首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adipocytokines and cancer   总被引:12,自引:0,他引:12  
Adipose tissue-produced hormones significantly affect the metabolism of lipids and carbohydrates as well as numerous other processes in human body. It is generally accepted that endocrine dysfunction of adipose tissue may represent one of the causal links between obesity and insulin resistance/diabetes. Epidemiological studies underlined that obesity represents a significant risk factor for the development of cancer, although the exact mechanism of this relationship remains to be determined. Multiple recent studies have indicated that some of adipose tissue-derived hormones may significantly influence the growth and proliferation of tumorous stroma and malignant cells within. Here we review current knowledge about possible relationship of leptin and adiponectin to the etiopathogenesis of different malignant tumors. Most of the studies indicated that while leptin may potentiate the growth of cancer cells in vitro, adiponectin appears to have an opposite effect. Further studies are necessary to decide whether obesity-induced endocrine dysfunction of adipose tissue can directly influence carcinogenesis in different tissues and organs.  相似文献   

2.
As is well known, adipose tissue is an important site for lipid metabolism and insulin-responsive glucose uptake. The recent discovery of the endocrine function of adipose tissue and the association of obesity with chronic low-grade inflammation in adipose tissue has reinforced the concept of the central role of adipose tissue in mediating obesity-linked insulin resistance and metabolic dysregulation. The study of adipose cells has provided new insights into the mechanism underlying insulin resistance as well as the therapeutic strategies for diabetes. Numerous efforts have been made in identifying key molecular regulators of insulin action and metabolism, including the utilization of advanced proteomics technology. Various proteomic approaches have been applied to identify the adipose secretome, protein-expression profiling and post-translational modifications in adipose cells in the pathological state. In this review, we summarize the recent advances in the proteomics of adipose tissue, and discuss the identified proteins that potentially play important roles in insulin resistance and diabetes.  相似文献   

3.
脂肪细胞具有贮存、供给能量和内分泌的功能,网膜素是其分泌的多种活性因子之一。网膜素与肥胖、糖脂代谢、胰岛素抵抗及动脉粥样硬化有明显的相关性,参与2型糖尿病的发生发展,本文现就网膜素对2型糖尿病的相关性作用作一简要综述。  相似文献   

4.
5.
成纤维细胞生长因子21(fibroblast growth factor 21,FGF21)作为一种不依赖胰岛素的血糖调节因子,目前已被看做是治疗2型糖尿病的一个潜在的新型治疗因素.大量鼠类及灵长类动物模型的实验结果显示:FGF21可通过作用于脂肪组织及胰腺来降低血糖和甘油三酯含量,从而预防饮食诱导的肥胖及胰岛素抵抗.此外,FGF21也被证明可作为一种主要的内源性调控子,在禁食和酮症时起着关键的调控作用.然而,一些临床观察实验的结果表明,临床观察实验与动物模型实验之间虽然具有一定的相似性,但也存在很多不同,因而目前FGF21在人体中的生理学作用仍不明确.  相似文献   

6.
Obesity is a pandemic disorder that can be defined as a chronic excess of adipose tissue that increases the risk of suffering chronic diseases such as, diabetes, arterial hypertension, stroke and some forms of cancer. We now know that adipose tissue, aside from being an energy store, is also an important endocrine and metabolic organ. Recently, new mechanisms that control obesity have been identified, such as the equilibrium between white and brown adipose tissue, the localization of adipose mass (visceral or ventral), and the presence of adipose and mesenchymal stem cells. In this review, we describe the implication of these stem cell types in the normal physiology and dysfunction of adipose tissue. These stem cells provide a potential target for modulating the response of the body to obesity and diabetes, as well as a potential tool for regenerative medicine.  相似文献   

7.
While the link between obesity and type 2 diabetes is clear on an epidemiological level, the underlying mechanism linking these two common disorders is not as clearly understood. One hypothesis linking obesity to type 2 diabetes is the adipose tissue expandability hypothesis. The adipose tissue expandability hypothesis states that a failure in the capacity for adipose tissue expansion, rather than obesity per se is the key factor linking positive energy balance and type 2 diabetes. All individuals possess a maximum capacity for adipose expansion which is determined by both genetic and environmental factors. Once the adipose tissue expansion limit is reached, adipose tissue ceases to store energy efficiently and lipids begin to accumulate in other tissues. Ectopic lipid accumulation in non-adipocyte cells causes lipotoxic insults including insulin resistance, apoptosis and inflammation. This article discusses the links between adipokines, inflammation, adipose tissue expandability and lipotoxicity. Finally, we will discuss how considering the concept of allostasis may enable a better understanding of how diabetes develops and allow the rational design of new anti diabetic treatments.  相似文献   

