首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand genetic and epigenetic pathways in Wilms' tumors, we carried out a genome scan for loss of heterozygosity (LOH) using Affymetrix 10K single nucleotide polymorphism (SNP) chips and supplemented the data with karyotype information. To score loss of imprinting (LOI) of the IGF2 gene, we assessed DNA methylation of the H19 5' differentially methylated region (DMR). Few chromosomal regions other than band 11p13 (WT1) were lost in Wilms' tumors from Denys-Drash and Wilms' tumor-aniridia syndromes, whereas sporadic Wilms' tumors showed LOH of several regions, most frequently 11p15 but also 1p, 4q, 7p, 11q, 14q, 16q, and 17p. LOI was common in the sporadic Wilms' tumors but absent in the syndromic cases. The SNP chips identified novel centers of LOH in the sporadic tumors, including a 2.4-Mb minimal region on chromosome 4q24-q25. Losses of chromosomes 1p, 14q, 16q, and 17p were more common in tumors presenting at an advanced stage; 11p15 LOH was seen at all stages, whereas LOI was associated with early-stage presentation. Wilms' tumors with LOI often completely lacked LOH in the genome-wide analysis, and in some tumors with concomitant 16q LOH and LOI, the loss of chromosome 16q was mosaic, whereas the H19 DMR methylation was complete. These findings confirm molecular differences between sporadic and syndromic Wilms' tumors, define regions of recurrent LOH, and indicate that gain of methylation at the H19 DMR is an early event in Wilms' tumorigenesis that is independent of chromosomal losses. The data further suggest a biological difference between sporadic Wilms' tumors with and without LOI.  相似文献   

2.
Although the occurrence of bladder cancer is common, the molecular events underlying the pathogenesis of this cancer remain ill-defined. A loss of heterozygosity (LOH) at specific chromosomal loci may predispose individuals to the development of bladder cancer but this has not been examined in detail. Furthermore, the role that deletion or inactivation of putative tumour suppressor genes might play in the genesis of bladder cancer has not been established. In this study, allelic deletion analysis on the short arm of chromosome 17 of patients with primary bladder tumours failed to show deletion at 17p13 (0/7), a region known to contain the p53 tumour suppressor gene. Chromosome 11p15 showed allelic deletion at the IGF2 locus (2/7: 29%) and the PTH locus (1/11: 9%). However, no deletion was observed at the CALCA locus (0/6). LOH at 11p13, a region containing the Wilm's tumour suppressor gene (WT1), was also studied. Analysis of LOH at 11p13 showed deletion at the CAT locus (13/18: 72%), the J/D11S414 locus (5/15: 33%), the WT1 locus (7/14: 50%) and the FSHB locus (6/16: 38%). The significance of these findings is discussed.  相似文献   

3.
The development of Wilms' tumor has been associated with two genetic loci on chromosome 11: WTI in 11p13 and WT2 in 11p15.5. Here, we have used loss of heterozygosity (LOH) in Wilms' tumors to narrow the WT2 locus distal to the D11S988 locus. A similar region was apparent for the clinically associated tumor, embryonal rhabdomyosarcoma. We have also demonstrated that a constitutional chromosome translocation breakpoint associated with Beckwith-Wiedemann syndrome and an acquired somatic chromosome translocation breakpoint in a rhabdoid tumor each occur in the same chromosomal interval as the smallest region of LOH in Wilms' tumors and embryonal rhabdomyosarcoma. Finally, we report the first Wilms' tumor without a cytogenetic deletion that shows targeted LOH for 11p15 and 11p13 while maintaining germline status for 11p14.  相似文献   

4.
WT1 at 11p13 is a tumor suppressor gene, an aberration of which causes Wilms' tumor (WT). Since WT1 expression is reduced in a certain proportion of WTs and its mutation is found only in 10-20% of WTs, we examined WT1 gene silencing due to epigenetic alteration in a total of 22 WTs. WT1 expression was significantly reduced in half of WTs without any mutation in the WT1 gene itself, suggesting that the reduction of expression was possibly epigenetic. We found promoter hypermethylation in one WT with loss of heterozygosity (LOH) and showed that promoter methylation reduced reporter gene activity by a reporter assay. These data suggested that methylation was an epigenetic mechanism leading to WT1 silencing and that the expression-reduced allele by hypermethylation combined with LOH was consistent with the revised two-hit model. In addition, as the beta-catenin mutation is frequently associated with the WT1 mutation, the association of WT1 silencing with the beta-catenin mutation was also investigated. beta-catenin mutated in only one WT without WT1 silencing, suggesting that the beta-catenin mutation was not associated with the reduction of WT1 expression.  相似文献   

