首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian immune system has evolved to display peptides derived from microbial antigens to immune effector cells. Liberated from the intact antigens through distinct proteolytic mechanisms, these peptides are subsequently transported to the cell surface while bound to chaperone-like receptors known as major histocompatibility complex molecules. These complexes are then scrutinized by T-cells that express receptors with specificity for specific major histocompatibility complex-peptide complexes. In normal uninfected cells, this process of antigen processing and presentation occurs continuously, with the resultant array of self-antigen-derived peptides displayed on the surface of these cells. Changes in this cellular peptide array alert the immune system to changes in the intracellular environment that may be associated with infection, oncogenesis or other abnormal cellular processes, resulting in a cascade of events that result in the elimination of the abnormal cell. Since peptides play such an essential role in informing the immune system of infection with viral or microbial pathogens and the transformation of cells in malignancy, the tools of proteomics, in particular mass spectrometry, are ideally suited to study these immune responses at a molecular level. Recent advances in studies of immune responses that have utilized mass spectrometry and associated technologies are reviewed. The authors gaze into the future and look at current challenges and where proteomics will impact in immunology over the next 5 years.  相似文献   

2.
The mammalian immune system has evolved to display fragments of protein antigens derived from microbial pathogens to immune effector cells. These fragments are typically peptides liberated from the intact antigens through distinct proteolytic mechanisms that are subsequently transported to the cell surface bound to chaperone-like receptors known as major histocompatibility complex (MHC) molecules. These complexes are then scrutinized by effector T cells that express clonally distributed T cell receptors with specificity for specific MHC-peptide complexes. In normal uninfected cells, this process of antigen processing and presentation occurs continuously, with the resultant array of self-antigen-derived peptides displayed on the surface of these cells. Changes in this peptide landscape of cells act to alert immune effector cells to changes in the intracellular environment that may be associated with infection, malignant transformation, or other abnormal cellular processes, resulting in a cascade of events that result in their elimination. Because peptides play such a crucial role in informing the immune system of infection with viral or microbial pathogens and the transformation of cells in malignancy, the tools of proteomics, in particular mass spectrometry, are ideally suited to study these immune responses at a molecular level. Here we review recent advances in the studies of immune responses that have utilized mass spectrometry and associated technologies, with specific examples from collaboration between our laboratories.  相似文献   

3.
Because antigen-specific cytotoxic T-lymphocytes (CTLs) are major effector cells in tumor immunity, more efficient delivery of tumor-associated antigens to the major histocompatibility complex class I-presentation pathway in antigen-presenting cells (APCs) will substantially contribute to establish more effective cancer immunotherapy. Herein, we demonstrated that a combinational approach based on the antigen-delivery system using poly(gamma-glutamic acid) nanoparticles (gamma-PGA NPs) and an endoplasmic reticulum (ER)-transport system containing an ER-insertion signal sequence (Eriss) significantly enhanced the ability of a peptide vaccine to induce cellular immune responses, including CTL activity. Immunization with gamma-PGA NPs entrapping Eriss-conjugated antigenic peptides markedly amplified and activated CTLs and interferon-gamma-secreting cells specific for the antigen, whereas no cellular immune responses were detected following vaccination with only one of the systems alone. Our data provide evidence that efficient delivery of antigenic peptides into APCs, as well as active ER-translocation of antigenic peptides in APCs should be considered in the development of peptide-based cancer immunotherapy.  相似文献   

4.
Young DC  Moody DB 《Glycobiology》2006,16(7):103R-112R
The most well-known molecular paradigm of antigen recognition by T cells involves partial digestion of proteins to generate small peptides, which bind to major histocompatibility complex (MHC) proteins. Recent studies of CD1, an MHC class I homolog encoded outside the MHC, have revealed that it presents diverse glycolipids to T cells. The molecular mechanism for lipid antigen recognition involves insertion of the lipid portion of antigens into a hydrophobic groove to form CD1-lipid complexes, which contact T-cell receptors (TCRs). Here, we examine the known antigen structures presented by CD1, the majority of which have sugar moieties that are capable of interacting with TCRs. Recognition of carbohydrate epitopes is precise, and lipid-reactive T cells alter systemic immune responses in models of infectious and autoimmune disease. These findings provide a previously unrecognized mechanism by which the cellular immune system can recognize alterations in many types of carbohydrate structures.  相似文献   

