首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combination of high accuracy, sensitivity and speed of single and multiple-stage mass spectrometric analyses enables the collection of comprehensive sets of data containing detailed information about complex biological samples. To achieve these properties, we combined two high-performance matrix-assisted laser desorption ionization mass analyzers in one modular mass spectrometric tool, and applied this tool for dissecting the composition and post-translational modifications of protein complexes. As an example of this approach, we here present studies of the Saccharomyces cerevisiae anaphase-promoting complexes (APC) and elucidation of phosphorylation sites on its components. In general, the modular concept we describe could be useful for assembling mass spectrometers operating with both matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) ion sources into powerful mass spectrometric tools for the comprehensive analysis of complex biological samples.  相似文献   

2.
A novel linear ion trap (LIT) mass spectrometer with dual matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) ionization sources has been built in the MALDI-LIT-ESI configuration. The design features two independent ion source/ion optical channels connected to opposite ends of a single mass analyzer. The instrument consists of a commercial MALDI-LIT instrument modified by the addition of a home-built vacuum manifold, ion optical system, control electronics, and programming necessary to couple an atmospheric pressure interface to the commercial instrument. In addition to the added ESI functionality, the capabilities of the system also include simultaneous dual-channel ion introduction and analysis and high-duty cycle electronic switching (<1 s) between ion channels. Analytical and ion chemical applications of the dual-source system are explored. One analytical application is the enhanced protein sequence coverage achieved when using both ESI and MALDI to examine a tryptic digest of a six-protein mixture. The differences in the efficiency with which peptides in a mixture are ionized by the two methods give improved sequence coverage when both are applied. Other analytical applications include the use of the ions from one source as intensity or mass standards for the analyte ions from the other. An ion chemistry application involves the use of energy-resolved tandem mass spectrometry (MS/MS) to seek evidence for the generation of isomeric ions from a particular compound using the two ionization methods. A high level of agreement was achieved between the MS/MS spectra recorded under a variety of conditions after ESI and MALDI ionization; this provides evidence of the reproducibility and internal consistency of data from the dual source instrument. However, each of the peptides examined generated identical populations of structures in the two ionization methods under our conditions which are interpreted as involving slow cooling into the most stable minimum on the potential energy surface.  相似文献   

3.
Mass spectrometers equipped with matrix‐assisted laser desorption/ionization (MALDI‐MS) require frequent multipoint calibration to obtain good mass accuracy over a wide mass range and across large numbers of samples. In this study, we introduce a new synthetic peptide mass calibration standard termed PAS‐cal tailored for MALDI‐MS based bottom‐up proteomics. This standard consists of 30 peptides between 8 and 37 amino acids long and each constructed to contain repetitive sequences of Pro, Ala and Ser as well as one C‐terminal arginine residue. MALDI spectra thus cover a mass range between 750 and 3200 m/z in MS mode and between 100 and 3200 m/z in MS/MS mode. Our results show that multipoint calibration of MS spectra using PAS‐cal peptides compares well to current commercial reagents for protein identification by PMF. Calibration of tandem mass spectra from LC‐MALDI experiments using the longest peptide, PAS‐cal37, resulted in smaller fragment ion mass errors, more matching fragment ions and more protein and peptide identifications compared to commercial standards, making the PAS‐cal standard generically useful for bottom‐up proteomics.  相似文献   

4.
We demonstrate an approach for global quantitative analysis of protein mixtures using differential stable isotopic labeling of the enzyme-digested peptides combined with microbore liquid chromatography (LC) matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). Microbore LC provides higher sample loading, compared to capillary LC, which facilitates the quantification of low abundance proteins in protein mixtures. In this work, microbore LC is combined with MALDI MS via a heated droplet interface. The compatibilities of two global peptide labeling methods (i.e., esterification to carboxylic groups and dimethylation to amine groups of peptides) with this LC-MALDI technique are evaluated. Using a quadrupole-time-of-flight mass spectrometer, MALDI spectra of the peptides in individual sample spots are obtained to determine the abundance ratio among pairs of differential isotopically labeled peptides. MS/MS spectra are subsequently obtained from the peptide pairs showing significant abundance differences to determine the sequences of selected peptides for protein identification. The peptide sequences determined from MS/MS database search are confirmed by using the overlaid fragment ion spectra generated from a pair of differentially labeled peptides. The effectiveness of this microbore LC-MALDI approach is demonstrated in the quantification and identification of peptides from a mixture of standard proteins as well as E. coli whole cell extract of known relative concentrations. It is shown that this approach provides a facile and economical means of comparing relative protein abundances from two proteome samples.  相似文献   

