首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of the CNS in vertebrate embryos involves the generation of different sub-types of neurons and glia in a complex but highly-ordered spatio-temporal manner. Zebrafish are commonly used for exploring the development, plasticity and regeneration of the CNS, and the recent development of reliable protocols for isolating and culturing neural stem/progenitor cells (NSCs/NPCs) from the brain of adult fish now enables the exploration of mechanisms underlying the induction/specification/differentiation of these cells. Here, we refined a protocol to generate proliferating and differentiating neurospheres from the entire brain of adult zebrafish. We demonstrated via RT-qPCR that some isoforms of ip3r, ryr and stim are upregulated/downregulated significantly in differentiating neurospheres, and via immunolabelling that 1,4,5-inositol trisphosphate receptor (IP3R) type-1 and ryanodine receptor (RyR) type-2 are differentially expressed in cells with neuron- or radial glial-like properties. Furthermore, ATP but not caffeine (IP3R and RyR agonists, respectively), induced the generation of Ca2+ transients in cells exhibiting neuron- or glial-like morphology. These results indicate the differential expression of components of the Ca2+-signaling toolkit in proliferating and differentiating cells. Thus, given the complexity of the intact vertebrate brain, neurospheres might be a useful system for exploring neurodegenerative disease diagnosis protocols and drug development using Ca2+ signaling as a read-out.  相似文献   

2.
The cellular and molecular processes underlying the regulation of ryanodine receptor (RyR) Ca(2+) release in smooth muscle cells (SMCs) are incompletely understood. Here we show that FKBP12.6 proteins are expressed in pulmonary artery (PA) smooth muscle and associated with type-2 RyRs (RyR2), but not RyR1, RyR3, or IP(3) receptors (IP(3)Rs) in PA sarcoplasmic reticulum. Application of FK506, which binds to FKBPs and dissociates these proteins from RyRs, induced an increase in [Ca(2+)](i) and Ca(2+)-activated Cl(-) and K(+) currents in freshly isolated PASMCs, whereas cyclosporin, an agent known to inhibit calcineurin but not to interact with FKBPs, failed to induce an increase in [Ca(2+)](i). FK506-induced [Ca(2+)](i) increase was completely blocked by the RyR antagonist ruthenium red and ryanodine, but not the IP(3)R antagonist heparin. Hypoxic Ca(2+) response and hypoxic vasoconstriction were significantly enhanced in FKBP12.6 knockout mouse PASMCs. FK506 or rapamycin pretreatment also enhanced hypoxic increase [Ca(2+)](i), but did not alter caffeine-induced Ca(2+) release (SR Ca(2+) content) in PASMCs. Norepinephrine-induced Ca(2+) release and force generation were also markedly enhanced in PASMCs from FKBP12.6 null mice. These findings suggest that FKBP12.6 plays an important role in hypoxia- and neurotransmitter-induced Ca(2+) and contractile responses by regulating the activity of RyRs in PASMCs.  相似文献   

3.
白介素1β对培养的大鼠皮层神经元钙通道电流的抑制作用   总被引:1,自引:1,他引:0  
周辰 《动物学研究》2010,31(1):89-93
白细胞介素1β(IL-1β)是重要的促炎细胞因子,在中枢神经系统(CNS)中发挥广泛的生物学功能。在病理条件下,细胞膜上电压门控钙通道的变化与疾病发展过程密切相关。虽然IL-1β和钙通道都在脑损伤和脑疾病过程中发挥重要作用,但目前还很少有两者之间相互关系的研究报道。该研究使用了培养的大鼠胎鼠皮层神经元和膜片钳记录技术,研究了长时间的IL-1β处理对电压门控钙通道电流的作用。结果表明,IL-1β在10和50 ng/mL剂量下都可以抑制钙电流,这种抑制作用具有时间和剂量依赖性的模式,并且不改变钙通道的激活性质。  相似文献   

