首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA microarrays have changed the field of biomedical sciences over the past 10 years. For several reasons, antibody and other protein microarrays have not developed at the same rate. However, protein and antibody arrays have emerged as a powerful tool to complement DNA microarrays during the past 5 years. A genome-scale protein microarray has been demonstrated for identifying protein-protein interactions as well as for rapid identification of protein binding to a particular drug. Furthermore, protein microarrays have been shown as an efficient tool in cancer profiling, detection of bacteria and toxins, identification of allergen reactivity and autoantibodies. They have also demonstrated the ability to measure the absolute concentration of small molecules. Besides their capacity for parallel diagnostics, microarrays can be more sensitive than traditional methods such as enzyme-linked immunosorbent assay, mass spectrometry or high-performance liquid chromatography-based assays. However, for protein and antibody arrays to be successfully introduced into diagnostics, the biochemistry of immunomicroarrays must be better characterized and simplified, they must be validated in a clinical setting and be amenable to automation or integrated into easy-to-use systems, such as micrototal analysis systems or point-of-care devices.  相似文献   

2.
In recent years, the importance of proteomic works, such as protein expression, detection and identification, has grown in the fields of proteomic and diagnostic research. This is because complete genome sequences of humans, and other organisms, progress as cellular processing and controlling are performed by proteins as well as DNA or RNA. However, conventional protein analyses are time-consuming; therefore, high throughput protein analysis methods, which allow fast, direct and quantitative detection, are needed. These are so-called protein microarrays or protein chips, which have been developed to fulfill the need for high-throughput protein analyses. Although protein arrays are still in their infancy, technical development in immobilizing proteins in their native conformation on arrays, and the development of more sensitive detection methods, will facilitate the rapid deployment of protein arrays as high-throughput protein assay tools in proteomics and diagnostics. This review summarizes the basic technologies that are needed in the fabrication of protein arrays and their recent applications.  相似文献   

3.
糖基化修饰是蛋白质常见的翻译后修饰之一,通过与糖结合蛋白如凝集素、抗体等相互作用调节肿瘤细胞侵袭、转移的能力及肿瘤异质性。通过化学合成法、化学-酶合成法或释放天然聚糖构建的糖芯片是分析聚糖与糖结合蛋白相互作用的重要工具。文中综述了常见的点制糖芯片的技术及糖芯片在癌症疫苗、单克隆抗体及诊断标志物中的广泛运用。由于肿瘤发生的各个环节都伴随着聚糖结构的改变,利用糖芯片探究肿瘤细胞特异表达的聚糖所参与的生理病理过程具有重大意义。  相似文献   

4.
Improvement of protein stability in protein microarrays   总被引:1,自引:0,他引:1  
Protein stability in microarrays was improved using protein stabilizers. PEG 200 at 30% (w/v) was the most efficient stabilizer giving over 4-fold improvement in protein stability compared to without the stabilizer. PEG 200 above 10% (w/v) in the array solution prevented the evaporation of water in the sample and thereby improved protein stability in the microarray. When the streptavidin-biotin binding reaction was performed under optimized conditions, biotin-BSA-fluorescein isothiocyanate (FITC) was detected from 1 ng ml–1 to 5 g ml–1 by fluorescence analysis.  相似文献   

5.
The antibody microarray is an intrinsically robust and quantitative system that delivers high-throughput and parallel measurements on particular sets of known proteins. It has become an important proteomics research tool, complementary to the conventional unbiased separation-based and mass spectrometry-based approaches. This review summarizes the technical aspects of production and the application for quantitative proteomic analysis with an emphasis on disease proteomics, especially the identification of biomarkers. Quality control, data analysis methods and the challenges for quantitative assays are also discussed.  相似文献   

6.
Winters M  Dabir B  Yu M  Kohn EC 《Proteomics》2007,7(22):4066-4068
Application of novel technology to clinical samples requires optimization of procedures. Reverse phase protein lysate arrays use femtomolar quantities of tissue lysate from clinical samples with which to profile biochemical events happening in the tumor. We analyzed the effects of different tissue solubilization buffers on frozen ovarian tumor samples in order to identify the system with the best signal intensity dynamic range, reproducibility, tissue solubility, and signal consistency. A modified RIPA-like buffer supplemented with DTT and SDS was deemed optimal.  相似文献   

7.
Introduction: High-content protein microarrays in principle enable the functional interrogation of the human proteome in a broad range of applications, including biomarker discovery, profiling of immune responses, identification of enzyme substrates, and quantifying protein-small molecule, protein-protein and protein-DNA/RNA interactions. As with other microarrays, the underlying proteomic platforms are under active technological development and a range of different protein microarrays are now commercially available. However, deciphering the differences between these platforms to identify the most suitable protein microarray for the specific research question is not always straightforward.