5.
The role of insulin-like growth factor 2 and its receptors in human tumors   总被引:9,自引:0,他引:9  
Insulin-like growth factor 2 (IGF-2) is important for normal development and growth of an organism. In humans it is encoded by 11p15.5 paternally expressed imprinted gene. It binds at least two different types of receptors: IGF type 1 (IGF-1R) and IGF-2/mannose 6-phosphate receptors (IGF-2R/M6P). Ligand binding to IGF-1R provokes mitogenic and anti-apoptotic effects. IGF-2R/M6P has tumor suppressor function; it mediates IGF-2 degradation. When the IGF-2 gene/protein is overexpressed, mostly as a consequence of loss of heterozygosity resulting in paternal allele duplication (LOH) or by loss of imprinting (LOI), it is involved in the development and progression of many tumors and overgrowth syndromes by autocrine or paracrine mechanisms.  相似文献   

6.
Imprinting and deviation from Mendelian transmission ratios.   总被引:4,自引:0,他引:4  
Deviations from a Mendelian 1:1 transmission ratio have been observed in human and mouse chromosomes. With few exceptions, the underlying mechanism of the transmission-ratio distortion remains obscure. We tested a hypothesis that grandparental-origin dependent transmission-ratio distortion is related to imprinting and possibly results from the loss of embryos which carry imprinted genes with imprinting marks that have been incorrectly reset. We analyzed transmission of alleles in four regions of the human genome that carry imprinted genes presumably critical for normal embryonic growth and development: 11p15.5 (H19, IGF2, HASH2, etc.), 11p13 (WT1), 7p11-12 (GRB10), and 6q25-q27 (IGF2R), among the offspring of 31 three-generation Centre d'Etude de polymorphism Humain (CEPH) families. Deviations from expected 1:1 ratios were found in the maternal chromosomes for regions 11p15.5, 11p13, and 6q25-27 and in the paternal chromosomes for regions 11p15 and 7p11-p12. The likelihood of the results was assessed empirically to be statistically significant (p = 0.0008), suggesting that the transmission ratios in the imprinted regions significantly deviated from 1:1. We did not find deviations from a 1:1 transmission ratio in imprinted regions that are not crucial for embryo viability (13q14 and 15q11-q13). The analysis of a larger set of 51 families for the 11p15.5 region suggests that there is heterogeneity among the families with regard to the transmission of 11p15.5 alleles. The results of this study are consistent with the hypothesis that grandparental-origin dependent transmission-ratio distortion is related to imprinting and embryo loss.  相似文献   

7.
The development of Wilms tumor (WT) has been associated with the inactivation of a "tumor suppressor" locus in human chromosome 11 band p13. Several WTs that exhibit homozygous deletions of an 11p13 candidate WT gene in its entirety have been reported. We report here a partial deletion of the candidate gene which, upon comparison with other documented homozygous deletions, permitted a precise definition of the critical genomic target in Wilms tumor. The smallest region of overlap between these deletions is a 16-kb segment of DNA encompassing the 5' exon(s) of an 11p13 gene coding for a zinc finger protein, together with an associated CpG island. This finding supports the notion that the candidate gene in question corresponds to the 11p13 WT1 Wilms tumor locus.  相似文献   

8.
Goldberg M  Wei M  Yuan L  Murty VV  Tycko B 《Human genetics》2003,112(4):334-342
At least eight genes clustered in 1 Mb of DNA on human chromosome (Chr) 11p15.5 are subject to parental imprinting, with monoallelic expression in one or more tissues. Orthologues of these genes show conserved linkage and imprinting on distal Chr 7 of mice. The extended imprinted region has a bipartite structure, with at least two differentially methylated DNA elements (DMRs) controlling the imprinting of two sub-domains. We previously described three biallelically expressed genes ( MRPL23, 2G7 and TNNT3) in 100 kb of DNA immediately downstream of the imprinted H19 gene, suggesting that H19 marks one border of the imprinted region. Here we extend this analysis to two additional downstream genes, HRAS and MUCDHL (mu-protocadherin). We find that these genes are biallelically expressed in multiple fetal and adult tissues, both in humans and in mice. The mouse orthologue of a third gene, DUSP8, located between H19 and MUCDHL, is also expressed biallelically. The DMR immediately upstream of H19 frequently shows a net gain of methylation in Wilms tumors, either via Chr 11p15.5 loss of heterozygosity (LOH) or loss of imprinting (LOI), but changes in methylation in CpG-rich sequences upstream and within the MUCDHL gene are rare in these tumors and do not correlate with LOH or LOI. These findings are further evidence for a border of the imprinted region immediately downstream of H19, and the data allow the construction of an imprinting map that includes more than 20 genes, distributed over 3 Mb of DNA on Chr 11p15.5.  相似文献   

