH4 +] is excessive. Cytosolic [Cl] increased with external [Cl] from 6 mM to 360 mM. Cl influx, fluxes to vacuole and shoot, and, in particular, efflux to the external medium, also increased along this gradient. Efflux reached 90% of influx at the highest external [Cl]. Half-times of cytosolic Cl exchange decreased between high-affinity and low-affinity influx conditions. The relationship between cytosolic [Cl] and shoot flux indicated the presence of a saturable low-affinity transport system (SLATS) responsible for xylem loading of Cl. N source strongly influenced Cl flux to the vacuole, and moderately influenced Cl influx and shoot flux, whereas efflux and half-time were insensitive to N source. Cytosolic pool sizes were not strongly or consistently influenced by N source, indicating the low potential for Cl to act as a counterion to hyperaccumulating NH4 +. We discuss our results in relation to salinity responses in cereals.Abbreviations [Cl]cyt cytosolic chloride concentration - [Cl]o external chloride concentration  相似文献   

16.
Recent results demonstrate the exquisite sensitivity of cell morphology and structure to mechanical stimulation. Mechanical stimulation is often coupled with cell–substrate interactions that can, in turn, influence molecular response and determine cellular fates including apoptosis, proliferation, and differentiation. To understand these effects as they specifically relate to compressive mechanical stimulation and topographic control, we developed a microfabricated system to grow cells on polydimethylsiloxane (PDMS) microchannel surfaces where we maintained compression stimulation. We also probed cellular response following compressive mechanical stimulation to PDMS substrates of varying stiffness. In these instances, we examined cytoskeletal and morphologic changes in living cells attached to our substrate following the application of localized compressive stimulation. We found that the overall morphology and cell structure, including the actin cytoskeleton, oriented in the direction of the compressive strain applied and along the topographic microchannels. Furthermore by comparing topographic response to material stiffness, we found a 40% increase in cell area for cells cultured on the microchannels versus softer PDMS as well as a decreased cell area of 30% when using softer PDMS over unmodified PDMS. These findings have implications for research in a diversity of fields including cell–material interactions, mechanotransduction, and tissue engineering.  相似文献   

17.
18.
19.
20.
RNA is an extremely important target for the development of chemical probes of function or small molecule therapeutics. Aminoglycosides are the most well studied class of small molecules to target RNA. However, the RNA motifs outside of the bacterial rRNA A-site that are likely to be bound by these compounds in biological systems is largely unknown. If such information were known, it could allow for aminoglycosides to be exploited to target other RNAs and, in addition, could provide invaluable insights into potential bystander targets of these clinically used drugs. We utilized two-dimensional combinatorial screening (2DCS), a library-versus-library screening approach, to select the motifs displayed in a 3 × 3 nucleotide internal loop library and in a 6-nucleotide hairpin library that bind with high affinity and selectivity to six aminoglycoside derivatives. The selected RNA motifs were then analyzed using structure–activity relationships through sequencing (StARTS), a statistical approach that defines the privileged RNA motif space that binds a small molecule. StARTS allowed for the facile annotation of the selected RNA motif–aminoglycoside interactions in terms of affinity and selectivity. The interactions selected by 2DCS generally have nanomolar affinities, which is higher affinity than the binding of aminoglycosides to a mimic of their therapeutic target, the bacterial rRNA A-site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号