首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 819 毫秒
1.
The proteomes of mammalian cells, tissues and biologic fluids are complex and consist of proteins present over a wide dynamic range. Current protein profiling technologies do not have the capacity to overcome the sample complexity for comprehensive analysis of complex proteomes. A common strategy to substantially expand protein profiling capacities is sample prefractionation. A prefractionation method developed in the authors' laboratory, microscale solution isoelectrofocusing, has resulted in a commercial product, the ZOOM IEF Fractionator, which provides a simple and convenient method for high-resolution separation of complex proteomes based upon their isoelectric points. Complex human samples such as cancer cells and biologic fluids can be fractionated into well-resolved fractions with minimal cross-contamination of proteins between adjacent fractions. This review focuses on the application of microscale solution isoelectrofocusing prefractionation and subsequent downstream strategies in expanding protein profiling capacities and mining low-abundance proteins of complex proteomes.  相似文献   

2.
Current methods for quantitatively comparing proteomes (protein profiling) have inadequate resolution and dynamic range for complex proteomes such as those from mammalian cells or tissues. More extensive profiling of complex proteomes would be obtained if the proteomes could be reproducibly divided into a moderate number of well-separated pools. But the utility of any prefractionation is dependent upon the resolution obtained because extensive cross contamination of many proteins among different pools would make quantitative comparisons impractical. The current study used a recently developed microscale solution isoelectrofocusing (musol-IEF) method to separate human breast cancer cell extracts into seven well-resolved pools. High resolution fractionation could be achieved in a series of small volume tandem chambers separated by thin acrylamide partitions containing covalently bound immobilines that establish discrete pH zones to separate proteins based upon their pIs. In contrast to analytical 2-D gels, this prefractionation method was capable of separating very large proteins (up to about 500 kDa) that could be subsequently profiled and quantitated using large-pore 1-D SDS gels. The pH 4.5-6.5 region was divided into four 0.5 pH unit ranges because this region had the greatest number of proteins. By using very narrow pH range fractions, sample amounts applied to narrow pH range 2-D gels could be increased to detect lower abundance proteins. Although 1.0 pH range 2-D gels were used in these experiments, further protein resolution should be feasible by using 2-D gels with pH ranges that are only slightly wider than the pH ranges of the musol-IEF fractions. By combining musol-IEF prefractionation with subsequent large pore 1-D SDS-PAGE (>100 kDa) and narrow range 2-D gels (<100 kDa), large proteins can be reliably quantitated, many more proteins can be resolved, and lower abundance proteins can be detected.  相似文献   

3.
A novel strategy, termed protein array pixelation, is described for comprehensive profiling of human plasma and serum proteomes. This strategy consists of three sequential high-resolution protein prefractionation methods (major protein depletion, solution isoelectrofocusing, and 1-DE) followed by nanocapillary RP tryptic peptide separation prior to MS/MS analysis. The analysis generates a 2-D protein array where each pixel in the array contains a group of proteins with known pI and molecular weight range. Analysis of the HUPO samples using this strategy resulted in 575 and 2890 protein identifications from plasma and serum, respectively, based on HUPO-approved criteria for high-confidence protein assignments. Most importantly, a substantial number of low-abundance proteins (low ng/mL - pg/mL range) were identified. Although larger volumes were used in initial prefractionation steps, the protein identifications were derived from fractions equivalent to approximately 0.6 microL (45 microg) of plasma and 2.4 microL (204 microg) of serum. The time required for analyzing the entire protein array for each sample is comparable to some published shotgun analyses of plasma and serum proteomes. Therefore, protein array pixelation is a highly sensitive method capable of detecting proteins differing in abundance by up to nine orders of magnitude. With further refinement, this method has the potential for even higher capacity and higher throughput.  相似文献   

