首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mass spectrometry-based investigation of clinical samples enables the high-throughput identification of protein biomarkers. We provide an overview of mass spectrometry-based proteomic techniques that are applicable to the investigation of clinical samples. We address sample collection, protein extraction and fractionation, mass spectrometry modalities, and quantitative proteomics. Finally, we examine the limitations and further potential of such technologies. Liquid chromatography fractionation coupled with tandem mass spectrometry is well suited to handle mixtures of hundreds or thousands of proteins. Mass spectrometry-based proteome elucidation can reveal potential biomarkers and aid in the development of hypotheses for downstream investigation of the molecular mechanisms of disease.  相似文献   

2.
In many studies, particularly in the field of systems biology, it is essential that identical protein sets are precisely quantified in multiple samples such as those representing differentially perturbed cell states. The high degree of reproducibility required for such experiments has not been achieved by classical mass spectrometry-based proteomics methods. In this study we describe the implementation of a targeted quantitative approach by which predetermined protein sets are first identified and subsequently quantified at high sensitivity reliably in multiple samples. This approach consists of three steps. First, the proteome is extensively mapped out by multidimensional fractionation and tandem mass spectrometry, and the data generated are assembled in the PeptideAtlas database. Second, based on this proteome map, peptides uniquely identifying the proteins of interest, proteotypic peptides, are selected, and multiple reaction monitoring (MRM) transitions are established and validated by MS2 spectrum acquisition. This process of peptide selection, transition selection, and validation is supported by a suite of software tools, TIQAM (Targeted Identification for Quantitative Analysis by MRM), described in this study. Third, the selected target protein set is quantified in multiple samples by MRM. Applying this approach we were able to reliably quantify low abundance virulence factors from cultures of the human pathogen Streptococcus pyogenes exposed to increasing amounts of plasma. The resulting quantitative protein patterns enabled us to clearly define the subset of virulence proteins that is regulated upon plasma exposure.  相似文献   

3.
Histone post-translational modifications (PTMs) comprise one of the most intricate nuclear signaling networks that govern gene expression in a long-term and dynamic fashion. These PTMs are considered to be ‘epigenetic’ or heritable from one cell generation to the next and help establish genomic expression patterns. While much of the analyses of histones have historically been performed using site-specific antibodies, these methods are replete with technical obstacles (i.e., cross-reactivity and epitope occlusion). Mass spectrometry-based proteomics has begun to play a significant role in the interrogation of histone PTMs, revealing many new aspects of these modifications that cannot be easily determined with standard biological approaches. Here, we review the accomplishments of mass spectrometry in the histone field, and outline the future roadblocks that must be overcome for mass spectrometry-based proteomics to become the method of choice for chromatin biologists.  相似文献   

4.
Histone post-translational modifications (PTMs) comprise one of the most intricate nuclear signaling networks that govern gene expression in a long-term and dynamic fashion. These PTMs are considered to be 'epigenetic' or heritable from one cell generation to the next and help establish genomic expression patterns. While much of the analyses of histones have historically been performed using site-specific antibodies, these methods are replete with technical obstacles (i.e., cross-reactivity and epitope occlusion). Mass spectrometry-based proteomics has begun to play a significant role in the interrogation of histone PTMs, revealing many new aspects of these modifications that cannot be easily determined with standard biological approaches. Here, we review the accomplishments of mass spectrometry in the histone field, and outline the future roadblocks that must be overcome for mass spectrometry-based proteomics to become the method of choice for chromatin biologists.  相似文献   

5.
宋艳萍  姜颖  贺福初 《生命科学》2007,19(1):104-108
运用蛋白质组学方法对亚细胞组分进行研究是目前的研究热点。传统的亚细胞分离技术结合质谱鉴定技术为亚细胞蛋白质组学的研究提供了技术平台。本文对快速发展的亚细胞蛋白质组研究进展及其所揭示的生物学意义进行了综述。  相似文献   

6.
Proteomics has changed the way proteins are analyzed in living systems. This approach has been applied to blood products and protein profiling has evolved in parallel with the development of techniques. The identification of proteins belonging to red blood cell, platelets or plasma was achieved at the end of the last century. Then, the questions on the applications emerged. Hence, several studies have focused on problems related to blood banking and products, such as the aging of blood products, identification of biomarkers, related diseases and the protein–protein interactions. More recently, a mass spectrometry-based proteomics approach to quality control has been applied in order to offer solutions and improve the quality of blood products. The current challenge we face is developing a closer relationship between transfusion medicine and proteomics. In this article, these issues will be approached by focusing first on the proteome identification of blood products and then on the applications and future developments within the field of proteomics and blood products.  相似文献   