Areas covered: This review provides an overview of the technological basis, applications and limitations of some of the most commonly used full-length, recombinant protein and protein fragment microarray platforms, including ProtoArray Human Protein Microarrays, HuProt Human Proteome Microarrays, Human Protein Atlas Protein Fragment Arrays, Nucleic Acid Programmable Arrays and Immunome Protein Arrays.

Expert commentary: The choice of appropriate protein microarray platform depends on the specific biological application in hand, with both more focused, lower density and higher density arrays having distinct advantages. Full-length protein arrays offer advantages in biomarker discovery profiling applications, although care is required in ensuring that the protein production and array fabrication methodology is compatible with the required downstream functionality.  相似文献   


8.
Many protein functions are conferred by posttranslational modifications, which allow proteins to perform specific cellular tasks. Protein microarrays enable specific detection of posttranslational modifications not attainable by gene arrays. Reverse-phase protein microarrays have been widely adopted for use with clinical biopsy specimens because they have many advantages including highly reproducible printing of cellular lysates onto array surfaces, buit-in dilution curves, and direct detection using one antibody per analyte. This results in high-sensitivity, broad dynamic range, and favorable precision. Reverse-phase arrays have been restricted to a one slide/one antibody format. Although this is suitable for analyzing treatment effects over populations of samples, it is not well suited to individual patient assessments. One means of reaching this goal is the sector array format. Through the sector array, multiple antibody probes can be multiplexed on a single slide containing replicate immobilized aliquots from one patient. Thus, on one slide, a complete set of analytes can be characterized and used to support a therapy decision. This article describes a method for constructing sector arrays and demonstrates feasibility and adequate sensitivity applied to apoptosis related pathways.  相似文献   

9.
Solid-phase assays play a crucial role today in biological studies. These assays are based on the immobilization of probe molecules on a surface, which are able to capture specifically soluble receptors. In particular, peptide microarrays have emerged as powerful tools in a variety of applications. In this context, optical techniques that allow imaging of nanometer-thick biomolecular films, and thereby the characterization of microarrays, are of great interest. For this purpose, we used a recently disclosed wide-field optical imaging technique of surface nanostructures called Sarfus, which is based on the use of a standard optical microscope and antireflection substrates. We demonstrate here that this technique allows the imaging of the protein layers that result from the specific capture of antibodies by arrayed peptide probes with a spatial resolution of 0.45 microm. The relationship between the thickness of the antibody layer and peptide or antibody concentration was examined.  相似文献   

10.
Acquired or innate resistance to chemotherapy is a major drawback of cancer therapeutics, which is frequently seen in epithelial cancers. However, the molecular mechanisms underlying chemotherapy resistance remain poorly understood. The mitochondrial pathway is a critical death pathway common to many different types of chemotherapy. Aberrations in this pathway can result in resistance to chemotherapy. The Bcl-2 family of proteins control commitment to programmed cell death by mitochondrial apoptosis. In this review, we will summarize the strategies in determining the components of apoptotic defects responsible for chemotherapy resistance, mainly focused on Bcl-2 protein network.  相似文献   

11.
Protein microarrays have been recently employed for signal pathway profiling and high-throughput protein expression analysis. Reversephase arrays, where the array consists of immobilized analytes and lysates has especially shown promise in low abundance analyte detection and signal pathway profiling using phospho-specific antibodies. A limitation to current reverse phase array methodology is the inability to multiplex proteomic-based endpoints as each array can only report one analyte endpoint. In this study, we report on the use of a dual dye based approach that can effectively double the number of endpoints observed per array allowing, for example, both phosphospecific and total protein levels to be measured and analyzed at once. The method utilizes antibody bound dyes that emit in the infrared spectral region as a means of sensitive and specific detection.  相似文献   

12.
Antibody-based microarrays are a novel technology that hold great promise in proteomics. Microarrays can be printed with thousands of recombinant antibodies carrying the desired specificities, the biologic sample (e.g., an entire proteome) and any specifically bound analytes detected. The microarray patterns that are generated can then be converted into proteomic maps, or molecular fingerprints, revealing the composition of the proteome. Using this tool, global proteome analysis and protein expression profiling will thus provide new opportunities for biomarker discovery, drug target identification and disease diagnostics, as well as providing insights into disease biology. Intense work is currently underway to develop this novel technology platform into the high-throughput proteomic tool required by the research community.  相似文献   

13.
Soil microbial communities are responsible for important physiological and metabolic processes. In the last decade soil microorganisms have been frequently analysed by cultivation-independent techniques because only a minority of the natural microbial communities are accessible by cultivation. Cultivation-independent community analyses have revolutionized our understanding of soil microbial diversity and population dynamics. Nevertheless, many methods are still laborious and time-consuming, and high-throughput methods have to be applied in order to understand population shifts at a finer level and to be better able to link microbial diversity with ecosystems functioning. Microbial diagnostic microarrays (MDMs) represent a powerful tool for the parallel, high-throughput identification of many microorganisms. Three categories of MDMs have been defined based on the nature of the probe and target molecules used: phylogenetic oligonucleotide microarrays with short oligonucleotides against a phylogenetic marker gene; functional gene arrays containing probes targeting genes encoding specific functions; and community genome arrays employing whole genomes as probes. In this review, important methodological developments relevant to the application of the different types of diagnostic microarrays in soil ecology will be addressed and new approaches, needs and future directions will be identified, which might lead to a better insight into the functional activities of soil microbial communities.  相似文献   