4.
Hajnóczky G  Csordás G  Yi M 《Cell calcium》2002,32(5-6):363-377
In many cell types, IP(3) and ryanodine receptor (IP(3)R/RyR)-mediated Ca(2+) mobilization from the sarcoendoplasmic reticulum (ER/SR) results in an elevation of mitochondrial matrix [Ca(2+)]. Although delivery of the released Ca(2+) to the mitochondria has been established as a fundamental signaling process, the molecular mechanism underlying mitochondrial Ca(2+) uptake remains a challenge for future studies. The Ca(2+) uptake can be divided into the following three steps: (1) Ca(2+) movement from the IP(3)R/RyR to the outer mitochondrial membrane (OMM); (2) Ca(2+) transport through the OMM; and (3) Ca(2+) transport through the inner mitochondrial membrane (IMM). Evidence has been presented that Ca(2+) delivery to the OMM is facilitated by a local coupling between closely apposed regions of the ER/SR and mitochondria. Recent studies of the dynamic changes in mitochondrial morphology and visualization of the subcellular pattern of the calcium signal provide important clues to the organization of the ER/SR-mitochondrial interface. Interestingly, key steps of phospholipid synthesis and transfer to the mitochondria have also been confined to subdomains of the ER tightly associated with the mitochondria, referred as mitochondria-associated membranes (MAMs). Through the OMM, the voltage-dependent anion channels (VDAC, porin) have been thought to permit free passage of ions and other small molecules. However, recent studies suggest that the VDAC may represent a regulated step in Ca(2+) transport from IP(3)R/RyR to the IMM. A novel proposal regarding the IMM Ca(2+) uptake site is a mitochondrial RyR that would mediate rapid Ca(2+) uptake by mitochondria in excitable cells. An overview of the progress in these directions is described in the present paper.  相似文献   

5.
6.
The precise control of many T cell functions relies on cytosolic Ca(2+) dynamics that is shaped by the Ca(2+) release from the intracellular store and extracellular Ca(2+) influx. The Ca(2+) influx activated following T cell receptor (TCR)-mediated store depletion is considered to be a major mechanism for sustained elevation in cytosolic Ca(2+) concentration ([Ca(2+)](i)) necessary for T cell activation, whereas the role of intracellular Ca(2+) release channels is believed to be minor. We found, however, that in Jurkat T cells [Ca(2+)](i) elevation observed upon activation of the store-operated Ca(2+) entry (SOCE) by passive store depletion with cyclopiazonic acid, a reversible blocker of sarco-endoplasmic reticulum Ca(2+)-ATPase, inversely correlated with store refilling. This indicated that intracellular Ca(2+) release channels were activated in parallel with SOCE and contributed to global [Ca(2+)](i) elevation. Pretreating cells with (-)-xestospongin C (10 microM) or ryanodine (400 microM), the antagonists of inositol 1,4,5-trisphosphate receptor (IP3R) or ryanodine receptor (RyR), respectively, facilitated store refilling and significantly reduced [Ca(2+)](i) elevation evoked by the passive store depletion or TCR ligation. Although the Ca(2+) release from the IP3R can be activated by TCR stimulation, the Ca(2+) release from the RyR was not inducible via TCR engagement and was exclusively activated by the SOCE. We also established that inhibition of IP3R or RyR down-regulated T cell proliferation and T-cell growth factor interleukin 2 production. These studies revealed a new aspect of [Ca(2+)](i) signaling in T cells, that is SOCE-dependent Ca(2+) release via IP3R and/or RyR, and identified the IP3R and RyR as potential targets for manipulation of Ca(2+)-dependent functions of T lymphocytes.  相似文献   

