首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction: Post-translational modifications (PTMs) have an important role in the regulation of protein function, localization, and interaction with other molecules. PTMs apply a dynamic control of proteins in both physiological and pathological conditions. The study of disease-specific PTMs allows identifying potential biomarkers and developing effective drugs. Enrichment techniques combined with high-resolution mass spectrometry (MS)/MS analysis provide attractive results on PTM characterization. Selected reaction monitoring/multiple reaction monitoring (SRM/MRM) is a powerful targeted assay for the quantitation and validation of PTMs in complex biological samples.

Areas covered: The most frequent PTMs are described in terms of biological role and analytical methods commonly used to detect them. The applications of SRM/MRM for the absolute quantitation of PTMs are reported, and a specific section is focused on PTM detection in proteins that are involved in the cardiovascular system and heart diseases.

Expert commentary: PTM characterization in relation to disease pathology is still in progress, but targeted proteomics by LC-MS/MS has significantly upgraded our knowledge in the last few years. Advances in enrichment strategies and software tools will facilitate the interpretation of high PTM complexity. Promising studies confirm the great potential of SRM/MRM to study PTMs in the cardiovascular field, and PTMomics could be very useful in the clinical perspective.  相似文献   


2.
Selected reaction monitoring, also known as multiple reaction monitoring, is a powerful targeted mass spectrometry approach for a confident quantitation of proteins/peptides in complex biological samples. In recent years, its optimization and application have become pivotal and of great interest in clinical research to derive useful outcomes for patient care. Thus, selected reaction monitoring/multiple reaction monitoring is now used as a highly sensitive and selective method for the evaluation of protein abundances and biomarker verification with potential applications in medical screening. This review describes technical aspects for the development of a robust multiplex assay and discussing its recent applications in cardiovascular proteomics: verification of promising disease candidates to select only the highest quality peptides/proteins for a preclinical validation, as well as quantitation of protein isoforms and post-translational modifications.  相似文献   

3.
Proteins often undergo several post-translational modification steps in parallel to protein folding. These modifications can be transient or of a more permanent nature. Most modifications are, however, susceptible to alteration during the lifespan of proteins. Post-translational modifications thus generate variability in proteins that are far beyond that provided by the genetic code. Co- and post-translational modifications can convert the 20 specific codon-encoded amino acids into more than 100 variant amino acids with new properties. These, and a number of other modifications, can considerably increase the information content and functional repertoire of proteins, thus making their analysis of paramount importance for diagnostic and basic research purposes. Various methods used in proteomics, such as 2D gel electrophoresis, 2D liquid chromatography, mass spectrometry, affinity-based analytical methods, interaction analyses, ligand blotting techniques, protein crystallography and structure–function predictions, are all applicable for the analysis of these numerous secondary modifications. In this review, examples of some of these techniques in studying the heterogeneity of proteins are highlighted. In the future, these methods will become increasingly useful in biomarker searches and in clinical diagnostics.  相似文献   

4.
  1. Download : Download high-res image (46KB)
  2. Download : Download full-size image
Highlights
  • •Targeted mass spectrometry assay to quantify prion protein (PrP) in spinal fluid.
  • •Precise measurement of PrP peptide concentration across protein domains.
  • •Peptides are uniformly decreased in symptomatic prion disease patients.
  • •Assay applicable to humans and preclinical species for drug development.
  相似文献   

5.
The scientific community has shown great interest in the field of mass spectrometry-based proteomics and peptidomics for its applications in biology.Proteomics technologies have evolved to produce larg...  相似文献   

6.
Absolute quantification of target proteins within complex biological samples is critical to a wide range of research and clinical applications. This protocol provides step-by-step instructions for the development and application of quantitative assays using selected reaction monitoring (SRM) mass spectrometry (MS). First, likely quantotypic target peptides are identified based on numerous criteria. This includes identifying proteotypic peptides, avoiding sites of posttranslational modification, and analyzing the uniqueness of the target peptide to the target protein. Next, crude external peptide standards are synthesized and used to develop SRM assays, and the resulting assays are used to perform qualitative analyses of the biological samples. Finally, purified, quantified, heavy isotope labeled internal peptide standards are prepared and used to perform isotope dilution series SRM assays. Analysis of all of the resulting MS data is presented. This protocol was used to accurately assay the absolute abundance of proteins of the chemotaxis signaling pathway within RAW 264.7 cells (a mouse monocyte/macrophage cell line). The quantification of Gi2 (a heterotrimeric G-protein α-subunit) is described in detail.  相似文献   