9.
Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder characterized by somatic overgrowth, congenital malformations, and predisposition to childhood tumors. Aberrant expression of multiple imprinted genes, including H19, IGF2, KCNQ1OT1, and CDKN1C, has been observed in BWS patients. It has been estimated that mutations in CDKN1C occur in 12-17% of BWS patients. We have screened 10 autosomal dominant pedigrees and 65 sporadic BWS cases by PCR/heteroduplex analysis and DNA sequencing and have identified four mutations, two of which were associated with biallelic IGF2 expression and normal H19 and KCNQ1OT1 imprinting. One patient demonstrated phenotypic expression of paternally transmitted mutation in this maternally expressed gene, a second proband is the child of one of a pair of monozygotic twin females who carry the mutation de novo, and a third patient exhibited unusual skeletal changes more commonly found in other overgrowth syndromes. When considered with other studies published to date, this work reveals the frequency of CDKN1C mutations in BWS to be only 4.9%. This is the first report of an analysis of the imprinting status of genes in the 11p15 region where CDKN1C mutations were associated with loss of IGF2 imprinting and maintenance of H19 and KCNQ1OT1 imprinting.  相似文献   

10.
In lung cancer pathogenesis, genetic instability, i.e., loss of heterozygosity (LOH) and microsatellite instability (MSI) is a frequent molecular event, occurring at an early stage of cancerogenesis. The presence of LOH/MSI in non-small cell lung carcinoma (NSCLC) was found in many chromosomal regions, but exclusive of 3p their diagnostic value remains controversial. In this study we focused on other than 3p regions—1p31.2, 7q32.2, 9p21.3, 11p15.5, 12q23.2 and 16q22—the loci of many oncogenes and tumour suppressor genes. To analyze the potential role of LOH/MSI involved in NSCLC pathogenesis we allelotyped a panel of 13 microsatellite markers in a group of 56 cancer specimens. Our data demonstrate the presence of allelic loss for all (13) analyzed markers. Total LOH/MSI frequency in NSCLC was the highest for chromosomal region 11p15.5 (25.84 %), followed by 9p21.3 and 1p31.2 (19.87 and 16.67 % respectively). A statistically significant increase of total LOH/MSI frequency was detected for the 11p15.5 region (p = 0.0301; χ2 test). The associations of total LOH/MSI frequency: 1) increase in 11p15.5 region (p = 0.047; χ2 test) and 2) decrease in 7q32.2 region (p = 0.037; χ2 test) have been statistically significant in AJCC III (American Joint Committee on Cancer Staging). In Fractional Allele Loss (FAL) index analysis, the correlation with cigarette addiction has been statistically significant. The increased amount of cigarettes smoked (pack years) in a lifetime correlates with increasing FAL (p = 0.024; Kruskal–Wallis test). These results demonstrate that LOH/MSI alternation in studied chromosomal regions is strongly influenced by tobacco smoking but do not seem to be pivotal NSCLC diagnostic marker with prognostic impact.  相似文献   

11.
The Beckwith-Wiedemann syndrome (BWS) is marked by fetal organ overgrowth and conveys a predisposition to certain childhood tumors, including Wilms tumor (WT). The genetics of BWS have implicated a gene that maps to chromosome 11p15 and is paternally imprinted, and the gene encoding the cyclin-cdk inhibitor p57KIP2 has been a strong candidate. By complete sequencing of the coding exons and intron/exon junctions, we found a maternally transmitted coding mutation in the cdk-inhibitor domain of the KIP2 gene in one of five cases of BWS. The BWS mutation was an in-frame three-amino-acid deletion that significantly reduced but did not fully abrogate growth-suppressive activity in a transfection assay. In contrast, no somatic coding mutations in KIP2 were found in a set of 12 primary WTs enriched for cases that expressed KIP2 mRNA, including cases with and without 11p15.5 loss of heterozygosity. Two other 11p15.5 loci, the linked and oppositely imprinted H19 and IGF2 genes, have been previously implicated in WT pathogenesis, and several of the tumors with persistent KIP2 mRNA expression and absence of KIP2 coding mutations showed full inactivation of H19. These data suggest that KIP2 is a BWS gene but that it is not uniquely equivalent to the 11p15.5 "WT2" tumor-suppressor locus.  相似文献   