7.
Proteomics has changed the way proteins are analyzed in living systems. This approach has been applied to blood products and protein profiling has evolved in parallel with the development of techniques. The identification of proteins belonging to red blood cell, platelets or plasma was achieved at the end of the last century. Then, the questions on the applications emerged. Hence, several studies have focused on problems related to blood banking and products, such as the aging of blood products, identification of biomarkers, related diseases and the protein-protein interactions. More recently, a mass spectrometry-based proteomics approach to quality control has been applied in order to offer solutions and improve the quality of blood products. The current challenge we face is developing a closer relationship between transfusion medicine and proteomics. In this article, these issues will be approached by focusing first on the proteome identification of blood products and then on the applications and future developments within the field of proteomics and blood products.  相似文献   

8.
Detection technologies in proteome analysis   总被引:21,自引:0,他引:21  
Common strategies employed for general protein detection include organic dye, silver stain, radiolabeling, reverse stain, fluorescent stain, chemiluminescent stain and mass spectrometry-based approaches. Fluorescence-based protein detection methods have recently surpassed conventional technologies such as colloidal Coomassie blue and silver staining in terms of quantitative accuracy, detection sensitivity, and compatibility with modern downstream protein identification and characterization procedures, such as mass spectrometry. Additionally, specific detection methods suitable for revealing protein post-translational modifications have been devised over the years. These include methods for the detection of glycoproteins, phosphoproteins, proteolytic modifications, S-nitrosylation, arginine methylation and ADP-ribosylation. Methods for the detection of a range of reporter enzymes and epitope tags are now available as well, including those for visualizing beta-glucuronidase, beta-galactosidase, oligohistidine tags and green fluorescent protein. Fluorescence-based and mass spectrometry-based methodologies are just beginning to offer unparalleled new capabilities in the field of proteomics through the performance of multiplexed quantitative analysis. The primary objective of differential display proteomics is to increase the information content and throughput of proteomics studies through multiplexed analysis. Currently, three principal approaches to differential display proteomics are being actively pursued, difference gel electrophoresis (DIGE), multiplexed proteomics (MP) and isotope-coded affinity tagging (ICAT). New multiplexing capabilities should greatly enhance the applicability of the two-dimensional gel electrophoresis technique with respect to addressing fundamental questions related to proteome-wide changes in protein expression and post-translational modification.  相似文献   

9.
Mass spectrometry-based clinical proteomics approaches were introduced into the biomedical field more than two decades ago. Despite recent developments both in the field of mass spectrometry and bioinformatics, the gap between proteomics results and their translation into clinical practice still needs to be closed, as implementation of proteomics results in the clinic appears to be scarce. An extra focus on the importance of the experimental design is therefore of crucial importance.  相似文献   

10.
The analysis of the large amount of data generated in mass spectrometry-based proteomics experiments represents a significant challenge and is currently a bottleneck in many proteomics projects. In this review we discuss critical issues related to data processing and analysis in proteomics and describe available methods and tools. We place special emphasis on the elaboration of results that are supported by sound statistical arguments.  相似文献   

11.
Proteomics is very much a technology-driven field. The ambition is to identify, quantify and to assess the state of posttranslational modification and interaction partners for every protein in the cell. The proteome is in a state of flux and is thus extremely complex. Analysis of the proteome is exacerbated by the huge dynamic concentration range of proteins in the cellular environment. The impact that mass spectrometry-based proteomics has had on the field of biology has heavily depended on dramatic improvements in mass spectrometry that have been made in recent years. We examined 1541 reports indexed in PubMed relating to proteomics and reproduction to identify trends in the field and to make some broad observations for future work. To set the scene, in the first part of the report, we give a comprehensive overview of proteomics and associated techniques and technologies (such as separations and mass spectrometry). The second part examines the field in light of these techniques and suggests some opportunities for application of these tools in the area of reproduction.  相似文献   

12.
Development of statistical methods for assessing the significance of peptide assignments to tandem mass spectra obtained using database searching remains an important problem. In the past several years, several different approaches have emerged, including the concept of expectation values, target-decoy strategy, and the probability mixture modeling approach of PeptideProphet. In this work, we provide a background on statistical significance analysis in the field of mass spectrometry-based proteomics, and present our perspective on the current and future developments in this area.  相似文献   