5.
Vitamin B2 (riboflavin) is essential for metabolic functions and is synthesized by many bacteria, yeast, and plants, but not by mammals and other animals, which must acquire it from the diet. In mammals, modified pyrimidine intermediates from the microbial biosynthesis of riboflavin are recognized as signature biomarkers of microbial infection. This recognition occurs by specialized lymphocytes known as mucosal associated invariant T (MAIT) cells. The major histocompatibility class I-like antigen-presenting molecule, MR1, captures these pyrimidine intermediates, but only after their condensation with small molecules derived from glycolysis and other metabolic pathways to form short-lived antigens. The resulting MR1-Ag complexes are recognized by MAIT cell antigen receptors (αβ T cell receptors (TCRs)), and the subsequent MAIT cell immune responses are thought to protect the host from pathogens at mucosal surfaces. Here, we review our understanding of how these novel antigens are generated and discuss their interactions with MR1 and MAIT TCRs.  相似文献   

6.
The major histocompatibility complex (MHC) peptide repertoire of cancer cells serves both as a source for new tumor antigens for development of cancer immunotherapy and as a rich information resource about the protein content of the cancer cells (their proteome). Thousands of different MHC peptides are normally displayed by each cell, where most of them are derived from different proteins and thus represent most of the cellular proteome. However, in contrast to standard proteomics, which surveys the cellular protein contents, analyses of the MHC peptide repertoire correspond more to the rapidly degrading proteins in the cells (i.e. the transient proteome). MHC peptides can be efficiently purified by affinity chromatography from membranal MHC molecules, or preferably following transfection of vectors for expression of recombinant soluble MHC molecules. The purified peptides are resolved and analyzed by capillary high-pressure liquid chromatography-electrospray ionization-tandem mass spectrometry, and the data are deciphered with new software tools enabling the creation of large databanks of MHC peptides displayed by different cell types and by different MHC haplotypes. These lists of identified MHC peptides can now be used for searching new tumor antigens, and for identification of proteins whose rapid degradation is significant to cancer progression and metastasis. These lists can also be used for identification of new proteins of yet unknown function that are not detected by standard proteomics approaches. This review focuses on the presentation, identification and analysis of MHC peptides significant for cancer immunotherapy. It is also concerned with the aspects of human proteomics observed through large-scale analyses of MHC peptides.  相似文献   

7.
Phagocytosis provides innate immune cells with a mechanism to take up and destroy pathogenic bacteria, apoptotic cells and other large particles. In some cases, however, peptide antigens from these particles are preserved for presentation in association with major histocompatibility complex (MHC) class I or class II molecules in order to stimulate antigen‐specific T cells. Processing and presentation of antigens from phagosomes presents a number of distinct challenges relative to antigens internalized by other means; while bacterial antigens were among the first discovered to be presented to T cells, analyses of the cellular mechanisms by which peptides from phagocytosed antigens assemble with MHC molecules and by which these complexes are then expressed at the plasma membrane have lagged behind those of conventional model soluble antigens. In this review, we cover recent advances in our understanding of these processes, including the unique cross‐presentation of phagocytosed antigens by MHC class I molecules, and in their control by signaling modalities in phagocytic cells.  相似文献   

8.
Cytotoxic CD8(+) T cells recognize the antigenic peptides presented by class I major histocompatibility complex (MHC) molecules. These T cells have key roles in infectious diseases, autoimmunity and tumor immunology, but there is currently no unbiased method for the reliable identification of their target antigens. This is because of the low affinities of antigen-specific T cell receptors (TCR) to their target MHC-peptide complexes, the polyspecificity of these TCRs and the requirement that these TCRs recognize protein antigens that have been processed by antigen-presenting cells (APCs). Here we describe a technology for the unbiased identification of the antigenic peptides presented by MHC class I molecules. The technology uses plasmid-encoded combinatorial peptide libraries and a single-cell detection system. We validated this approach using a well-characterized influenza-virus–specific TCR, MHC and peptide combination. Single APCs carrying antigenic peptides can be detected among several million APCs that carry irrelevant peptides. The identified peptide sequences showed a converging pattern of mimotopes that revealed the parent influenza antigen. This technique should be generally applicable to the identification of disease-relevant T cell antigens.  相似文献   