5.
This article describes the use of two mass spectrometric techniques, matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, toward a variety of challenging problems in drug discovery and identification. Quantitative ESI was used to screen for inhibitor activity of two different enzymatic glycosylation reactions resulting in the identification of the most effective inhibitors and the determination of their IC50 (inhibitor concentration at 50% inhibition). Also described is a combinatorial extraction method used with automated MALDI mass spectrometry to improve upon the clinical analysis of the immunosuppressant drug cyclosporin A (CsA). Optimization was performed by generating an array of solvent systems which were screened (by MALDI-MS) for the most efficient extraction of CsA from whole blood. Ultimately a 70/30 hexane:CHCl3 mixture was identified as the most efficient binary solvent system for such extractions. In addition it was demonstrated that peptides and carbohydrates, covalently linked to a polymeric support (through a photolabile linker), can be directly analyzed by MALDI in a single step which requires no pretreatment of the sample to induce cleavage from the support. The UV laser light in the MALDI experiment was used to simultaneously promote the analyte's photolytic cleavage from the solid support and its gas phase ionization for subsequent mass spectral analysis. Overall, the strength of mass spectrometry lies in its versatility, making it a powerful analytical technique with which to characterize the diversity of compounds found in combinatorial libraries.  相似文献   

6.
By the development of soft ionization such as matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI), mass spectrometry (MS) has become an indispensable technique to analyze proteins. The combination of protein separation and identification such as two-dimensional gel electrophoresis and MS, surface-enhanced laser desorption/ionization-MS, liquid chromatography/MS, and capillary electrophoresis/MS has been successfully applied for proteome analysis of urine and plasma to discover biomarkers of kidney diseases. Some urinary proteins and their proteolytic fragments have been identified as biomarker candidates for kidney diseases. This article reviews recent advances in the application of proteomics using MS to discover biomarkers for kidney diseases.  相似文献   

7.
Mass spectrometry technologies for proteomics.   总被引:1,自引:0,他引:1  
In the late 1980s, the advent of soft ionization techniques capable of generating stable gas phase ions from thermally unstable biomolecules, namely matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI), laid the way for the development of a set of powerful alternatives to the traditional Edman chemistry for the structural characterization of peptides and proteins. The rapid protein identification capabilities that, coupled with two-dimensional gel electrophoresis, provided insights into all sorts of biological systems since the dawn of proteomics and have been exploited in the last few years for the development of more powerful and automatable gel-free strategies, mainly based on multidimensional chromatographic separations of peptides from proteolytic digests. In parallel to the evolution of ion sources, mass analysers and scan modes, the invention of new elegant biochemical strategies to fractionate or simplify highly complex mixtures, or to introduce isotopic labels in peptides in a variety of ways now makes also possible large-scale, high-coverage quantitative studies in a wide dynamic range. In this review, we provide the fundamental concepts of mass spectrometry (MS) and describe the technological progress of MS-based proteomics since its earliest days. Representative literature examples of their true power, either when employed as exploratory or as targeted techniques, is provided as well.  相似文献   