7.
In pulmonary arterial smooth muscle cells (PASMC), acute hypoxia increases intracellular Ca(2+) concentration ([Ca(2+)](i)) by inducing Ca(2+) release from the sarcoplasmic reticulum (SR) and Ca(2+) influx through store- and voltage-operated Ca(2+) channels in sarcolemma. To evaluate the mechanisms of hypoxic Ca(2+) release, we measured [Ca(2+)](i) with fluorescent microscopy in primary cultures of rat distal PASMC. In cells perfused with Ca(2+)-free Krebs Ringer bicarbonate solution (KRBS), brief exposures to caffeine (30 mM) and norepinephrine (300 μM), which activate SR ryanodine and inositol trisphosphate receptors (RyR, IP(3)R), respectively, or 4% O(2) caused rapid transient increases in [Ca(2+)](i), indicating intracellular Ca(2+) release. Preexposure of these cells to caffeine, norepinephrine, or the SR Ca(2+)-ATPase inhibitor cyclopiazonic acid (CPA; 10 μM) blocked subsequent Ca(2+) release to caffeine, norepinephrine, and hypoxia. The RyR antagonist ryanodine (10 μM) blocked Ca(2+) release to caffeine and hypoxia but not norepinephrine. The IP(3)R antagonist xestospongin C (XeC, 0.1 μM) blocked Ca(2+) release to norepinephrine and hypoxia but not caffeine. In PASMC perfused with normal KRBS, acute hypoxia caused a sustained increase in [Ca(2+)](i) that was abolished by ryanodine or XeC. These results suggest that in rat distal PASMC 1) the initial increase in [Ca(2+)](i) induced by hypoxia, as well as the subsequent Ca(2+) influx that sustained this increase, required release of Ca(2+) from both RyR and IP(3)R, and 2) the SR Ca(2+) stores accessed by RyR, IP(3)R, and hypoxia functioned as a common store, which was replenished by a CPA-inhibitable Ca(2+)-ATPase.  相似文献   

8.
The kinetic behavior of Ca(2+) sparks in knockout mice lacking a specific ryanodine receptor (RyR) isoform should provide molecular information on function and assembly of clusters of RyRs. We examined resting Ca(2+) sparks in RyR type 3-null intercostal myotubes from embryonic day 18 (E18) mice and compared them to Ca(2+) sparks in wild-type (wt) mice of the same age and to Ca(2+) sparks in fast-twitch muscle cells from the foot of wt adult mice. Sparks from RyR type 3-null embryonic cells (368 events) were significantly smaller, briefer, and had a faster time to peak than sparks from wt cells (280 events) of the same age. Sparks in adult cells (220 events) were infrequent, yet they were highly reproducible with population means smaller than those in embryonic RyR type 3-null cells but similar to those reported in adult amphibian skeletal muscle fibers. Three-dimensional representations of the spark peak intensity (DeltaF/Fo) vs. full width at half-maximal intensity (FWHM) vs. full duration at half-maximal intensity (FTHM) showed that wt embryonic sparks were considerably more variable in size and kinetics than sparks in adult muscle. In all cases, tetracaine (0.2 mM) abolished Ca(2+) spark activity, whereas caffeine (0.1 mM) lengthened the spark duration in wt embryonic and adult cells but not in RyR type 3-null cells. These results confirmed that sparks arose from RyRs. The low caffeine sensitivity of RyR type 3-null cells is entirely consistent with observations by other investigators. There are three conclusions from this study: i) RyR type-1 engages in Ca(2+) spark activity in the absence of other RyR isoforms in RyR type 3-null myotubes; ii) Ca(2+) sparks with parameters similar to those reported in adult amphibian skeletal muscle can be detected, albeit at a low frequency, in adult mammalian skeletal muscle cells; and iii) a major contributor to the unusually large Ca(2+) sparks observed in normal (wt) embryonic muscle is RyR type 3. To explain the reduction in the size of sparks in adult compared to embryonic skeletal muscle, we suggest that in embryonic muscle, RyR type 1 and RyR type 3 channels co-contribute to Ca(2+) release during the same spark and that Ca(2+) sparks undergo a maturation process which involves a decrease in RyR type 3.  相似文献   

