首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A key challenge in clinical proteomic of cancer is the identification of biomarkers that would allow early detection, diagnosis and monitor progression of the disease to improve long-term survival of patients. Recent advances in proteomic instrumentation and computational methodologies offer unique chance to rapidly identify these new candidate markers or pattern of markers. The combination of retentate affinity chromatography and surfaced-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry is one of the most interesting new approaches for cancer diagnostic using proteomic profiling. This review aims to summarize the results of studies that have used this new technology method for the early diagnosis of human cancer. Despite promising results, the use of the proteomic profiling as a diagnostic tool brought some controversies and technical problems and still requires some efforts to be standardised and validated.  相似文献   

2.
A key challenge in the clinical proteomics of cancer is the identification of biomarkers that would enable early detection, diagnosis and monitoring of disease progression to improve long-term survival of patients. Recent advances in proteomic instrumentation and computational methodologies offer a unique chance to rapidly identify these new candidate markers or pattern of markers. The combination of retentate affinity chromatography and mass spectrometry is one of the most interesting new approaches for cancer diagnostics using proteomic profiling. This review presents two technologies in this field, surface-enhanced laser desorption/ionization time-of-flight and Clinprot, and aims to summarize the results of studies obtained with the first of them for the early diagnosis of human cancer. Despite promising results, the use of the proteomic profiling as a diagnostic tool brought some controversies and technical problems, and still requires some efforts to be standardized and validated.  相似文献   

3.
Proteomic profiling of pancreatic cancer for biomarker discovery   总被引:15,自引:0,他引:15  
Pancreatic cancer is a uniformly lethal disease that is difficult to diagnose at early stage and even more difficult to cure. In recent years, there has been a substantial interest in applying proteomics technologies to identify protein biomarkers for early detection of cancer. Quantitative proteomic profiling of body fluids, tissues, or other biological samples to identify differentially expressed proteins represents a very promising approach for improving the outcome of this disease. Proteins associated with pancreatic cancer identified through proteomic profiling technologies could be useful as biomarkers for the early diagnosis, therapeutic targets, and disease response markers. In this article, we discuss recent progress and challenges for applying quantitative proteomics technologies for biomarker discovery in pancreatic cancer.  相似文献   

4.
Despite the efforts of recent years, clinicians still lack reliable biomarkers for diagnosis, prognosis and prediction of clinical outcomes in breast cancer patients. Owing to the large number of people potentially involved in the management of this clinical problem, the search for noninvasive and repeatable laboratory assays has been intensive. Recently, the proteomic profiling performed by SELDI-TOF mass spectrometry, has been proposed in order to identify new clusters of serum markers that could be potentially useful in breast cancer management. The purpose of this special report is to review the literature on SELDI-TOF technology applied on serum coming from healthy people and breast cancer patients, in order to verify the clinical applicability of such approach. We conclude that potential new biomarkers, first of all for early diagnosis of breast cancer, need to be validated in larger clinical series.  相似文献   

5.
Cervical cancer is one of the leading causes of cancer morbidity and mortality in women worldwide. More than 98% of cases are related to a human papillomavirus (HPV) infection. Infection with specific subtypes of HPV has been strongly implicated in cervical carcinogenesis. The identification and functional verification of host proteins associated with HPV E6 and E7 oncoproteins may provide useful information for understanding cervical carcinogenesis and the development of cervical cancer-specific markers. In addition, proteomic profiling of altered proteins by anticancer drugs on cervical cancer cells may contribute to providing the fundamental resources for investigation of disease-specific target proteins, elucidation of the novel mechanisms of action and development of new drugs. The advent of proteomics has provided the hope of discovering novel biological markers for use in the screening, early diagnosis and prediction of response to therapy. This review describes the studies where profiles of protein expression in cervical cancer have been generated.  相似文献   

6.

Background

Proteomic profiling is a rapidly developing technology that may enable early disease screening and diagnosis. Surface-enhanced laser desorption ionization–time of flight mass spectrometry (SELDI-TOF MS) has demonstrated promising results in screening and early detection of many diseases. In particular, it has emerged as a high-throughput tool for detection and differentiation of several cancer types. This review aims to appraise published data on the impact of SELDI-TOF MS in breast cancer.