4.
Two-dimensional electrophoresis is a critical technique for proteome research, but currently available methods are not capable of resolving the >10,000 protein components in most eukaryotic proteomes. We have developed and demonstrated the utility of a novel solution isoelectrofocusing device and method that can reproducibly prefractionate cell extracts into well-defined pools prior to 2D PAGE on a scale directly compatible with the high sensitivity of proteome studies. A prototype device was used to separate metabolically radiolabeled Escherichia coli extracts in method optimization and proof-of-principle experiments. Samples were loaded into separation chambers divided by thin polyacrylamide gels containing immobilines at specific pH values and isoelectrically focused for several hours, which resulted in well-resolved fractions. Total recoveries in the fractionated samples were greater than 80% and most protein spots in the original sample were recovered after this prefractionation step. Nonideal behavior (precipitation/aggregation), typically encountered when unfractionated samples at high protein loads were applied directly to either narrow- or broad-range IPG gels, was dramatically reduced. Hence this approach allows increases in overall protein loads, resolution, and dynamic detection range compared with either alternative prefractionation methods or direct use of parallel narrow pH range gels without sample prefractionation. The pH ranges and number of fractions can be readily adapted to the requirements of specific types of samples and projects. This method should allow quantitative comparisons of at least 10,000 protein components on a series of narrow pH range gels, and protein detection limits are estimated to be 1000 molecules per cell when mammalian proteomes are fractionated into five or more pools.  相似文献   

5.
A main objective of proteomics research is to systematically identify and quantify proteins in a given proteome (cells, subcellular fractions, protein complexes, tissues or body fluids). Protein labeling with isotope-coded affinity tags (ICAT) followed by tandem mass spectrometry allows sequence identification and accurate quantification of proteins in complex mixtures, and has been applied to the analysis of global protein expression changes, protein changes in subcellular fractions, components of protein complexes, protein secretion and body fluids. This protocol describes protein-sample labeling with ICAT reagents, chromatographic fractionation of the ICAT-labeled tryptic peptides, and protein identification and quantification using tandem mass spectrometry. The method is suitable for both large-scale analysis of complex samples including whole proteomes and small-scale analysis of subproteomes, and allows quantitative analysis of proteins, including those that are difficult to analyze by gel-based proteomics technology.  相似文献   

6.
One method of improving the protein profiling of complex mammalian proteomes is the use of prefractionation followed by application of narrow pH range two dimensional (2-D) gels. The success of this strategy relies on sample solubilization; poor solubilization has been associated with missing protein fractions and diffuse, streaked, and/or trailing protein spots. In this study, I sought to optimize the solubilization of prefractionated human cancer cell samples using isoelectric focusing (IEF) rehydration buffers containing a variety of commercially available reducing agents, detergents, chaotropes, and carrier ampholytes. The solubilized proteins were resolved on 2-D gels and compared. Among five tested IEF rehydration buffers, those containing 3-[(3-cholamidopropyl)dimethylamino]-1-propane sulfonate (CHAPS) and dithiothreitol (DTT) provided superior resolution, while that containing Nonidet P-40 (NP-40) did not significantly affect protein resolution, and the tributyl phosphine (TBP)-containing buffer yielded consistently poor results. In addition, I found that buffers containing typically high urea and ampholyte levels generated sharper 2-D gels. Using these optimized conditions, I was able to apply 2-D gel analysis successfully to fractionated proteins from human breast cancer tissue MCF-7, across a pH range of 4-6.7.  相似文献   

7.
The plasma proteome has proven to be one of the most challenging proteomes to profile using currently available proteomics technologies. A plethora of methodologies have been used to profile human plasma in order to discover potential biomarkers for disease and for therapy optimization. Affinity‐based prefractionation coupled to MS has been shown to be one of the most successful ways to dig deeper into the plasma proteome. Depletion of high abundant plasma proteins is becoming an initial method of choice in any plasma profiling project. However, several other affinity‐based enrichment methods have been published in recent years. Here we review both protein and peptide affinity prefractionation methods coupled with MS‐based proteomics. Analysis of the proportion of cellular and extracellular annotated proteins of publicly available MS plasma proteomics data is performed to estimate the analytical depth of various prefractionation methods.  相似文献   