9.
Phenotypic modulation of vascular myocytes is important for vascular development and adaptation. A characteristic feature of this process is alteration in intracellular Ca(2+) handling, which is not completely understood. We studied mechanisms involved in functional changes of inositol 1,4,5-trisphosphate (IP(3))- and ryanodine (Ry)-sensitive Ca(2+) stores, store-operated Ca(2+) entry (SOCE), and receptor-operated Ca(2+) entry (ROCE) associated with arterial myocyte modulation from a contractile to a proliferative phenotype in culture. Proliferating, cultured myocytes from rat mesenteric artery have elevated resting cytosolic Ca(2+) levels and increased IP(3)-sensitive Ca(2+) store content. ATP- and cyclopiazonic acid [CPA; a sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor]-induced Ca(2+) transients in Ca(2+)-free medium are significantly larger in proliferating arterial smooth muscle cells (ASMCs) than in freshly dissociated myocytes, whereas caffeine (Caf)-induced Ca(2+) release is much smaller. Moreover, the Caf/Ry-sensitive store gradually loses sensitivity to Caf activation during cell culture. These changes can be explained by increased expression of all three IP(3) receptors and a switch from Ry receptor type II to type III expression during proliferation. SOCE, activated by depletion of the IP(3)/CPA-sensitive store, is greatly increased in proliferating ASMCs. Augmented SOCE and ROCE (activated by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol) in proliferating myocytes can be attributed to upregulated expression of, respectively, transient receptor potential proteins TRPC1/4/5 and TRPC3/6. Moreover, stromal interacting molecule 1 (STIM1) and Orai proteins are upregulated in proliferating cells. Increased expression of IP(3) receptors, SERCA2b, TRPCs, Orai(s), and STIM1 in proliferating ASMCs suggests that these proteins play a critical role in an altered Ca(2+) handling that occurs during vascular growth and remodeling.  相似文献   

10.
Ryanodine受体结构和药理学性质   总被引:3,自引:1,他引:2  
Ryanodine受体(RyR)是存在于细胞内钙库膜上的一种钙释放通道。在哺乳类动物中,RyR存在三种亚型,即骨骼肌型(RyR1)、心肌型(RyR2)和脑型(RyR3),它们分别由ryr1、ryr2和ryr3基因编码。非哺乳类脊椎动物的RyR有另外三种亚型,即同时存在于骨骼肌中的αRyR和βRyR,以及存在于心肌中的另一亚型。前两者在氨基酸序列上分别与RyR1和RyR3有较高的同源性。哺乳类和非哺  相似文献   

11.
目的:观察RyR(Ryanodme受体)反义寡核苷酸(ASODN)对大鼠ASMCs(airway smooth muscle cells,气道平滑肌细胞)增殖的抑制作用及对细胞内钙离子浓度的影响.方法:采用胶原酶消化法培养大鼠ASMCs,利用LipofectamineTM2000将正义、反义RyR寡核苷酸导入大鼠ASMCs,MTS/PES法检测不同寡核苷酸对大鼠ASMCs增殖的抑制作用,RT-PCR检测大鼠ASMCs中RyR的mRNA表达,流式细胞仪测定不同寡核苷酸对细胞内钙离子浓度的影响.结果:RyR反义寡核苷酸可抑制大鼠ASMCs的增殖,降低其RyR受体mRNA的表达,并能降低兴奋后的细胞内钙离子浓度的升高.结论:RyR反义寡核苷酸可能通过降低兴奋后的细胞内钙离子浓度来抑制大鼠ASMCs的增殖.  相似文献   

12.
We compared the interaction of the FK506-binding protein (FKBP) with the type 3 ryanodine receptor (RyR3) and with the type 1 and type 3 inositol 1,4,5-trisphosphate receptor (IP(3)R1 and IP(3)R3), using a quantitative GST-FKBP12 and GST-FKBP12.6 affinity assay. We first characterized and mapped the interaction of the FKBPs with the RyR3. GST-FKBP12 as well as GST-FKBP12.6 were able to bind approximately 30% of the solubilized RyR3. The interaction was completely abolished by FK506, strengthened by the addition of Mg(2+), and weakened in the absence of Ca(2+) but was not affected by the addition of cyclic ADP-ribose. By using proteolytic mapping and site-directed mutagenesis, we pinpointed Val(2322), located in the central modulatory domain of the RyR3, as a critical residue for the interaction of RyR3 with FKBPs. Substitution of Val(2322) for leucine (as in IP(3)R1) or isoleucine (as in RyR2) decreased the binding efficiency and shifted the selectivity to FKBP12.6; substitution of Val(2322) for aspartate completely abolished the FKBP interaction. Importantly, the occurrence of the valylprolyl residue as alpha-helix breaker was an important determinant of FKBP binding. This secondary structure is conserved among the different RyR isoforms but not in the IP(3)R isoforms. A chimeric RyR3/IP(3)R1, containing the core of the FKBP12-binding site of IP(3)R1 in the RyR3 context, retained this secondary structure and was able to interact with FKBPs. In contrast, IP(3)Rs did not interact with the FKBP isoforms. This indicates that the primary sequence in combination with the local structural environment plays an important role in targeting the FKBPs to the intracellular Ca(2+)-release channels. Structural differences in the FKBP-binding site of RyRs and IP(3)Rs may contribute to the occurrence of a stable interaction between RyR isoforms and FKBPs and to the absence of such interaction with IP(3)Rs.  相似文献   