9.
Class II major histocompatibility complex (MHC) proteins are essential for normal immune system function but also drive many autoimmune responses. They bind peptide antigens in endosomes and present them on the cell surface for recognition by CD4(+) T cells. A small molecule could potentially block an autoimmune response by disrupting MHC-peptide interactions, but this has proven difficult because peptides bind tightly and dissociate slowly from MHC proteins. Using a high-throughput screening assay we discovered a class of noble metal complexes that strip peptides from human class II MHC proteins by an allosteric mechanism. Biochemical experiments indicate the metal-bound MHC protein adopts a 'peptide-empty' conformation that resembles the transition state of peptide loading. Furthermore, these metal inhibitors block the ability of antigen-presenting cells to activate T cells. This previously unknown allosteric mechanism may help resolve how gold(I) drugs affect the progress of rheumatoid arthritis and may provide a basis for developing a new class of anti-autoimmune drugs.  相似文献   

10.
《Molecular medicine today》1998,4(11):478-484
Heat shock proteins (Hsps), ubiquitous in nature, act as chaperones for peptides and other proteins. They have been implicated in loading immunogenic peptides onto major histocompatibility complex molecules for presentation to T cells. When isolated from tumor cells, Hsps are complexed with a wide array of peptides, some of which serve as tumor-specific antigens. Animal studies have demonstrated that heat shock protein–peptide complexes (HSPPCs) from tumor cells can act as vaccines to prevent or treat tumors. Potent and specific tumor antigens have long been the holy grail in cancer immunotherapy; HSPPCs from tumor cells could become a safe and reliable source of tumor-specific antigens for clinical application.  相似文献   

11.
Testing the role of gp96 as peptide chaperone in antigen processing   总被引:5,自引:0,他引:5  
gp96 is a 96-kDa glycoprotein of the endoplasmic reticulum that is believed to be involved in antigen processing as an intermediate carrier of peptides for presentation by major histocompatibility complex (MHC) class I molecules. This function implies that gp96 carries a large array of different peptides that represent the antigenicity of the cell and can serve all MHC class I molecules. So far, the evidence regarding these peptides is largely indirect and based on experiments where mice immunized with gp96 from tumor or virus-infected cells developed T cellular immune responses with the corresponding specificities. We analyzed by mass spectrometry peptides isolated from gp96 and found a number of different peptides derived from the proteins of different cellular compartments but mostly cytoplasm and nucleus. The sequences of these peptides provide information on the specificity of antigen processing and reveal structural requirements for binding to gp96 that only partially correspond to those of peptides presented by MHC class I molecules. The yield of peptides extracted from gp96 was far substoichiometric with an estimated occupancy of this chaperone of between 0.1% and 0.4%. These results strongly argue against a regular role for gp96 as a peptide chaperone in antigen processing.  相似文献   

12.
Dendritic cells are innate sentinels of the immune system and potent activators of naÏve T cells. Mechanisms must exist to enable these cells to achieve maximal activation of T cells specific for microbial antigens, while avoiding activation of T cells specific for self‐antigens. Here we discuss how a combination of signals from pattern recognition receptors and T cells co‐ordinates subcellular trafficking of antigen with both major histocompatibility complex class I and class II molecules and T‐cell costimulatory molecules, resulting in the preferential presentation of microbial peptides within a stimulatory context.   相似文献   