8.
Shewanella oneidensis MR-1 is a gram-negative facultative aerobic bacterium living at oxic-anoxic interfaces in nature. The plasticity of terminal electron-acceptors used under anaerobic conditions is huge, but the adaptation to these different environmental conditions remains unclear. In this work, we used a proteomic approach to study the protein content when the organism is grown under anaerobic respiration conditions on insoluble ferric oxide. By analysis of two-dimensional gel patterns of soluble protein extracts, we discovered 20 differentially displayed proteins. The protein spots were further analyzed by mass spectrometry for which we used, in addition to nano-high-performance liquid chromatography coupled to an electrospray ionization-quadrupole-time of flight instrument, a recently introduced matrix-assisted laser desorption/ionization (MALDI) tandem-time of flight mass spectrometer. The instrument allows the acquisition of high quality spectra, in both the mass spectrometry and tandem mass spectrometry mode, and is therefore able to identify protein spots unambiguously. Advantageous to electrospray ionization is a minimised sample handling, inherent to MALDI ionization, and the presence of high energy fragmentation ions, generating sequence information that also can differentiate isobaric amino acids. With this strategy, we could point out a regulatory protein that is up-regulated under iron(III) respiration. This protein, the aerobic respiration control protein (ArcA), has been reported as being a regulator during anaerobiosis in other species. To our knowledge, this is the first report of the possible involvement of ArcA from S. oneidensis MR-1 in the reduction of ferric oxide.  相似文献   

9.
Although most time-of-flight (TOF) mass spectrometers come equipped with vacuum matrix-assisted laser desorption/ionization (MALDI) sources, the atmospheric pressure MALDI (API–MALDI) source is an attractive option because of its ability to be coupled to a wide range of analyzers. This article describes the use of an API–MALDI source coupled to a TOF mass spectrometer for evaluation of the effects of medium- and long-term storage on peptidomic profiles of cryopreserved serum samples from healthy women. Peptides were purified using superparamagnetic beads either from fresh sera or after serum storage at −80 °C for 18 months or at −20 °C for 8 years. Data were preprocessed using newly developed bioinformatic tools and then were subjected to statistical analysis and class prediction. The analyses showed a dramatic effect of storage on the abundance of several peptides such as fibrinopeptides A and B, complement fractions, bradykinin, and clusterin, indicated by other authors as disease biomarkers. Most of these results were confirmed by shadow clustering analysis, able to classify each sample in the correct group. In addition to demonstrating the suitability of the API–MALDI technique for peptidome profiling studies, our data are of relevance for retrospective studies that involve frozen sera stored for many years in biobanks.  相似文献   

10.
The introduction of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) for the mass spectrometric analysis of peptides and proteins had a dramatic impact on biological science. We now report that a wide variety of compounds, including peptides, proteins, and protein complexes, are transported directly from a solid-state small molecule matrix to gas-phase ions when placed into the vacuum of a mass spectrometer without the use of high voltage, a laser, or added heat. This ionization process produces ions having charge states similar to ESI, making the method applicable for high performance mass spectrometers designed for atmospheric pressure ionization. We demonstrate highly sensitive ionization using intermediate pressure MALDI and modified ESI sources. This matrix and vacuum assisted soft ionization method is suitable for the direct surface analysis of biological materials, including tissue, via mass spectrometry.The conversion of large and nonvolatile compounds such as proteins into gas-phase ions is of immense fundamental and practical importance. The 2002 Nobel Prize in Chemistry was awarded for the accomplishment of this conversion via electrospray ionization (ESI)1 (1) and matrix-assisted laser desorption/ionization (MALDI) (2) interfaced with mass spectrometry (MS) to obtain the molecular weights of proteins with high accuracy. These methods employ high voltage or a laser to form gaseous analyte ions from a wide variety of compounds in solution or a solid matrix, respectively.MALDI interfaced with a time-of-flight (TOF) mass spectrometer produces gas-phase analyte ions in vacuum and is the method of choice for the molecular imaging of biological surfaces. Ionization in vacuum provides excellent ion transmission (3), as well as good spatial resolution achieved using a focused laser beam. However, the analysis of protein complexes is very challenging with MALDI, requiring strategies such as first-shot phenomena (4) and chemical crosslinking (5). The necessity of a laser also makes MALDI less soft than ESI and produces background ions, which can hinder the analysis of small molecules (6, 7). MALDI is also of limited utility on high performance mass-to-charge (m/z) analyzers because of mass range issues related to the formation of singly charged ions, which also produce few fragment ions for structural characterization (8).Multiple charged ions produced directly from solution in ESI bring the m/z ratio within the range of high performance mass spectrometers, allowing the analysis of high-mass compounds. These instruments have advanced features for structural characterization, such as ion mobility spectrometry (IMS) for gas-phase separations (911), ultra-high mass resolution and mass accuracy (1214), and advanced fragmentation such as electron transfer dissociation (ETD) (13, 14). However, ESI is limited for surface characterization, requiring approaches such as desorption-ESI (15) and laser ablation ESI (16), ionization methods that produce multiply charged ions but are not compatible with analyses of larger proteins or fragile complexes.A softer ionization approach is needed in order to observe fragile molecules and molecular complexes in living organisms at low levels directly from tissue and cell cultures, without extensive sample preparation, while retaining spatial information. Ideally, this approach would be compatible with mass spectrometers having advanced capabilities to aid structural characterization directly from surfaces. The new ionization method described here, in which molecules are transferred from solid-phase to gas-phase ions through the simple exposure of a material of interest in a suitable matrix to vacuum, is an advance toward this goal and is of fundamental interest.  相似文献   