13.
Ca(2+) influx triggered by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores [mediated via store-operated Ca(2+) channels (SOCC)] was characterized in enzymatically dissociated porcine airway smooth muscle (ASM) cells. When SR Ca(2+) was depleted by either 5 microM cyclopiazonic acid or 5 mM caffeine in the absence of extracellular Ca(2+), subsequent introduction of extracellular Ca(2+) further elevated [Ca(2+)](i). SOCC was insensitive to 1 microM nifedipine- or KCl-induced changes in membrane potential. However, preexposure of cells to 100 nM-1 mM La(3+) or Ni(2+) inhibited SOCC. Exposure to ACh increased Ca(2+) influx both in the presence and absence of a depleted SR. Inhibition of inositol 1,4,5-trisphosphate (IP)-induced SR Ca(2+) release by 20 microM xestospongin D inhibited SOCC, whereas ACh-induced IP(3) production by 5 microM U-73122 had no effect. Inhibition of Ca(2+) release through ryanodine receptors (RyR) by 100 microM ryanodine also prevented Ca(2+) influx via SOCC. Qualitatively similar characteristics of SOCC-mediated Ca(2+) influx were observed with cyclopiazonic acid- vs. caffeine-induced SR Ca(2+) depletion. These data demonstrate that a Ni(2+)/La(3+)-sensitive Ca(2+) influx via SOCC in porcine ASM cells involves SR Ca(2+) release through both IP(3) and RyR channels. Additional regulation of Ca(2+) influx by agonist may be related to a receptor-operated, noncapacitative mechanism.  相似文献   

14.
Embryonic Xenopus myocytes generate spontaneous calcium (Ca(2+)) transients during differentiation in culture. Suppression of these transients disrupts myofibril organization and the formation of sarcomeres through an identified signal transduction cascade. Since transients often occur during myocyte polarization and migration in culture, we hypothesized they might play additional roles in vivo during tissue formation. We have tested this hypothesis by examining Ca(2+) dynamics in the intact Xenopus paraxial mesoderm as it differentiates into the mature myotome. We find that Ca(2+) transients occur in cells of the developing myotome with characteristics remarkably similar to those in cultured myocytes. Transients produced within the myotome are correlated with somitogenesis as well as myocyte maturation. Since transients arise from intracellular stores in cultured myocytes, we examined the functional distribution of both IP(3) and ryanodine receptors in the intact myotome by eliciting Ca(2+) elevations in response to photorelease of caged IP(3) and superfusion of caffeine, respectively. As in culture, transients in vivo depend on Ca(2+) release from ryanodine receptor (RyR) stores, and blocking RyR during development interferes with somite maturation.  相似文献   