13.
GRP94 (gp96)-associated peptides can elicit cellular immune responses, an activity thought to reflect the presence of a cell surface receptor (CD91) on antigen-presenting cells that mediates GRP94 internalization and trafficking to an amenable site for peptide transfer to major histocompatibility complex class I molecules. We report that GRP94 internalized by receptor-mediated endocytosis is trafficked to a Rab5a, CD1 and transferrin-negative, Fc receptor and major histocompatibility complex class I-positive endocytic compartment. Receptor-internalized GRP94 did not access the endoplasmic reticulum of antigen-presenting cells. To identify the site of re-presentation of GRP94-associated peptides, kinetic analyses were performed utilizing GRP94-OVA (SIINFEKL) peptide complexes, with peptide re-presentation assayed with the Kb-SIINFEKL-specific MAb, 25-D1.16. Analyses of the kinetics of re-presentation of GRP94-associated peptides, under conditions in which de novo synthesis of major histocompatibility complex class I molecules was inhibited, identified a post-endoplasmic reticulum compartment, accessed by mature major histocompatibility complex class I, as the predominant site of GRP94-associated peptide exchange onto major histocompatibility complex class I.  相似文献   

14.
Molecular chaperones, both endoplasmic reticulum and cytosol derived, have been identified as tumor rejection antigens; in animal models, they can elicit prophylactic and therapeutic immune responses against their tumor of origin. Chaperone immunogenic activity derives from three principal characteristics: they bind an array of immunogenic (poly)peptides, they can be efficiently internalized by professional antigen-presenting cells, and once internalized, they traffic to a subcellular compartment(s) where peptide release can occur. Within the antigen-presenting cell, chaperone-derived peptides can be assembled onto major histocompatibility class I molecules for presentation at the antigen-presenting cell surface, thereby yielding the requisite and specific CD8+ T-cell responses that contribute to the process of tumor rejection. Though it is clear that chaperones, in particular GRP94 (gp96), calreticulin and Hsp70, can elicit cellular immune responses, the subcellular basis of chaperone processing by antigen-presenting cells remains mysterious. In this review, we discuss recent reports describing the identification of a chaperone internalization receptor and the physiological release of chaperones from necrotic cells, and we present views on the trafficking pathways within antigen-presenting cells that may function to deliver the chaperone-associated peptides to subcellular organelles for their subsequent exchange onto major histocompatibility complex molecules.  相似文献   

15.
The first naturally processed peptide synthesized by a virus and recognized by classical CD8(+) T cells in association with the RT1.A(l) major histocompatibility complex class I molecule of the Lewis rat is reported. Borna disease virus-specific CD8(+) T cells recognize syngeneic target cells pulsed with peptides extracted from Borna disease virus-infected cells. The predicted peptide sequence ASYAQMTTY from the viral p40 protein coeluted with the cytotoxic T-lymphocyte-reactive fraction was identified among natural ligands by tandem mass spectrometry. Numerous naturally processed peptides derived from intracellular bacteria, viruses, or tumors and recognized by CD8(+) T cells of man and mice are known, leading to a better understanding of cellular immune mechanisms against pathogens in these two species. In contrast, for the rat little information exists with regard to the function and role of CD8(+) T cells as part of their cellular immune defense system. This first naturally processed viral epitope in the rat contributes to the understanding of the rat cellular immune response and might trigger the identification of more cytotoxic T-lymphocyte epitopes in this animal.  相似文献   

16.
Exogenous antigenic peptides captured and presented in the context of major histocompatibility (MHC) class II molecules on APC, have been employed as potent vaccine reagents capable of activating cellular immune responses. Binding and presentation of select peptide via surface class II molecules has been reported. Here, a role for endocytosis and early endosomes in the presentation of exogenous peptides via MHC class II molecules is described. T cell recognition of a 14 amino acid human serum albumin-derived peptide in the context of HLA-DR4 was observed only with metabolically active APC. The delayed kinetics and temperature dependence of functional peptide presentation via APC, were consistent with a requirement for peptide internalization to early endosomal compartments prior to T cell recognition. Ablating endocytosis by exposing cells to inhibitors of ATP production completely blocked the display of functional peptide:class II complexes on the surface of the APC. Presentation of the peptide was also found to be sensitive to primaquine, a drug that perturbs the recycling of transport vesicles containing endocytic receptors and mature class II complexes. Functional presentation of the endocytosed peptide was dependent upon these mature class II complexes, as inhibitor studies ruled out a requirement for newly synthesized class II molecules. N-terminal processing of the endocytosed peptide was observed upon trafficking through endosomal compartments and linked to the formation of functional peptide:class II complexes. These findings establish a novel mechanism for regulating class II-restricted peptide presentation via the endocytic pathway.  相似文献   