13.
Protein chemical derivatization has emerged as an invaluable bioanalytical approach in mass spectrometry-based proteomics with nearly unlimited potential. To date, derivatization strategies in proteomics have primarily focused on improving mass spectral identification and relative quantification of proteins, as well as increasing enrichment yield from complex mixtures. However, there is a great opportunity to develop and exploit front-end chemical processes to enhance the ability to detect low-abundant peptides and proteins for a large number of applications. The content of this article focuses on improvements in targeted, mass spectrometry-based proteomic strategies, achieved by taking advantage of the mechanism of ESI through the use of hydrophobic chemical derivatization.  相似文献   

14.
15.
The antibody microarray is an intrinsically robust and quantitative system that delivers high-throughput and parallel measurements on particular sets of known proteins. It has become an important proteomics research tool, complementary to the conventional unbiased separation-based and mass spectrometry-based approaches. This review summarizes the technical aspects of production and the application for quantitative proteomic analysis with an emphasis on disease proteomics, especially the identification of biomarkers. Quality control, data analysis methods and the challenges for quantitative assays are also discussed.  相似文献   

16.
The antibody microarray is an intrinsically robust and quantitative system that delivers high-throughput and parallel measurements on particular sets of known proteins. It has become an important proteomics research tool, complementary to the conventional unbiased separation-based and mass spectrometry-based approaches. This review summarizes the technical aspects of production and the application for quantitative proteomic analysis with an emphasis on disease proteomics, especially the identification of biomarkers. Quality control, data analysis methods and the challenges for quantitative assays are also discussed.  相似文献   

17.
During the last decade, a major breakthrough in the field of proteomics has been achieved. This review describes available techniques for proteomic analyses, both gel and non-gel based, particularly concentrating on relative quantification techniques. The principle of the different techniques is discussed, highlighting the advantages and drawbacks of recently available visualization methods in gel-based assays. In addition, recent developments for quantitative analysis in non-gel-based approaches are summarized. This review focuses on applications in Type 1 diabetes. These mainly include proteomic studies on pancreatic islets in animal models and in the human situation. Also discussed are mass spectrometry-based studies on T-cells, and studies on the development of diagnostic markers for diabetic nephropathology by capillary electrophoresis coupled to mass spectrometry.  相似文献   

18.
The sub-cellular localisation of a protein is vital in defining its function, and a protein's mis-localisation is known to lead to adverse effect. As a result, numerous experimental techniques and datasets have been published, with the aim of deciphering the localisation of proteins at various scales and resolutions, including high profile mass spectrometry-based efforts. Here, we present a meta-analysis assessing and comparing the sub-cellular resolution of 29 such mass spectrometry-based spatial proteomics experiments using a newly developed tool termed QSep. Our goal is to provide a simple quantitative report of how well spatial proteomics resolve the sub-cellular niches they describe to inform and guide developers and users of such methods.  相似文献   

19.
During the last decade, a major breakthrough in the field of proteomics has been achieved. This review describes available techniques for proteomic analyses, both gel and non-gel based, particularly concentrating on relative quantification techniques. The principle of the different techniques is discussed, highlighting the advantages and drawbacks of recently available visualization methods in gel-based assays. In addition, recent developments for quantitative analysis in non-gel-based approaches are summarized. This review focuses on applications in Type 1 diabetes. These mainly include proteomic studies on pancreatic islets in animal models and in the human situation. Also discussed are mass spectrometry-based studies on T-cells, and studies on the development of diagnostic markers for diabetic nephropathology by capillary electrophoresis coupled to mass spectrometry.  相似文献   

20.
依靠质谱技术的蛋白质组学快速发展,寻求速度快、重复性好以及准确度高的定量方法是该领域的一项艰巨任务,定量蛋白质组学分支领域应运而生.其中,无标记定量方法以其样品制备简单、耗材费用低廉以及结果数据分析便捷等优点渐露锋芒.无标记定量方法通常分为信号强度法和谱图计数法两大类.本文在这两种无标记定量方法计算原理的基础上,针对各种常用的无标记定量方法及最新进展做一个较为全面的介绍,并将详细讨论两类方法的异同点,以及目前蛋白质组学中无标记定量方法所面临的主要挑战,希望能为这一领域的研究人员在选择无标记定量方法时提供一个合理的参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号