7.
  1. Download : Download high-res image (120KB)
  2. Download : Download full-size image
Highlights
  • •Rigorous experimental design and data analysis for large-scale SRM studies.
  • •Plasma-based biomarker signature combined with CA125 for ovarian cancer detection.
  • •Broadly applicable strategy for the development of diagnostic biomarker assays.
  相似文献   

8.
Proteomic technologies have experienced major improvements in recent years. Such advances have facilitated the discovery of potential tumor markers with improved sensitivities and specificities for the diagnosis, prognosis and treatment monitoring of cancer patients. This review will focus on four state-of-the-art proteomic technologies, namely 2D difference gel electrophoresis, MALDI imaging mass spectrometry, electron transfer dissociation mass spectrometry and reverse-phase protein array. The major advancements these techniques have brought about and examples of their applications in cancer biomarker discovery will be presented in this review, so that readers can appreciate the immense progress in proteomic technologies from 1997 to 2008. Finally, a summary will be presented that discusses current hurdles faced by proteomic researchers, such as the wide dynamic range of protein abundance, standardization of protocols and validation of cancer biomarkers, and a 5-year view of potential solutions to such problems will be provided.  相似文献   

9.
Rescoring of mass spectrometry (MS) search results using spectral predictors can strongly increase peptide spectrum match (PSM) identification rates. This approach is particularly effective when aiming to search MS data against large databases, for example, when dealing with nonspecific cleavage in immunopeptidomics or inflation of the reference database for noncanonical peptide identification. Here, we present inSPIRE (in silico Spectral Predictor Informed REscoring), a flexible and performant open-source rescoring pipeline built on Prosit MS spectral prediction, which is compatible with common database search engines. inSPIRE allows large-scale rescoring with data from multiple MS search files, increases sensitivity to minor differences in amino acid residue position, and can be applied to various MS sample types, including tryptic proteome digestions and immunopeptidomes. inSPIRE boosts PSM identification rates in immunopeptidomics, leading to better performance than the original Prosit rescoring pipeline, as confirmed by benchmarking of inSPIRE performance on ground truth datasets. The integration of various features in the inSPIRE backbone further boosts the PSM identification in immunopeptidomics, with a potential benefit for the identification of noncanonical peptides.  相似文献   

10.
The identification of clinically relevant biomarkers represents an important challenge in oncology. This problem can be addressed with biomarker discovery and verification studies performed directly in tumor samples using formalin-fixed paraffin-embedded (FFPE) tissues. However, reliably measuring proteins in FFPE samples remains challenging. Here, we demonstrate the use of liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM/MS) as an effective technique for such applications. An LC-MRM/MS method was developed to simultaneously quantify hundreds of peptides extracted from FFPE samples and was applied to the targeted measurement of 200 proteins in 48 triple-negative, 19 HER2-overexpressing, and 20 luminal A breast tumors. Quantitative information was obtained for 185 proteins, including known markers of breast cancer such as HER2, hormone receptors, Ki-67, or inflammation-related proteins. LC-MRM/MS results for these proteins matched immunohistochemistry or chromogenic in situ hybridization data. In addition, comparison of our results with data from the literature showed that several proteins representing potential biomarkers were identified as differentially expressed in triple-negative breast cancer samples. These results indicate that LC-MRM/MS assays can reliably measure large sets of proteins using the analysis of surrogate peptides extracted from FFPE samples. This approach allows to simultaneously quantify the expression of target proteins from various pathways in tumor samples. LC-MRM/MS is thus a powerful tool for the relative quantification of proteins in FFPE tissues and for biomarker discovery.  相似文献   

11.
12.
One cause of sepsis is systemic maladaptive immune response of the host to bacteria and specifically, to Gram-negative bacterial outer-membrane glycolipid lipopolysaccharide (LPS). On the host myeloid cell surface, proinflammatory LPS activates the innate immune system via Toll-like receptor-4/myeloid differentiation factor-2 complex. Intracellularly, LPS is also sensed by the noncanonical inflammasome through caspase-11 in mice and 4/5 in humans. The minimal functional determinant for innate immune activation is the membrane anchor of LPS called lipid A. Even subtle modifications to the lipid A scaffold can enable, diminish, or abolish immune activation. Bacteria are known to modify their LPS structure during environmental stress and infection of hosts to alter cellular immune phenotypes. In this review, we describe how mass spectrometry-based structural analysis of endotoxin helped uncover major determinations of molecular pathogenesis. Through characterization of LPS modifications, we now better understand resistance to antibiotics and cationic antimicrobial peptides, as well as how the environment impacts overall endotoxin structure. In addition, mass spectrometry-based systems immunoproteomics approaches can assist in elucidating the immune response against LPS. Many regulatory proteins have been characterized through proteomics and global/targeted analysis of protein modifications, enabling the discovery and characterization of novel endotoxin-mediated protein translational modifications.  相似文献   