17.
Class I molecules of the major histocompatibility complex play a vital role in cellular immunity, reporting on the presence of viral or tumor-associated antigens by binding peptide fragments of these proteins and presenting them to cytotoxic T cells at the cell surface. The folding and assembly of class I molecules is assisted by molecular chaperones and folding catalysts that comprise the general ER quality control system which also monitors the integrity of the process, disposing of misfolded class I molecules through ER associated degradation (ERAD). Interwoven with general ER quality control are class I-specific components such as the peptide transporter TAP and the tapasin-ERp57 chaperone complex that supply peptides and monitor their loading onto class I molecules. This ensures that at the cell surface class I molecules will possess mainly optimal peptides with a long half-life. In this review we discuss these processes as well as a number of strategies that viruses have evolved to subvert normal class I assembly within the ER and thereby evade immune recognition by cytotoxic T cells.  相似文献   

18.
Major histocompatibility complex (MHC) molecules are a key element of the cellular immune response. Encoded by the MHC they are a family of highly polymorphic peptide receptors presenting peptide antigens for the surveillance by T cells. We have shown that certain organic compounds can amplify immune responses by catalyzing the peptide loading of human class II MHC molecules HLA-DR. Here we show now that they achieve this by interacting with a defined binding site of the HLA-DR peptide receptor. Screening of a compound library revealed a set of adamantane derivatives that strongly accelerated the peptide loading rate. The effect was evident only for an allelic subset and strictly correlated with the presence of glycine at the dimorphic position beta86 of the HLA-DR molecule. The residue forms the floor of the conserved pocket P1, located in the peptide binding site of MHC molecule. Apparently, transient occupation of this pocket by the organic compound stabilizes the peptide-receptive conformation permitting rapid antigen loading. This interaction appeared restricted to the larger Gly(beta86) pocket and allowed striking enhancements of T cell responses for antigens presented by these "adamantyl-susceptible" MHC molecules. As catalysts of antigen loading, compounds targeting P1 may be useful molecular tools to amplify the immune response. The observation, however, that the ligand repertoire can be affected through polymorphic sites form the outside may also imply that environmental factors could induce allergic or autoimmune reactions in an allele-selective manner.  相似文献   

19.
Contribution of mass spectrometry-based proteomics to immunology   总被引:1,自引:0,他引:1  
Antigen processing forwards various information about the cellular status and the proteome to the cell surface for scrutiny by the cellular immune system. Thus the repertoire of major histocompatibility complex (MHC)-bound peptides and the MHC ligandome, indirectly mirrors the proteome in order to make alterations instantly detectable and, if necessary, to oppose them. Mass spectrometry is the core technology for analysis of both proteome and MHC ligandome and has evoked several strategies to gain qualitative and quantitative insight into the MHC-presented peptide repertoire. After immunoaffinity purification of detergent-solubilized peptide-MHC complexes followed by acid elution of peptides, liquid chromatography-mass spectrometry is applied to determine individual peptide sequences and, thus, allow qualitative characterization of the MHC-bound repertoire. Differential quantification based on stable isotope labeling enables the relative comparison of two samples, such as diseased and healthy tissue. Targeted searches for certain natural ligands, such as the 'predict-calibrate-detect' strategy, include motif-based epitope prediction and calibration with reference peptides. Thus, various approaches are now available for exposing and understanding the intricacies of the MHC ligand repertoire. Analysis of differences in the MHC ligandome under distinct conditions contributes to our understanding of basic cellular processes, but also enables the formulation of immunodiagnostic or immunotherapeutic strategies.  相似文献   

20.
The presentation of peptides by class I histocompatibility molecules plays a central role in the cellular immune response to virally infected or transformed cells. The main steps in this process include the degradation of both self and 'foreign' proteins to short peptides in the cytosol, translocation of peptides into the lumen of the endoplasmic reticulum, binding of a subset of peptides to assembling class I molecules and expression of class-I-peptide complexes at the cell surface for examination by cytotoxic T cells. A molecular understanding of most of these steps is emerging, revealing a remarkable coordination between the processes of peptide translocation, delivery and binding to class I molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号