11.
Alpha-cyano-4-hydroxycinnamic acid (α-CHCA) as a matrix facilitates the ionization of proteins and peptides in a matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometer. The matrix itself also ionizes and so do its sodium and potassium adducts. Matrix clusters and metal ion adducts interfere with peptide ionization and peptide mass spectrum interpretation. These matrix adducts are significantly reduced with addition of ammonium monobasic phosphate or ammonium dibasic citrate to the matrix and sample deposited onto the MALDI target. The reduction of matrix adducts results in the increase of peptide intensity and signal-to-noise ratio as well as in improvement of peptide ionization for samples deposited onto the target at levels of 10 fmol or below. These improvements were particularly significant in the detection of peptides at amol levels when reduced amounts of matrix were also used.  相似文献   

12.
A new matrix-assisted laser desorption/ionization time of flight mass spectrometer (MALDI-ToF MS), developed specifically for the identification and characterization of proteins and peptides in proteomic investigations, is described. The mass spectrometer which can be integrated with the 2-D gel electrophoresis workflow is a bench-top instrument, enabling rapid, reliable and unattended protein identification in low-, as well as high-throughput proteomics applications. To obtain precise information on peptide sequences, the instrument utilizes a timed ion gate and a unique quadratic field reflectron (Z2 technology), allowing single-run, post-source decay (PSD) of selected peptides. In this study, the performance of the instrument in reflectron, PSD and linear mode, respectively, was investigated. The results showed that the limit of detection for a single peptide in reflectron mode was 125 amol with a signal to noise ratio exceeding 20. Average mass resolution for peptides larger than 2000 u was around 13,000 full width, half maximum (FWHM). The limit for protein identification during peptide mass fingerprinting (PMF) was 500 amol with a sequence coverage of 18%. Mass error during PMF analysis was less than 15 ppm for 17 out of 25 (68%) identified peptides. In PSD mode, a complete series of y-ions of a CAF-derivatized peptide could be obtained from 3.75 fmol of material. The average mass error of PSD-generated fragments was less than 0.14 u. Finally, in linear mode, intact proteins with molecular masses greater than 300,000 u were detected with mass errors below 0.2%.  相似文献   