8.
The rapid increase of obese population in the United States has made obesity into epidemic proportion. Obesity is a strong risk factor for metabolic syndrome, type 2 diabetes mellitus, cardiovascular diseases, cancer and other diseases. Compelling evidence has demonstrated that increased adipose tissue mass is not only the consequence of obesity, but also plays a central role in the development of obesity-associated diseases. Recent studies have profoundly changed the concept of adipose tissue from being an energy depot to an active endocrine organ. The development of obesity alters adipocyte-derived hormones or cytokines expression, which provide a link between obesity and impaired insulin sensitivity and metabolic defects in other tissues. This review summarizes the current knowledge on how major adipose-derived hormones or adipocytokines influence insulin sensitivity.  相似文献   

9.
TNF-alpha and adipocyte biology   总被引:4,自引:0,他引:4  
Cawthorn WP  Sethi JK 《FEBS letters》2008,582(1):117-131
Dyslipidemia and insulin resistance are commonly associated with catabolic or lipodystrophic conditions (such as cancer and sepsis) and with pathological states of nutritional overload (such as obesity-related type 2 diabetes). Two common features of these metabolic disorders are adipose tissue dysfunction and elevated levels of tumour necrosis factor-alpha (TNF-alpha). Herein, we review the multiple actions of this pro-inflammatory adipokine on adipose tissue biology. These include inhibition of carbohydrate metabolism, lipogenesis, adipogenesis and thermogenesis and stimulation of lipolysis. TNF-alpha can also impact the endocrine functions of adipose tissue. Taken together, TNF-alpha contributes to metabolic dysregulation by impairing both adipose tissue function and its ability to store excess fuel. The molecular mechanisms that underlie these actions are discussed.  相似文献   

10.
Adipose, or fat, tissue (AT) was once considered an inert tissue that primarily existed to store lipids, and was not historically recognized as an important organ in the regulation and maintenance of health. With the rise of obesity and more rigorous research, AT is now recognized as a highly complex metabolic organ involved in a host of important physiological functions, including glucose homeostasis and a multitude of endocrine capabilities. AT dysfunction has been implicated in several disease states, most notably obesity, metabolic syndrome and type 2 diabetes. The study of AT has provided useful insight in developing strategies to combat these highly prevalent metabolic diseases. This review highlights the major functions of adipose tissue and the consequences that can occur when disruption of these functions leads to systemic metabolic dysfunction.  相似文献   

11.
Obesity and metabolic disorders such as insulin resistance and type 2 diabetes have become a major threat to public health globally. The mechanisms that lead to insulin resistance in type 2 diabetes have not been well understood. In this study, we show that mice deficient in MAPK phosphatase 5 (MKP5) develop insulin resistance spontaneously at an early stage of life and glucose intolerance at a later age. Increased macrophage infiltration in white adipose tissue of young MKP5-deficient mice correlates with the development of insulin resistance. Glucose intolerance in MKP5-deficient mice is accompanied by significantly increased visceral adipose weight, reduced AKT activation, enhanced p38 activity, and increased inflammation in visceral adipose tissue when compared with wild-type (WT) mice. Deficiency of MKP5 resulted in increased inflammatory activation in macrophages. These findings thus demonstrate that MKP5 critically controls inflammation in white adipose tissue and the development of metabolic disorders.  相似文献   

12.
Endocrinology of adipose tissue - an update.   总被引:1,自引:0,他引:1  
Adipose tissue is the body's largest repository of energy and it plays an important role in total energy homeostasis. Moreover, it is now well recognized as an endocrine organ. A wide range of different factors including complex proteins as well as fatty acids, prostaglandins, and steroids are either synthesized de novo or converted in adipose tissue and released into the blood stream. These so-called adipokines contribute to the development of obesity-related disorders, particularly type-2 diabetes (T2D) and cardiovascular disease. In this review, we present an overview on the endocrine functions of adipose tissue with a special focus on discoveries reported within the past 5 years.  相似文献   