12.
13.
Beckwith–Wiedemann syndrome (BWS) is an imprinting disorder characterized by somatic overgrowth, congenital malformations, and predisposition to childhood tumors. Aberrant expression of multiple imprinted genes, including H19, IGF2, KCNQ1OT1, and CDKN1C, has been observed in BWS patients. It has been estimated that mutations in CDKN1C occur in 12–17% of BWS patients. We have screened 10 autosomal dominant pedigrees and 65 sporadic BWS cases by PCR/heteroduplex analysis and DNA sequencing and have identified four mutations, two of which were associated with biallelic IGF2 expression and normal H19 and KCNQ1OT1 imprinting. One patient demonstrated phenotypic expression of paternally transmitted mutation in this maternally expressed gene, a second proband is the child of one of a pair of monozygotic twin females who carry the mutation de novo, and a third patient exhibited unusual skeletal changes more commonly found in other overgrowth syndromes. When considered with other studies published to date, this work reveals the frequency of CDKN1C mutations in BWS to be only 4.9%. This is the first report of an analysis of the imprinting status of genes in the 11p15 region where CDKN1C mutations were associated with loss of IGF2 imprinting and maintenance of H19 and KCNQ1OT1 imprinting.  相似文献   

14.
Beckwith-Wiedemann syndrome (BWS) is an overgrowth disorder resulting from dysregulation of multiple imprinted genes through a variety of distinct mechanisms. A frequent alteration in BWS involves changes in the imprinting status of the coordinately regulated IGF2 and H19 genes on 11p15. Patients have been categorized according to alterations in the imprinted expression, allele-specific methylation, and regional replication timing of these genes. In this work, IGF2/H19 expression, H19 DNA methylation, and IGF2 regional replication timing were studied in nine karyotypically normal BWS fibroblasts and two BWS patients with maternally inherited 11p15 chromosomal rearrangements. Informative patients (9/9) maintained normal monoallelic H19 expression/methylation, despite biallelic IGF2 expression in 6/9. Replication timing studies revealed no changes in the pattern of asynchronous replication timing for both a patient with biallelic IGF2 expression and a patient carrying an 11p15 inversion. In contrast, a patient with a chromosome 11;22 translocation and normal H19 expression/methylation exhibited partial loss of asynchrony and a shift toward earlier replication times. These results indicate that in BWS, (1) H19 imprinting alterations are less frequent than previously estimated, (2) IGF2 imprinting and H19 imprinting are not necessarily coordinated, and (3) alterations in regional replication timing are generally not correlated with either chromosomal rearrangements or the imprinting status of IGF2 and H19.  相似文献   

15.
16.
WT2 is defined by a maternal-specific loss of heterozygosity on human chromosome 11p15.5 in Wilms' and other embryonal tumors. Therefore, the imprinted genes in this region are candidates for involvement in Wilms' tumorigenesis. We now report a novel imprinted gene, KCNQ1DN (KCNQ1 downstream neighbor). This gene is located between p57(KIP2) and KvLQT1 (KCNQ1) of 11p15.5 within the WT2 critical region. KCNQ1DN is imprinted and expressed from the maternal allele. We examined the expression of KCNQ1DN in Wilms' tumors. Seven of eighteen (39%) samples showed no expression. In contrast, other maternal imprinted genes in this region, including p57(KIP2), IMPT1, and IPL exhibited almost normal expression in these samples, although some samples expressed IGF2 biallelically. These results suggest that KCNQ1DN existing far from the H19/IGF2 region may play some role in Wilms' tumorigenesis along with IGF2.  相似文献   