8.
Wang W  Wu X  Xiong E  Tai F 《Proteomics》2012,12(7):938-943
The presence of high-abundance proteins in complex protein mixtures often masks low-abundance proteins and causes loss of resolution of 2DE. Protein fractionation steps conducted prior to 2DE can enhance the detection of low-abundance proteins and improve the resolution of 2DE. Here, we report a method to prefractionate soluble protein extracts based on protein thermal denaturation. Soluble proteins were extracted from maize embryos and leaves and Escherichia coli cells. Through heating at 95°C for 5 min, soluble protein extracts were prefractionated as heat stable protein fraction (the supernatant) and heat labile protein fraction (the precipitate). Our results showed that heat prefractionation enhanced the separation of proteins in both fractions by 2DE, thereby increasing the chance of detecting low-abundance proteins, many of which were nonvisible in unfractionated extract. In maize embryo, 330 spots were detected in soluble protein extract, while 577 spots were detected after prefractionation. Furthermore, this prefractionation method facilitated the enrichment, detection, and identification of de novo synthesized stress proteins. Because of its simplicity, the one-step heat prefractionation minimizes protein loss. Finally, heat prefractionation requires no expensive special hardware or reagents, and provides an alternative prefractionation for increasing the resolving power of 2DE.  相似文献   

9.

Background  

The proteomes of mammalian biological fluids, cells and tissues are complex and composed of proteins with a wide dynamic range. The effective way to overcome the complexity of these proteomes is to combine several fractionation steps. OFFGEL fractionation, recently developed by Agilent Technologies, provides the ability to pre-fractionate peptides into discrete liquid fractions and demonstrated high efficiency and repeatability necessary for the analysis of such complex proteomes.  相似文献   

10.
Stable isotope labelling in combination with mass spectrometry has emerged as a powerful tool to identify and relatively quantify thousands of proteins within complex protein mixtures. Here we describe a novel method, termed isotope-coded protein label (ICPL), which is capable of high-throughput quantitative proteome profiling on a global scale. Since ICPL is based on stable isotope tagging at the frequent free amino groups of isolated intact proteins, it is applicable to any protein sample, including extracts from tissues or body fluids, and compatible to all separation methods currently employed in proteome studies. The method showed highly accurate and reproducible quantification of proteins and yielded high sequence coverage, indispensable for the detection of post-translational modifications and protein isoforms. The efficiency (e.g. accuracy, dynamic range, sensitivity, speed) of the approach is demonstrated by comparative analysis of two differentially spiked proteomes.  相似文献   

11.
Subcellular localization represents an essential, albeit often neglected, aspect of proteome analysis. Generally, the subcellular location of proteins determines the function of cells and tissues. Here we present a robust and versatile prefractionation protocol for mammalian cells and tissues which is appropriate for minute sample amounts. The protocol yields three fractions: a nuclear, a cytoplasmic, and a combined membrane and organelle fraction. The subcellular specificity and the composition of the fractions were demonstrated by immunoblot analysis of five marker proteins and analysis of 43 proteins by two-dimensional gel electrophoresis and mass spectrometry. To cover all protein species, both conventional two-dimensional and benzyldimethyl-n-hexadecyl ammonium chloride-sodium dodecyl sulfate (16-BAC-SDS) gel electrophoresis were performed. Integral membrane proteins and strongly basic nuclear histones were detected only in the 16-BAC-SDS gel electrophoresis system, confirming its usefulness for proteome analysis. All but one protein complied to the respective subcellular composition of the analyzed fractions. Taken together, the data make our subcellular prefractionation protocol an attractive alternative to other prefractionation methods which are based on less physiological protein properties.  相似文献   

12.
Due to the complexity of proteomes, developing methods of sample fractionation, separation, concentration, and detection have become urgent to the identification of large numbers of proteins, as well as the acquisition of those proteins in low abundance. In this work, liquid isoelectric focusing (LIEF) combined with 2D-LC-MS/MS was applied to the proteome of Saccharomyces cerevisiae. This yielded a total of 1795 proteins that were detected and identified by 30 fractions of protein prefractionation. Categorization of these hits demonstrated the ability of this technology to detect and identify proteins rarely seen in proteome analysis without protein fractionation. LIEF-2D-LC-MS/MS also produced improved resolution of low-abundance proteins. Furthermore, we analyzed the characteristics of proteins obtained by LIEF-2D-LC-MS/MS. 1103 proteins with CAI under 0.2 were identified, allowing us to specifically obtain detailed biochemical information on these kind proteins. It was observed that LIEF-2D-LC-MS/MS is useful for large-scale proteome analysis and may be specifically applied to systems with wide dynamic ranges.  相似文献   