13.
The increasing national prevalence of obesity is a major public health concern and a substantial burden on the health care resources of Canada. In addition to the direct health impact of obesity, this condition is a well-established risk factor for the development of various prevalent comorbidities including type 2 diabetes, hypertension, and cardiovascular disease. Historically, adipose tissue has been regarded primarily as an organ for energy storage. However, the discovery of leptin in the mid 1990's revolutionized our understanding of this tissue and has focused attention on the endocrine function of adipose tissue as a source of secreted bioactive peptides. These compounds, collectively termed adipokines, regulate a number of biological functions including appetite and energy balance, insulin sensitivity, lipid metabolism, blood pressure, and inflammation. The physiological importance of adipokines has led to the hypothesis that changes in the synthesis and secretion of these compounds in the obese are a causative factor contributing to the development of obesity and obesity-related diseases in these individuals. Following from this it has been proposed that pharmacologic manipulation of adipokine levels may provide novel effective therapeutic strategies to treat and prevent obesity, type 2 diabetes, and cardiovascular disease.  相似文献   

14.
As many individuals worlwide are exposed to arsenic, it is necessary to unravel the role of arsenic in the risk of obesity and diabetes. Therefore, the present study reviewed the effects of arsenic exposure on the risk and potential etiologic mechanisms of obesity and diabetes. It has been suggested that inflammation, oxidative stress, and apoptosis contribute to the pathogenesis of arsenic-induced diabetes and obesity. Though arsenic is known to cause diabetes through different mechanisms, the role of adipose tissue in diabetes is still unclear. This review exhibited the effects of arsenic on the metabolism and signaling pathways within adipose tissue (such as sirtuin 3 [SIRT3]- forkhead box O3 [FOXO3a], mitogen-activated protein kinase [MAPK], phosphoinositide-dependant kinase-1 [PDK-1], unfolded protein response, and C/EBP homologous protein [CHOP10]). Different types of adipokines involved in arsenic-induced diabetes are yet to be elucidated. Arsenic exerts negative effects on the white adipose tissue by decreasing adipogenesis and enhancing lipolysis. Some epidemiological studies have shown that arsenic can promote obesity. Nevertheless, few studies have indicated that arsenic may induce lipodystrophy. Arsenic multifactorial effects include accelerating birth and postnatal weight gains, elevated body fat content, glucose intolerance, insulin resistance, and increased serum lipid profile. Arsenic also elevated cord blood and placental, as well as postnatal serum leptin levels. The data from human studies indicate an association between inorganic arsenic exposure and the risk of diabetes and obesity. However, the currently available evidence is insufficient to conclude that low-moderate dose arsenic is associated with diabetes or obesity development. Therefore, more investigations are needed to determine biological mechanisms linking arsenic exposure to obesity and diabetes.  相似文献   

15.
现代研究发现脂肪组织的功能不仅仅只是储存以及释放脂类,还作为人体的内分泌腺,在维持机体代谢平衡方面具有重要的作用。而肥胖状态时脂肪组织的分泌功能紊乱,炎症因子与脂肪因子分泌失衡,打破了机体的代谢平衡。更糟糕的是,脂肪组织形成慢性低度炎症以及缺氧微环境,引起胶原的异常沉积,脂肪组织纤维化,从而破坏脂肪组织正常功能,可能进一步导致糖尿病以及肿瘤的产生。因此,本文主要概述肥胖引起的慢性炎症和缺氧微环境通过分泌炎症因子、上调缺氧诱导因子的表达,进而改变脂肪细胞外基质的组成,最终促进脂肪纤维化的发生的机制。  相似文献   