13.
The rod-outer-segment guanylyl cyclase 1 (ROS-GC1) is a key transmembrane protein for retinal phototransduction. Mutations of ROS-GC1 correlate with different retinal diseases that often lead to blindness. No structural data are available for ROS-GC1 so far. We performed a 3D-structural analysis of native ROS-GC1 from bovine retina by cross-linking/mass spectrometry (XL-MS) and computational modeling. Absolute quantification and activity measurements of native ROS-GC1 were performed by MS-based assays directly in bovine retina samples. Our data present the first 3D-structural analysis of active, full-length ROS-GC1 derived from bovine retina. We propose a novel domain organization for the intracellular domain ROS-GC1. Our XL-MS data of native ROS-GC1 from rod-outer-segment preparations of bovine retina agree with a dimeric architecture. Our integrated approach can serve as a blueprint for conducting 3D-structural studies of membrane proteins in their native environment.  相似文献   

14.
The molecular chaperone heat shock protein 90 (HSP90) works in concert with co-chaperones to stabilize its client proteins, which include multiple drivers of oncogenesis and malignant progression. Pharmacologic inhibitors of HSP90 have been observed to exert a wide range of effects on the proteome, including depletion of client proteins, induction of heat shock proteins, dissociation of co-chaperones from HSP90, disruption of client protein signaling networks, and recruitment of the protein ubiquitylation and degradation machinery—suggesting widespread remodeling of cellular protein complexes. However, proteomics studies to date have focused on inhibitor-induced changes in total protein levels, often overlooking protein complex alterations. Here, we use size-exclusion chromatography in combination with mass spectrometry (SEC-MS) to characterize the early changes in native protein complexes following treatment with the HSP90 inhibitor tanespimycin (17-AAG) for 8 h in the HT29 colon adenocarcinoma cell line. After confirming the signature cellular response to HSP90 inhibition (e.g., induction of heat shock proteins, decreased total levels of client proteins), we were surprised to find only modest perturbations to the global distribution of protein elution profiles in inhibitor-treated HT29 cells at this relatively early time-point. Similarly, co-chaperones that co-eluted with HSP90 displayed no clear difference between control and treated conditions. However, two distinct analysis strategies identified multiple inhibitor-induced changes, including known and unknown components of the HSP90-dependent proteome. We validate two of these—the actin-binding protein Anillin and the mitochondrial isocitrate dehydrogenase 3 complex—as novel HSP90 inhibitor-modulated proteins. We present this dataset as a resource for the HSP90, proteostasis, and cancer communities (https://www.bioinformatics.babraham.ac.uk/shiny/HSP90/SEC-MS/), laying the groundwork for future mechanistic and therapeutic studies related to HSP90 pharmacology. Data are available via ProteomeXchange with identifier PXD033459.  相似文献   

15.
An impressive, but often short objective response was obtained in many tumor patients treated with different targeted therapies, but most of the patients develop resistances against these drugs. So far, a number of distinct mechanisms leading to intrinsic as well as acquired resistances have been identified in tumors of distinct origin. These can arise from genetic alterations, like mutations, truncations, and amplifications or due to deregulated expression of various proteins and signal transduction pathways, but also from cellular heterogeneity within tumors after an initial response. Therefore, biomarkers are urgently needed for cancer prognosis and personalized cancer medicine. The application of “ome”-based technologies including cancer (epi)genomics, next generation sequencing, cDNA microarrays and proteomics might led to the predictive or prognostic stratification of patients to categorize resistance mechanisms and to postulate combinations of treatment strategies. This review discusses the implementation of proteome-based analysis to identify markers of pathway (in)activation in tumors and the resistance mechanisms, which represent major clinical problems as a tool to optimize individually tailored therapies based on targeted drugs. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   

16.
Parkinson's disease is the most common neurodegenerative movement disorder, affecting about 6 million people worldwide with a slow progression of the symptoms. Its prevalence is expected to double in the most populated areas within the next two decades, according to increasing aged population. Consequently, Parkinson's disease is a socio-economic trouble and a major challenge for the public health system. Parkinson's disease treatment is merely symptomatic, as clinical symptoms appear when about 70% of the involved neurons are lost and potential disease-modifying/neuroprotective therapies would have no effect. In turn, the availability of an objective measure that allows early diagnosis would strongly impact on the costs that biotech- and pharma-companies will sustain in order to develop disease-modifying therapies. The establishment of suitable models to investigate the mechanisms of Parkinson's disease progression and, on the other hand, the discovery and validation of selective and specific molecular biomarkers for early and differential diagnosis are indeed two important goals for a better management of the disease. In this review, we focus on cellular and animal models of Parkinson's disease by describing their advantages and limitations as useful tools to identify pathogenetic pathways that deserve further exploitation. In parallel, we discuss how proteomics may provide a potent tool to observe altered pathways in models or altered biomarkers in patients with an unbiased, hypothesis-free approach.  相似文献   