14.
The driving force behind oncoproteomics is to identify protein signatures that are associated with a particular malignancy. Here, we have used a recombinant scFv antibody microarray in an attempt to classify sera derived from pancreatic adenocarcinoma patients versus healthy subjects. Based on analysis of nonfractionated, directly labeled, whole human serum proteomes we have identified a protein signature based on 19 nonredundant analytes, that discriminates between cancer patients and healthy subjects. Furthermore, a potential protein signature, consisting of 21 protein analytes, could be defined that was shown to be associated with cancer patients having a life expectancy of <12 months. Taken together, the data suggest that antibody microarray analysis of complex proteomes will be a useful tool to define disease associated protein signatures.  相似文献   

15.
Our understanding of biological processes as well as human diseases has improved greatly thanks to studies on model organisms such as yeast. The power of scientific approaches with yeast lies in its relatively simple genome, its facile classical and molecular genetics, as well as the evolutionary conservation of many basic biological mechanisms. However, even in this simple model organism, systems biology studies, especially proteomic studies had been an intimidating task. During the past decade, powerful high-throughput technologies in proteomic research have been developed for yeast including protein microarray technology. The protein microarray technology allows the interrogation of protein–protein, protein–DNA, protein–small molecule interaction networks as well as post-translational modification networks in a large-scale, high-throughput manner. With this technology, many groundbreaking findings have been established in studies with the budding yeast Saccharomyces cerevisiae, most of which could have been unachievable with traditional approaches. Discovery of these networks has profound impact on explicating biological processes with a proteomic point of view, which may lead to a better understanding of normal biological phenomena as well as various human diseases.  相似文献   

16.
Optical inteference (OI) coated slides with unique optical properties were utilized in microarray analyses, demonstrating their enhanced detection sensitivity over traditional microarray substrates. The OI coating is comprised of a proprietary multilayered, dielectric, thin-film interference coating located beneath the functional coating (aminosilane or epoxysilane). It is designed to enhance the fluorescence in the Cy3 and Cy5 channel by increasing the light absorption of the dyes by about 6-fold and by redirecting emitted fluorescence into the detector during scanning, resulting in a theoretical limit of about 12-fold signal amplification. Two-color DNA microarray experiments conducted on the OI slides showed over 8-fold signal amplification, conservation of gene expression ratios, and increased signal-to-noise ratio when compared to control slides, indicating enhanced detection sensitivity. Protein microarray assays also exhibited over 8-fold signal amplification at three different target concentrations, demonstrating the versatility of the OI slides for different microarray applications. Further, the DNA and protein assays performed on the OI slides exhibited excellent detection sensitivity even at the low target amounts essential for diagnostic applications. The OI slides are compatible with commonly used protocols, printers, scanners and other microarray equipment. Therefore, the OI slides offer an attractive alternative to traditional microarray substrates, where enhanced detection sensitivity is desired.  相似文献   

17.
Solid supports for microarray immunoassays   总被引:11,自引:0,他引:11  
  相似文献   

18.
In recent years, knowledge about immune-related disorders has substantially increased, especially in the field of central nervous system (CNS) disorders. Recent innovations in protein-related microarray technology have enabled the analysis of interactions between numerous samples and up to 20,000 targets. Antibodies directed against ion channels, receptors and other synaptic proteins have been identified, and their causative roles in different disorders have been identified. Knowledge about immunological disorders is likely to expand further as more antibody targets are discovered. Therefore, protein microarrays may become an established tool for routine diagnostic procedures in the future.  相似文献   

19.
20.
A variety of different in vivo and in vitro technologies provide comprehensive insights in protein-protein interaction networks. Here we demonstrate a novel approach to analyze, verify and quantify putative interactions between two members of the S100 protein family and 80 recombinant proteins derived from a proteome-wide protein expression library. Surface plasmon resonance (SPR) using Biacore technology and functional protein microarrays were used as two independent methods to study protein-protein interactions. With this combined approach we were able to detect nine calcium-dependent interactions between Arg-Gly-Ser-(RGS)-His6 tagged proteins derived from the library and GST-tagged S100B and S100A6, respectively. For the protein microarray affinity-purified proteins from the expression library were spotted onto modified glass slides and probed with the S100 proteins. SPR experiments were performed in the same setup and in a vice-versa approach reversing analytes and ligands to determine distinct association and dissociation patterns of each positive interaction. Besides already known interaction partners, several novel binders were found independently with both detection methods, albeit analogous immobilization strategies had to be applied in both assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号