Methods

A systematic literature search between 1965 and 2009 was conducted using the PubMed, EMBASE, and Cochrane Library databases. Studies covering different aspects of breast cancer proteomic profiling using SELDI-TOF MS technology were critically reviewed by researchers and specialists in the field.

Results

Fourteen key studies involving breast cancer biomarker discovery using SELDI-TOF MS proteomic profiling were identified. The studies differed in their inclusion and exclusion criteria, biologic samples, preparation protocols, arrays used, and analytical settings. Taken together, the numerous studies suggest that SELDI-TOF MS methodology may be used as a fast and robust approach to study the breast cancer proteome and enable the analysis of the correlations between proteomic expression patterns and breast cancer.

Conclusion

SELDI-TOF MS is a promising high-throughput technology with potential applications in breast cancer screening, detection, and prognostication. Further studies are needed to resolve current limitations and facilitate clinical utility.  相似文献   

7.
Point-of-care diagnostic devices present a viable option for the rapid and sensitive detection and analysis of cancer markers. With the growing number of cancer cases being diagnosed worldwide and the increased number of fatalities due to late disease detection, biosensors can play an important role in the early diagnosis of cancer. Molecular profiles of patients are being increasingly studied using new molecular tools such as genomic and proteomic techniques. These methods combined with bioinformatics tools are generating new data which is being employed in the elucidation of new disease biomarkers. As with many disease conditions finding specific and sensitive markers that are associated with only one type of the disease can be difficult. In addition to this, the level of the biomarkers in biological fluids can vary depending on different disease conditions and stages. A number of molecular markers are therefore usually evaluated for cancer diagnosis and these can include proteins, peptides, over/under expression of gene markers and gene mutations. This review provides an overview of the biosensor technology available today, areas which are currently being developed and researched for cancer markers diagnosis—and a consideration of future prospects for the technology.  相似文献   

8.
Despite advances in molecular medicine, genomics, proteomics and translational research, prostate cancer remains the second most common cause of cancer-related mortality for men in the Western world. Clearly, early detection, targeted treatment and post-treatment monitoring are vital tools to combat this disease. Tumor markers can be useful for diagnosis and early detection of cancer, assessment of prognosis, prediction of therapeutic effect and treatment monitoring. Such tumor markers include prostate-specific antigen (prostate), cancer antigen (CA)15.3 (breast), CA125 (ovarian), CA19.9 (gastrointestinal) and serum α-fetoprotein (testicular cancer). However, all of these biomarkers lack sensitivity and specificity and, therefore, there is a large drive towards proteomic biomarker discovery. Current research efforts are directed towards discovering biosignatures from biological samples using novel proteomic technologies that provide high-throughput, in-depth analysis and quantification of the proteome. Several of these studies have revealed promising biomarkers for use in diagnosis, assessment of prognosis, and targeting treatment of prostate cancer. This review focuses on prostate cancer proteomic biomarker discovery and its future potential.  相似文献   

9.
Kondo T 《BMB reports》2008,41(9):626-634
Novel cancer biomarkers are required to achieve early diagnosis and optimized therapy for individual patients. Cancer is a disease of the genome, and tumor tissues are a rich source of cancer biomarkers as they contain the functional translation of the genome, namely the proteome. Investigation of the tumor tissue proteome allows the identification of proteomic signatures corresponding to clinico-pathological parameters, and individual proteins in such signatures will be good biomarker candidates. Tumor tissues are also a rich source for plasma biomarkers, because proteins released from tumor tissues may be more cancer specific than those from non-tumor cells. Two-dimensional difference gel electrophoresis (2D-DIGE) with novel ultra high sensitive fluorescent dyes (CyDye DIGE Fluor satulation dye) enables the efficient protein expression profiling of laser-microdissected tissue samples. The combined use of laser microdissection allows accurate proteomic profiling of specific cells in tumor tissues. To develop clinical applications using the identified biomarkers, collaboration between research scientists, clinicians and diagnostic companies is essential, particularly in the early phases of the biomarker development projects. The proteomics modalities currently available have the potential to lead to the development of clinical applications, and channeling the wealth of produced information towards concrete and specific clinical purposes is urgent.  相似文献   