13.
Protein profiling using mass spectrometry technology has emerged as a powerful method for analyzing large-scale protein-expression patterns in cells and tissues. However, a number of challenges are present in proteomics research, one of the greatest being the high degree of protein complexity and huge dynamic range of proteins expressed in the complex biological mixtures, which exceeds six orders of magnitude in cells and ten orders of magnitude in body fluids. Since many important signaling proteins have low expression levels, methods to detect the low-abundance proteins in a complex sample are required. This review will focus on the fundamental fractionation and mass spectrometry techniques currently used for large-scale shotgun proteomics research.  相似文献   

14.
Protein profiling using mass spectrometry technology has emerged as a powerful method for analyzing large-scale protein-expression patterns in cells and tissues. However, a number of challenges are present in proteomics research, one of the greatest being the high degree of protein complexity and huge dynamic range of proteins expressed in the complex biological mixtures, which exceeds six orders of magnitude in cells and ten orders of magnitude in body fluids. Since many important signaling proteins have low expression levels, methods to detect the low-abundance proteins in a complex sample are required. This review will focus on the fundamental fractionation and mass spectrometry techniques currently used for large-scale shotgun proteomics research.  相似文献   

15.
The kidney glomerulus plays a pivotal role in ultrafiltration of plasma into urine and also is the locus of kidney disease progressing to chronic renal failure. We have focused proteomic analysis on the glomerulus that is most proximal to the disease locus. In the present study, we aimed to provide a confident, in-depth profiling of the glomerulus proteome. The glomeruli were highly purified from the kidney cortex from a male, 68-year-old patient who underwent nephroureterectomy due to ureter carcinoma. The patient was normal in clinical examinations including serum creatinine and urea levels and liver function, and did not receive any chemotherapy and radiotherapy. The cortical tissue was histologically normal, and no significant deposition of immunoglobulins and complement C3 was observed. We employed a novel strategy of protein separation using 1D (SDS-PAGE) and 2D (solution-phase IEF in combination with SDS-PAGE) prefractionation prior to the shotgun analysis with LC-MS/MS. The protein prefractionation produced 90 fractions, and eventually provided a confident set of identified proteins consisting of 6686 unique proteins (3679 proteins with two or more peptide matches and 3007 proteins with one peptide match), representing 2966 distinct genes. All the identified proteins were annotated and classified in terms of molecular function and biological process, compiled into 1D and 2D protein arrays, consisting of 15 and 75 sections, corresponding to the protein fractions which were defined by MW and pI range, and deposited on a Web-based database (http://www.hkupp.org). The most remarkable feature of the glomerulus proteome was a high incidence of identification of cytoskeleton-related proteins, presumably reflecting the well-developed, cytoskeletal organization of glomerular cells related to their physiological functions.  相似文献   