17.
Recent advances in cancer biology have subsequently led to the development of new molecularly targeted anti-cancer agents that can effectively hit cancer-related proteins and pathways. Despite better insight into genomic aberrations and diversity of cancer phenotypes, it is apparent that proteomics too deserves attention in cancer research. Currently, a wide range of proteomic technologies are being used in quest for new cancer biomarkers with effective use. These, together with newer technologies such as multiplex assays could significantly contribute to the discovery and development of selective and specific cancer biomarkers with diagnostic or prognostic values for monitoring the disease state. This review attempts to illustrate recent advances in the field of cancer biomarkers and multifaceted approaches undertaken in combating cancer.  相似文献   

18.
Plasma is an important biofluid for clinical research and diagnostics. In the clinic, unpredictable delays—from minutes to hours—between blood collection and plasma generation are often unavoidable. These delays can potentially lead to protein degradation and modification and might considerably affect intact protein measurement methods such as sandwich enzyme-linked immunosorbent assays that bind proteins on two epitopes to increase specificity, thus requiring largely intact protein structures. Here, we investigated, using multiple reaction monitoring mass spectrometry (MRM-MS), how delays in plasma processing affect peptide-centric “bottom-up” proteomics. We used validated assays for proteotypic peptide surrogates of 270 human proteins to analyze plasma generated after whole blood had been kept at room temperature from 0 to 40 h to mimic delays that occur in the clinic. Moreover, we evaluated the impact of different plasma-thawing conditions on MRM-based plasma protein quantitation. We demonstrate that >90% of protein concentration measurements were unaffected by the thawing procedure and by up to 40-h delayed plasma generation, reflected by relative standard deviations (RSDs) of <30%. Of the 159 MRM assays that yielded quantitative results in 60% of the measured time points, 139 enabled a stable protein quantitation (RSD <20%), 14 showed a slight variation (RSD 20–30%), and 6 appeared unstable/irreproducible (RSD > 30%). These results demonstrate the high robustness and thus the potential for MRM-based plasma-protein quantitation to be used in a clinical setting. In contrast to enzyme-linked immunosorbent assay, peptide-based MRM assays do not require intact three-dimensional protein structures for an accurate and precise quantitation of protein concentrations in the original sample.  相似文献   

19.
The proteomic response to bacterial infection in a teleost fish (Paralichthys olivaceus) infected with Streptococcus parauberis was analyzed using label-free protein quantitation coupled with LC-MS(E) tandem mass spectrometry. A total of 82 proteins from whole kidney, a major lymphoid organ in this fish, were found to be differentially expressed between healthy and diseased fish analyzed 6, 24, 72 and 120 h post-infection. Among the differentially expressed proteins, those involved in mediating immune responses (e.g., heat shock proteins, cathepsins, goose-type lysozyme and complement components) were most significantly up-regulated by infection. In addition, cell division cycle 48 (CDC48) and calreticulin, which are associated with cellular recovery and glycoprotein synthesis, were up-regulated in the universal protein group, whereas the other proteins in that group were down-regulated. There was continuous activation of expression of immune-associated proteins during infection, but there was also loss of expression of proteins not involved in immune function. We expect that our findings regarding immune response at the protein level would offer new insight into the systemic response to bacterial infection of a major immune organ in teleost fish.  相似文献   

20.
Cancer is a leading cause of death. Early detection is usually associated with better clinical outcomes. Recent advances in genomics and proteomics raised hopes that new biomarkers for diagnosis, prognosis or monitoring therapeutic response will soon be discovered. Proteins secreted by cancer cells, referred also as “the cancer cell secretome”, is a promising source for biomarker discovery. In this review we will summarize recent advances in cancer cell secretome analysis, focusing on the five most fatal cancers (lung, breast, prostate, colorectal, and pancreatic). For each cancer type we will describe the proteomic approaches utilized for the identification of novel biomarkers. Despite progress, identification of markers that are superior to those currently used has proven to be a difficult task and very few, if any, newly discovered biomarker has entered the clinic the last 10 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号