16.
While genome‐wide association studies as well as candidate gene studies have revealed a great deal of insight into the contribution of genetics to obesity development and susceptibility, advances in adipose tissue research have substantially changed the understanding of adipose tissue function. Its perception has changed from passive lipid storage tissue to active endocrine organ regulating and modulating whole‐body energy homeostasis and metabolism and inflammatory and immune responses by secreting a multitude of bioactive molecules, termed adipokines. The expression of human vaspin (serpinA12) is positively correlated to body mass index and insulin sensitivity and increases glucose tolerance in vivo, suggesting a compensatory role in response to diminished insulin signaling in obesity. Recently, considerable insight has been gained into vaspin structure, function, and specific target tissue‐dependent effects, and several lines of evidence suggest vaspin as a promising candidate for drug development for the treatment of obesity‐related insulin resistance and inflammation. These will be summarized in this review with a focus on molecular mechanisms and pathways. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Atherosclerotic disease remains the leading cause of death in industrialized nations despite major advances in its diagnosis, treatment, and prevention. The increasing epidemic of obesity, insulin resistance, and diabetes will likely add to this burden. Increasingly, it is becoming apparent that adipose tissue is an active endocrine and paracrine organ that releases several bioactive mediators that influence not only body weight homeostasis but also inflammation, coagulation, fibrinolysis, insulin resistance, diabetes, and atherosclerosis. The cellular mechanisms linking obesity and atherosclerosis are complex and have not been fully elucidated. This review summarizes the experimental and clinical evidence on how excess body fat influences cardiovascular health through multiple yet converging pathways. The role of adipose tissue in the development of obesity-linked insulin resistance, metabolic syndrome, and diabetes will be reviewed, including an examination of the molecular links between obesity and atherosclerosis, namely, the effects of fat-derived adipokines. Finally, we will discuss how these new insights may provide us with innovative therapeutic strategies to improve cardiovascular health.  相似文献   

18.
Adipose tissue inflammation and dysfunction are associated with obesity‐related insulin resistance and diabetes, but mechanisms underlying this relationship are unclear. Although senescent cells accumulate in adipose tissue of obese humans and rodents, a direct pathogenic role for these cells in the development of diabetes remains to be demonstrated. Here, we show that reducing senescent cell burden in obese mice, either by activating drug‐inducible “suicide” genes driven by the p16Ink4a promoter or by treatment with senolytic agents, alleviates metabolic and adipose tissue dysfunction. These senolytic interventions improved glucose tolerance, enhanced insulin sensitivity, lowered circulating inflammatory mediators, and promoted adipogenesis in obese mice. Elimination of senescent cells also prevented the migration of transplanted monocytes into intra‐abdominal adipose tissue and reduced the number of macrophages in this tissue. In addition, microalbuminuria, renal podocyte function, and cardiac diastolic function improved with senolytic therapy. Our results implicate cellular senescence as a causal factor in obesity‐related inflammation and metabolic derangements and show that emerging senolytic agents hold promise for treating obesity‐related metabolic dysfunction and its complications.  相似文献   

19.
The effect of PPARgamma ligands on the adipose tissue in insulin resistance   总被引:12,自引:0,他引:12  
Insulin resistance is frequently accompanied by obesity and both obesity and type 2 diabetes are associated with a mild chronic inflammation. Elevated levels of various cytokines, such as TNF-alpha and IL-6, are typically found in the adipose tissue in these conditions. It has been suggested that many cytokines produced in the adipose tissue are derived from infiltrated inflammatory cells. However, the adipose tissue itself has proven to be an important endocrine organ, secreting several hormones and cytokines, usually referred to as adipokines. Peroxisome proliferator-activated receptor (PPAR)gamma is essential for adipocyte proliferation and differentiation. In recent years, PPARgamma and its ligands, the thiazolidinediones (TZD), have achieved great attention due to their insulin sensitizing and anti-inflammatory properties. Treatment with TZDs result in improved insulin signaling and adipocyte differentiation, increased adipose tissue influx of free fatty acids and inhibition of cytokine expression and action. As a result, PPARgamma plays a central role in maintaining a functional and differentiated adipose tissue.  相似文献   

20.
Dysfunction of the adipose tissue is a central driver for obesity-associated diabetes. It is characterized by dysregulated adipokine secretion, which contributes to insulin resistance of key metabolic tissues, including the liver, skeletal muscles, and fat itself. The inter-organ cross talk between the adipose tissue and the other organs as well as the intra-organ cross talk between adipocytes and macrophages within the adipose tissue, traditionally mediated by hormones, was recently evidenced to be regulated by adipose-derived exosomes. Exosomes are nano-sized membrane-bound vesicles secreted by the donor cells to modify intercellular communication by translating constituent nucleic acids and proteins to the target cells. Herein, we reviewed the latest progress in understanding the role of adipose-derived exosomes in the development of insulin resistance, a key mechanism that underpins diabetes and diabetic complications, with a special focus on the role of exosomal miRNAs (micro RNAs) and proteins, and discusses the potential implications of targeting adipose tissue-derived exosomes for diabetic therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号