10.
Advances in proteomics technology offer great promise in the understanding and treatment of the molecular basis of disease. The past decade of proteomics research, the study of dynamic protein expression, post-translational modifications, cellular and sub-cellular protein distribution, and protein-protein interactions, has culminated in the identification of many disease-related biomarkers and potential new drug targets. While proteomics remains the tool of choice for discovery research, new innovations in proteomic technology now offer the potential for proteomic profiling to become standard practice in the clinical laboratory. Indeed, protein profiles can serve as powerful diagnostic markers, and can predict treatment outcome in many diseases, in particular cancer. A number of technical obstacles remain before routine proteomic analysis can be achieved in the clinic; however the standardisation of methodologies and dissemination of proteomic data into publicly available databases is starting to overcome these hurdles. At present the most promising application for proteomics is in the screening of specific subsets of protein biomarkers for certain diseases, rather than large scale full protein profiling. Armed with these technologies the impending era of individualised patient-tailored therapy is imminent. This review summarises the advances in proteomics that has propelled us to this exciting age of clinical proteomics, and highlights the future work that is required for this to become a reality.  相似文献   

11.
蛋白质芯片SELDI-TOFMS技术的研究进展及其在临床中的应用   总被引:8,自引:0,他引:8  
蛋白质芯片为新一代的蛋白质组研究技术,由美国Ciphergen生物系统公司引进,表面增强激光解吸电离-飞行时间质谱(SELDI-TOFMS)提供一个高通量和高灵敏度的检测平台。投放至今虽短短10来年,但卓越的成果已广为医学科学界重视,尤其在恶性肿瘤的早期诊断、监控和预后研究上。蛋白质是细胞内执行生物功能的最终分子,蛋白质组学研究让人类更深入了解疾病和生命的本源,不断发现的特异性肿瘤标志物更为攻克癌症带来新希望。这里除对表面增强激光解吸电离_飞行时间质谱作较详尽的介绍外,更重点阐述其近年来蛋白质芯片近期的研究进展和在临床中的应用,并就其优劣和发展前景作出评估。  相似文献   

12.
Proteomics of breast cancer: principles and potential clinical applications   总被引:4,自引:0,他引:4  
Progresses in screening, early diagnosis, prediction of aggressiveness and of therapeutic response or toxicity, and identification of new targets for therapeutic will improve survival of breast cancer. These progresses will likely be accelerated by the new proteomic techniques. In this review, we describe the different techniques currently applied to clinical samples of breast cancer and the most important results obtained with the two most popular proteomic approaches in translational research (tissue microarrays and SELDI-TOF).  相似文献   

13.
In the last decade, many proteomic technologies have been applied, with varying success, to the study of tissue samples of breast carcinoma for protein expression profiling in order to discover protein biomarkers/signatures suitable for: characterization and subtyping of tumors; early diagnosis, and both prognosis and prediction of outcome of chemotherapy. The purpose of this review is to critically appraise what has been achieved to date using proteomic technologies and to bring forward novel strategies – based on the analysis of clinically relevant samples – that promise to accelerate the translation of basic discoveries into the daily breast cancer clinical practice. In particular, we address major issues in experimental design by reviewing the strengths and weaknesses of current proteomic strategies in the context of the analysis of human breast tissue specimens.  相似文献   

14.
Molecular insight in cancer treatment and prevention   总被引:1,自引:0,他引:1  
This article explores the impact of new insights in the biology of cancer on the treatment and the prevention of this disease. There are two types of targeted cancer treatment, afforded by the molecular profile of cancer. One concerns the use of agents targeted on a specific component of the cancer cells (e.g., CD20 in lymphoma) or on a specific survival function of the cancer cell (growth-factor-receptor interaction; transduction cascade). The other concerns the recognition of tumors that are more or less likely to benefit from cytotoxic chemotherapy according to their genomic or proteomic profile. Cancer prevention may benefit from new molecular insight in cancer biology as these processes allow early diagnosis of cancer, identification of patients at risk for cancer, and may provide intermediate markers for chemoprevention studies.  相似文献   