13.
An N-terminal hexahistidine-tagged full-length human androgen receptor protein (His(6)-hAR) was overexpressed and purified to apparent homogeneity in the presence of dihydrotestosterone (DHT) in our previous studies. In-gel trypsin digestion of the purified DHT-bound His(6)-hAR, and tryptic peptide mapping using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF-MS), detected a total of 17 peptides (21% coverage of hAR) with 9 peptides originating from the ligand-binding domain (LBD, 31% coverage of LBD). Amino acid sequencing analysis of the tryptic peptides from a separate in-gel digestion of the His(6)-hAR, using HPLC-coupled electrospray ionization ion trap mass spectrometry (LC/ESI-ITMS and MS/MS), unambiguously confirmed 21 peptides with 19% coverage of the hAR, of which 11 peptides originated from the LBD (35% coverage of LBD). These 21 peptides included 11 out of the 17 peptides detected by MALDI/TOF-MS. In addition, a novel serine phosphorylation site (Ser(308)) within the N-terminal transactivation domain of hAR was identified.  相似文献   

14.
Next to the identification of proteins and the determination of their expression levels, the analysis of post-translational modifications (PTM) is becoming an increasingly important aspect in proteomics. Here, we review mass spectrometric (MS) techniques for the study of protein glycosylation at the glycopeptide level. Enrichment and separation techniques for glycoproteins and glycopeptides from complex (glyco-)protein mixtures and digests are summarized. Various tandem MS (MS/MS) techniques for the analysis of glycopeptides are described and compared with respect to the information they provide on peptide sequence, glycan attachment site and glycan structure. Approaches using electrospray ionization and matrix-assisted laser desorption/ionization (MALDI) of glycopeptides are presented and the following fragmentation techniques in glycopeptide analysis are compared: collision-induced fragmentation on different types of instruments, metastable fragmentation after MALDI ionization, infrared multi-photon dissociation, electron-capture dissociation and electron-transfer dissociation. This review discusses the potential and limitations of tandem mass spectrometry of glycopeptides as a tool in structural glycoproteomics.  相似文献   

15.
Phosphorylation is a reversible posttranslational protein modification which plays a pivotal role in intracellular signaling. Despite extensive efforts, phosphorylation site mapping of proteomes is still incomplete motivating the exploration of alternative methods that complement existing workflows. In this study, we compared tandem mass spectrometry (MS/MS) on matrix assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) and nano‐electrospray ionization (nESI) Orbitrap instruments with respect to their ability to identify phosphopeptides from complex proteome digests. Phosphopeptides were enriched from tryptic digests of cell lines using Fe‐IMAC column chromatography and subjected to LC‐MS/MS analysis. We found that the two analytical workflows exhibited considerable orthogonality. For instance, MALDI‐TOF MS/MS favored the identification of phosphopeptides encompassing clear motif signatures for acidic residue directed kinases. The extent of orthogonality of the two LC‐MS/MS systems was comparable to that of using alternative proteases such as Asp‐N, Arg‐C, chymotrypsin, Glu‐C and Lys‐C on just one LC‐MS/MS instrument. Notably, MALDI‐TOF MS/MS identified an unexpectedly high number and percentage of phosphotyrosine sites (~20% of all sites), possibly as a direct consequence of more efficient ionization. The data clearly show that LC‐MALDI MS/MS can be a useful complement to LC‐nESI MS/MS for phosphoproteome mapping and particularly so for acidic and phosphotyrosine containing peptides.  相似文献   

16.
Targeted quantitative proteomics by mass spectrometry aims to selectively detect one or a panel of peptides/proteins in a complex sample and is particularly appealing for novel biomarker verification/validation because it does not require specific antibodies. Here, we demonstrated the application of targeted quantitative proteomics in searching, identifying, and quantifying selected peptides in human cerebrospinal spinal fluid (CSF) using a matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (MALDI TOF/TOF)-based platform. The approach involved two major components: the use of isotopic-labeled synthetic peptides as references for targeted identification and quantification and a highly selective mass spectrometric analysis based on the unique characteristics of the MALDI instrument. The platform provides high confidence for targeted peptide detection in a complex system and can potentially be developed into a high-throughput system. Using the liquid chromatography (LC) MALDI TOF/TOF platform and the complementary identification strategy, we were able to selectively identify and quantify a panel of targeted peptides in the whole proteome of CSF without prior depletion of abundant proteins. The effectiveness and robustness of the approach associated with different sample complexity, sample preparation strategies, as well as mass spectrometric quantification were evaluated. Other issues related to chromatography separation and the feasibility for high-throughput analysis were also discussed. Finally, we applied targeted quantitative proteomics to analyze a subset of previously identified candidate markers in CSF samples of patients with Parkinson's disease (PD) at different stages and Alzheimer's disease (AD) along with normal controls.  相似文献   