17.
Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome demonstrating heterogeneous molecular alterations of two imprinted domains on chromosome 11p15. The most common molecular alterations include loss of methylation at the proximal imprinting center, IC2, paternal uniparental disomy (UPD) of chromosome 11p15 and hypermethylation at the distal imprinting center, IC1. An increased incidence of female monozygotic twins discordant for BWS has been reported. The molecular basis for eleven such female twin pairs has been demonstrated to be a loss of methylation at IC2, whereas only one male monozygotic twin pair has been reported with this molecular defect. We report here two new pairs of male monozygotic twins. One pair is discordant for BWS; the affected twin exhibits paternal UPD for chromosome 11p15 whereas the unaffected twin does not. The second male twin pair is concordant for BWS and both twins of the pair demonstrate hypermethylation at IC1. Thus, this report expands the known molecular etiologies for BWS twins. Interestingly, these findings demonstrate a new epigenotype-phenotype correlation in BWS twins. That is, while female monozygotic twins with BWS are likely to show loss of imprinting at IC2, male monozygotic twins with BWS reflect the molecular heterogeneity seen in BWS singletons. These data underscore the need for molecular testing in BWS twins, especially in view of the known differences among 11p15 epigenotypes with respect to tumor risk.  相似文献   

18.
Wilms tumor (WT) is one of the more common childhood cancers. A small fraction of WT occurs in association with aniridia, genitourinary abnormalities and mental retardation, the WAGR syndrome, and these cases often are accompanied by a constitutional deletion of all or part of band 11p13. Recently a WT susceptibility gene (WT1), localized to 11p13, has been isolated and shown to be inactivated in some sporadic WTs. In the present study, a highly informative CA repeat polymorphism within the gene was studied in a family with six affected members in three generations. Predisposition to WT in this large family did not segregate with this polymorphism. Furthermore, linkage analysis indicated exclusion of WT predisposition from 11p15. These results provide definitive evidence that familial predisposition to WT can be mediated by a gene other than WT1.  相似文献   

19.
Beckwith-Wiedemann syndrome (BWS), which causes prenatal overgrowth, midline abdominal wall defects, macroglossia, and embryonal tumors, is a model for understanding the relationship between genomic imprinting, human development, and cancer. The causes are heterogeneous, involving multiple genes on 11p15 and including infrequent mutation of p57(KIP2) or loss of imprinting of either of two imprinted gene domains on 11p15: LIT1, which is near p57(KIP2), or H19/IGF2. Unlike Prader-Willi and Angelman syndromes, no chromosomal deletions have yet been identified. Here we report a microdeletion including the entire LIT1 gene, providing genetic confirmation of the importance of this gene region in BWS. When inherited maternally, the deletion causes BWS with silencing of p57(KIP2), indicating deletion of an element important for the regulation of p57(KIP2) expression. When inherited paternally, there is no phenotype, suggesting that the LIT1 RNA itself is not necessary for normal development in humans.  相似文献   

20.
A tissue field of somatic genetic alterations precede the histopathological phenotypic changes of carcinoma. Loss of Heterozygosity (LOH) at the sites of known or putative tumor suppressor genes is a common genetic abnormality detected in precancerous conditions. These genomic changes could be of potential use in the diagnosis and prognosis of pre-malignant laryngeal lesions. Recently the concept of laryngeal intraepithelial neoplasia (LIN) was introduced. To evaluate patients with an increased risk of developing invasive laryngeal carcinoma via a dysplasia-carcinoma progression we investigated 102 microdissected cell populations. Cell populations were procured from 15 laryngectomy specimens with different peritumoral histological changes adjacent to the squamous cell carcinoma cells and 15 laryngeal endoscopic biopsies with no evidence of malignant transformation in a 6-10-year follow-up period. Histological diagnoses were subdivided into keratosis without dysplasia (KWD), with mild dysplasia (LIN 1), with moderate dysplasia (LIN 2), and with severe dysplasia or carcinoma in situ (LIN 3). Microsatellite analysis was performed with the aim of studying LOH of 5q21 (APC), 9p21 (p16), 3p21 and 17p13 (p53) chromosomal regions. Frequent allelic losses were found in carcinoma cells at p53 (54%), p16 (66%), 3p21(87%) and 5q21(58%). Identical LOH patterns were determined in 100% of the LIN3 peritumoral cells, 60% of LIN2, 50% of LIN 1 and 25% of KWD. In contrast, histologically normal mucosae, KWD and LIN1 lesions without malignant progression showed no allelic loss. These results show that dysplasia correlates with LOH at 3p21, 5q21, 9p21 and 17p13 in early laryngeal carcinogenesis. These genomic changes in pre-malignant laryngeal lesions could be of potential use as markers for cancer risk assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号