15.
Osteosarcoma (OS) is the most common primary malignant tumor of bone and the third most common cancer in childhood and adolescence. Nowadays, early diagnosis, drug resistance and recurrence of the disease represent the major challenges in OS treatment. Post-genomics, and in particular proteomic technologies, offer an invaluable opportunity to address the level of biological complexity expressed by OS. Although the main goal of OS oncoproteomics is focused on diagnostic and prognostic biomarker discovery, in this review we describe and discuss global protein profiling approaches to other aspects of OS biology and pathophysiology, or to investigate the mechanism of action of chemotherapeutics. In addition, we present proteomic analyses carried out on OS cell lines as in vitro models for studying osteoblastic cell biology and the attractive opportunity offered by proteomics of OS cancer stem cells.  相似文献   

16.
17.
18.
Serum proteomic profiling, by using surfaced-enhanced laser desorption/ionization-time-of-flight mass spectrometry, is one of the most promising new approaches for cancer diagnostics. Exceptional sensitivities and specificities have been reported for some cancer types such as prostate, ovarian, breast, and bladder cancers. These sensitivities/specificities are far superior to those obtained by using classical cancer biomarkers. In this review, I concentrate more on questions that cast doubt on the results reported and propose experiments to investigate these questions in detail, before the technique is used at the clinic. It is clear that the method needs to be externally and thoroughly validated before clinical implementation is warranted.  相似文献   

19.
The cumulative lifetime risk for the development of colorectal cancer in the general population is 6 %. In many cases, early detection by fecal occult blood test is limited regarding sensitivity. Therefore, there is an urgent need for improved diagnostic tests in colorectal cancer. The recent development of high-throughput molecular analytic techniques should allow the rapid evaluation of new diagnostic markers. However, researchers are faced with an overwhelming number of potential markers form numerous colorectal cancer protein expression profiling studies. To address the challenge, we have carried out a comprehensive systematic review of colorectal cancer biomarkers from 13 published studies that compared the protein expression profiles of colorectal cancer and normal tissues. A protein ranking system that considers the number of comparisons in agreement, total sample sizes, average fold-change and direction of differential expression was devised. We observed that some proteins were consistently reported by multiple studies as differentially expressed with a statistically significant frequency (P < 0.05) in cancer versus normal tissues comparison. Our systematic review method identified proteins that were consistently reported as differentially expressed. A review of the top four candidates revealed proteins described previously as having diagnostic value as well as novel candidate biomarkers. These candidates should help to develop a panel of biomarkers with sufficient sensitivity and specificity for the diagnosis of colorectal cancer in a clinical setting.  相似文献   

20.
A lack of sensitive and specific tumor markers for early diagnosis and treatment is a major cause for the high mortality rate of ovarian cancer. The purpose of this study was to identify potential proteomics-based biomarkers useful for the differential diagnosis between ovarian cancer and benign pelvic masses. Serum samples from 41 patients with ovarian cancer, 32 patients with benign pelvic masses, and 41 healthy female blood donors were examined, and proteomic profiling of the samples was assessed by surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectroscopy (MS). A confirmatory study was also conducted with serum specimens from 58 patients with ovarian carcinoma, 37 patients with benign pelvic masses, and 48 healthy women. A classification tree was established using Biomarker Pattern Software. Six differentially expressed proteins (APP, CA 125, CCL18, CXCL1, IL-8, and ITIH4) were separated by high-performance liquid chromatography and identified by matrix-assisted laser desorption/ionization (MALDI)-MS/MS and database searches. Two of the proteins overexpressed in ovarian cancer patients, chemokine CC2 motif ligand 18 (CCL18) and chemokine CXC motif ligand 1 (CXCL1), were automatically selected in a multivariate predictive model. These two protein biomarkers were then validated and evaluated by enzyme-linked immunosorbent assay (ELISA) in 535 serum specimens (130 ovarian cancer, 64 benign ovarian masses, 36 lung cancer, 60 gastric cancer, 55 nasopharyngeal carcinoma, 48 hepatocellular carcinoma, and 142 healthy women). The combined use of CCL18 and CXCL1 as biomarkers for ovarian cancer had a sensitivity of 92% and a specificity of 97%. The multivariate ELISA analysis of the two putative markers in combination with CA 125 resulted in a sensitivity of 99% for healthy women and 94% for benign pelvic masses, and a specificity of 92% for both groups; these values were significantly higher than those obtained with CA 125 alone (p and lt;0.05). We conclude that serum CCL18 and CXCL1 are potentially useful as novel circulating tumor markers for the differential diagnosis between ovarian cancer and benign ovarian masses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号