17.
Although peptide mass fingerprinting is currently the method of choice to identify proteins, the number of proteins available in databases is increasing constantly, and hence, the advantage of having sequence data on a selected peptide, in order to increase the effectiveness of database searching, is more crucial. Until recently, the ability to identify proteins based on the peptide sequence was essentially limited to the use of electrospray ionization tandem mass spectrometry (MS) methods. The recent development of new instruments with matrix-assisted laser desorption/ionization (MALDI) sources and true tandem mass spectrometry (MS/MS) capabilities creates the capacity to obtain high quality tandem mass spectra of peptides. In this work, using the new high resolution tandem time of flight MALDI-(TOF/TOF) mass spectrometer from Applied Biosystems, examples of successful identification and characterization of bovine heart proteins (SWISS-PROT entries: P02192, Q9XSC6, P13620) separated by two-dimensional electrophoresis and blotted onto polyvinylidene difluoride membrane are described. Tryptic protein digests were analyzed by MALDI-TOF to identify peptide masses afterward used for MS/MS. Subsequent high energy MALDI-TOF/TOF collision-induced dissociation spectra were recorded on selected ions. All data, both MS and MS/MS, were recorded on the same instrument. Tandem mass spectra were submitted to database searching using MS-Tag or were manually de novo sequenced. An interesting modification of a tryptophan residue, a "double oxidation", came to light during these analyses.  相似文献   

18.
A new method for on-plate protein digestion and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry analysis is proposed involving an automated one-step sample separation using nanoflow HPLC followed by nanoliter fraction collection and on-plate digestion with trypsin. This procedure uses a commercial automatic nanoliter fraction collection system for on-line spotting of the eluent onto a MALDI target. After protein digestion, the reaction is stopped by the addition of acidified matrix using the same automated system. Collected spots are subsequently analyzed using a MALDI tandem time-of-flight (TOF/TOF) mass spectrometer for protein sequencing and identification.  相似文献   

19.
In this work, a method for improved protein identification of low-abundance proteins using unstained gels, in combination with robotics and matrix-assisted laser desorption/ionization tandem mass spectrometry, has been developed and evaluated. Omitting the silver-staining process resulted in increased protein identification scores, an increase in the number of peptides observed in the MALDI mass spectrum, and improved quality of the tandem mass spectrometry data.  相似文献   

20.
Two peptide-oligothymidylic acids, prepared by joining an 11 residue synthetic peptide containing one internal carboxyl group (Asp side chain) to amino-linker-5'pdT6 and amino-linker-5'pdT10 oligonucleotides, were analyzed by matrix-assisted laser desorption/ionization (MALDI) on a linear time-of-flight mass spectrometer and by electrospray ionization (ESI) on a triple-quadrupole system. These synthetic compounds model peptide-nucleic acid heteroconjugates encountered in antisense research and in studies that use photochemical crosslinking to investigate molecular aspects of protein-nucleic acid interactions. MALDI and ESI sensitivities for the two hybrid compounds were found to be similar respectively to their sensitivities for the pure oligonucleotide parts. In general, MALDI proved to be less affected by sample impurities and more sensitive than ESI, while ESI on the quadrupole produced greater mass accuracy and resolution than MALDI on the time-of-flight instrument. A hybrid's behavior in a MALDI-matrix or an ESI-spray-solvent was found to be governed mainly by the oligonucleotide. A single positive ESI tandem mass spectrum of the peptide-dT6 accounted for the heteroconjugate's entire primary structure including the point of the oligonucleotide's covalent attachment to the peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号