15.
Lakatta EG 《Cell calcium》2004,35(6):629-642
The ability of the heart to acutely beat faster and stronger is central to the vertebrate survival instinct. Released neurotransmitters, norepinephrine and epinephrine, bind to beta-adrenergic receptors (beta-AR) on pacemaker cells comprising the sinoatrial node, and to beta-AR on ventricular myocytes to modulate cellular mechanisms that govern the frequency and amplitude, respectively, of the duty cycles of these cells. While a role for sarcoplasmic reticulum Ca(2+) cycling via SERCA2 and ryanodine receptors (RyR) has long been appreciated with respect to cardiac inotropy, recent evidence also implicates Ca(2+) cycling with respect to chronotropy. In spontaneously beating primary sinoatrial nodal pacemaker cells, RyR Ca(2+) releases occurring during diastolic depolarization activate the Na(+)-Ca(2+) exchanger (NCX) to produce an inward current that enhances their diastolic depolarization rate, and thus increases their beating rate. beta-AR stimulation synchronizes RyR activation and Ca(2+) release to effect an increased beating rate in pacemaker cells and contraction amplitude in myocytes: in pacemaker cells, the beta-AR stimulation synchronization of RyR activation occurs during the diastolic depolarization, and augments the NCX inward current; in ventricular myocytes, beta-AR stimulation synchronizes the openings of unitary L-type Ca(2+) channel activation following the action potential, and also synchronizes RyR Ca(2+) releases following depolarization, and in the absence of depolarization, both leading to the generation of a global cytosolic Ca(i) transient of increased amplitude and accelerated kinetics. Thus, beta-AR stimulation induced synchronization of RyR activation (recruitment of additional RyRs to fire) and of the ensuing Ca(2+) release cause the heart to beat both stronger and faster, and is thus, a common mechanism that links both the maximum achievable cardiac inotropy and chronotropy.  相似文献   

16.
Transient increases, or oscillations, of cytoplasmic free Ca(2+) concentration, [Ca(2+)](i), occur during fertilization of animal egg cells. In sea urchin eggs, the increased Ca(2+) is derived from intracellular stores, but the principal signaling and release system involved has not yet been agreed upon. Possible candidates are the inositol 1,4,5-trisphosphate receptor/channel (IP(3)R) and the ryanodine receptor/channel (RyR) which is activated by cGMP or cyclic ADP-ribose (cADPR). Thus, it seemed that direct measurements of the likely second messenger candidates during sea urchin fertilization would be essential to an understanding of the Ca(2+) signaling pathway. We therefore measured the cGMP, cADPR and inositol 1,4,5-trisphosphate (IP(3)) contents of sea urchin eggs during the early stages of fertilization and compared these with the [Ca(2+)](i) rise in the presence or absence of an inhibitor against soluble guanylate cyclase. We obtained three major experimental results: (1) cytosolic cGMP levels began to rise first, followed by cADPR and IP(3) levels, all almost doubling before the explosive increase of [Ca(2+)](i); (2) most of the rise in IP(3) occurred after the Ca(2+) peak; IP(3) production could also be induced by the artificial elevation of [Ca(2+)](i), suggesting the large increase in IP(3) is a consequence, rather than a cause, of the Ca(2+) transient; (3) the measured increase in cGMP was produced by the soluble guanylate cyclase of eggs, and inhibition of soluble guanylate cyclase of eggs diminished the production of both cADPR and IP(3) and the [Ca(2+)](i) increase without the delay of Ca(2+) transients. Taken together, these results suggest that the RyR pathway involving cGMP and cADPR is not solely responsible for the initiating event, but contributes to the Ca(2+) transients by stimulating IP(3) production during fertilization of sea urchin eggs.  相似文献   

17.
Functional and molecular biological evidence exists for the expression of ryanodine receptors in non-muscle cells. In the present study, RT-PCR and 5'-rapid amplification of cDNA 5'-end (5'-RACE analysis) provided evidence for the presence of a type 1 ryanodine receptor/Ca2+ channel (RyR1) in diverse cell types. In parotid gland-derived 3-9 (epithelial) cells, the 3'-end 1589 nucleotide sequence for a rat RyR shared 99% homology with rat brain RyR1. Expression of this RyR mRNA sequence in exocrine acinar cells, endocrine cells, and liver in addition to skeletal muscle and cardiac muscle, suggests wide tissue distribution of the RyR1. Positive identification of a 5'-end sequence was made for RyR1 mRNA in rat skeletal muscle and brain, but not in parotid cells, pancreatic islets, insulinoma cells, or liver. These data suggest that a modified RyR1 is present in exocrine and endocrine cells, and liver. Western blot analysis showed L-type Ca2+ channel-related proteins in parotid acinar cells, which were of comparable size to those identified in skeletal and cardiac muscle, and in brain. Immunocytochemistry carried out on intact parotid acini demonstrated that the dihydropyridine receptor was preferentially co-localized with the IP3 receptor in the apical membranes. From these data we conclude that certain non-muscle cells express a modified RyR1 and L-type Ca2+ channel proteins. These receptor/channels may play a role in Ca2+ signaling involving store-operated Ca2+ influx via receptor-mediated channels.  相似文献   