16.
Comprehensive proteome analysis of rare cell phenotypes remains a significant challenge. We report a method for low cell number MS-based proteomics using protease digestion of mildly formaldehyde-fixed cells in cellulo, which we call the “in-cell digest.” We combined this with averaged MS1 precursor library matching to quantitatively characterize proteomes from low cell numbers of human lymphoblasts. About 4500 proteins were detected from 2000 cells, and 2500 proteins were quantitated from 200 lymphoblasts. The ease of sample processing and high sensitivity makes this method exceptionally suited for the proteomic analysis of rare cell states, including immune cell subsets and cell cycle subphases. To demonstrate the method, we characterized the proteome changes across 16 cell cycle states (CCSs) isolated from an asynchronous TK6 cells, avoiding synchronization. States included late mitotic cells present at extremely low frequency. We identified 119 pseudoperiodic proteins that vary across the cell cycle. Clustering of the pseudoperiodic proteins showed abundance patterns consistent with “waves” of protein degradation in late S, at the G2&M border, midmitosis, and at mitotic exit. These clusters were distinguished by significant differences in predicted nuclear localization and interaction with the anaphase-promoting complex/cyclosome. The dataset also identifies putative anaphase-promoting complex/cyclosome substrates in mitosis and the temporal order in which they are targeted for degradation. We demonstrate that a protein signature made of these 119 high-confidence cell cycle–regulated proteins can be used to perform unbiased classification of proteomes into CCSs. We applied this signature to 296 proteomes that encompass a range of quantitation methods, cell types, and experimental conditions. The analysis confidently assigns a CCS for 49 proteomes, including correct classification for proteomes from synchronized cells. We anticipate that this robust cell cycle protein signature will be crucial for classifying cell states in single-cell proteomes.  相似文献   

17.
Rat liver nonhistone chromosomal (NHC) proteins were preparatively fractionated by isoelectrofocusing in 40 × 15 × 0.5-cm layer of Sephadex G75-8 m urea gel. The fractions were collected and analyzed by reclectrofocusing and by SDS-polyacrylamide gel electrophoresis. It is shown that most of the rat liver NHC proteins do not focus as single bands but rather within a wide pH interval. The conclusion is drawn that a protein mixture as complex as the total chromatin protein can not be completely resolved by isoelectrofocusing because the protein molecules form equilibrium complexes either with the ampholines or among themselves.  相似文献   

18.
MS/MS is the technology of choice for analyzing complex protein mixtures. However, due to the intrinsic complexity and dynamic range present in higher eukaryotic proteomes, prefractionation is an important step to maximize the number of proteins identified. Off‐gel IEF (OG‐IEF) and high pH RP (Hp‐RP) column chromatography have both been successfully utilized as a first‐dimension peptide separation technique in shotgun proteomic experiments. Here, a direct comparison of the two methodologies was performed on ex vivo peripheral blood mononuclear cell lysate. In 12‐fraction replicate analysis, Hp‐RP resulted in more peptides and proteins identified than OG‐IEF fractionation. Distributions of peptide pIs and hydropathy did not reveal any appreciable bias in either technique. Resolution, defined here as the ability to limit a specific peptide to one particular fraction, was significantly better for Hp‐RP. This leads to a more uniform distribution of total and unique peptides for Hp‐RP across all fractions collected. These results suggest that fractionation by Hp‐RP over OG‐IEF is the better choice for typical complex proteome analysis.  相似文献   

19.
Proteomics has lacked adequate methods for handling the complexity (hundreds of thousands of different proteins) and range of protein concentrations (≥106) of eukaryotic proteomes. New multiphoton-detection methods for ultrasensitive detection of proteins produce 10,000-fold gains in sensitivity and allow highly quantitative, linear detection of 50 zmol (30,000 molecules) to 500 fmol of proteins in complex samples. The potential of multiphoton detection in top-down proteomics analyses is illustrated with applications in monitoring proteomes in very small numbers of cells, in identifying and monitoring complex functional isoforms of cancer-related proteins, and in super-sensitive immunoassays of serum proteins for high-performance detection of cancer.  相似文献   

20.
The majority of proteome-wide studies rely on the high separation power of two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS), often combined with protein prefractionation. Alternative approaches would be advantageous in order to reduce the analysis time and the amount of sample required. On the basis of the recent advances in chromatographic and mass spectrometric instrumentation, thousands of proteins can be identified in a single-run LC-MS/MS experiment using ultralong gradients. Consequently, the analysis of simple proteomes or clinical samples in adequate depth becomes possible by performing single-run LC-MS/MS experiments. Here we present a generally applicable protocol for protein analysis from unseparated whole-cell extracts and discuss its potential and limitations. Demonstrating the practical applicability of the method, we identified 2,761 proteins from a HeLa cell lysate, requiring around 10 h of nanoLC-MS/MS measurement time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号