18.
Proliferation of smooth muscle cells (SMC) has a role in the development of cardiovascular diseases. We investigated the alteration of contractile signals in proliferating SMC by measuring the increase in intracellular [Ca(2+)] to endothelin-1 (ET-1), noradrenaline (NA), or angiotensin II (AgII). We found that the increase in intracellular [Ca(2+)] by NA or ET-1 decreased in proliferating SMC in comparison to growth-arrested SMC. The increase in intracellular [Ca(2+)] by AgII was stable between the cells. Immunoblotting of inositol 1,4,5-trisphosphate receptors (IP(3)Rs) which are responsible for the mobilization of Ca(2+) by those vasoactive substances revealed that expression of IP(3)R type 1 and type 2 was decreased. Expression of IP(3)R type 3 was increased. The altered Ca(2+) signaling by the cell growth might involve the expression of IP(3)R subtypes.  相似文献   

19.
Control of apoptosis by IP(3) and ryanodine receptor driven calcium signals   总被引:12,自引:0,他引:12  
Intracellular calcium signals mediated by IP(3)and ryanodine receptors (IP(3)R/RyR) play a central role in cell survival, but emerging evidence suggests that IP(3)R/RyR are also important in apoptotic cell death. Switch from the life program to the death program may involve coincident detection of proapoptotic stimuli and calcium signals or changes in the spatiotemporal pattern of the calcium signal or changes at the level of effectors activated by the calcium signal (e.g. calpain, calcineurin). The fate of the cell is often determined in the mitochondria, where calcium spikes may support cell survival through stimulation of ATP production or initiate apoptosis v ia opening of the permeability transition pore and release of apoptotic factors such as cytochrome c. The functional importance of these mitochondrial calcium signalling pathways has been underscored by the elucidation of a highly effective, local Ca(2+)coupling between IP(3)R/RyR and mitochondrial Ca(2+)uptake sites. This article will focus on the IP(3)R/RyR-dependent pathways to apoptosis, particularly on the mitochondrial phase of the death cascade.  相似文献   

20.
We tested the hypothesis that part of the lumenal amino acid segment between the two most C-terminal membrane segments of the skeletal muscle ryanodine receptor (RyR1) is important for channel activity and conductance. Eleven mutants were generated and expressed in HEK293 cells focusing on amino acid residue I4897 homologous to the selectivity filter of K(+) channels and six other residues in the M3-M4 lumenal loop. Mutations of amino acids not absolutely conserved in RyRs and IP(3)Rs (D4903A and D4907A) showed cellular Ca(2+) release in response to caffeine, Ca(2+)-dependent [(3)H]ryanodine binding, and single-channel K(+) and Ca(2+) conductances not significantly different from wild-type RyR1. Mutants with an I4897 to A, L, or V or D4917 to A substitution showed a decreased single-channel conductance, loss of high-affinity [(3)H]ryanodine binding and regulation by Ca(2+), and an altered caffeine-induced Ca(2+) release in intact cells. Mutant channels with amino acid residue substitutions that are identical in the RyR and IP(3)R families (D4899A, D4899R, and R4913E) exhibited a decreased K(+) conductance and showed a loss of high-affinity [(3)H]ryanodine binding and loss of single-channel pharmacology but maintained their response to caffeine in a cellular assay. Two mutations (G4894A and D4899N) were able to maintain pharmacological regulation both in intact cells and in vitro but had lower single-channel K(+) and Ca(2+) conductances than the wild-type channel. The results support the hypothesis that amino acid residues in the lumenal loop region between the two most C-terminal membrane segments constitute a part of the ion-conducting pore of RyR1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号