首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unconjugated bilirubin binds to erythrocytes, eliciting crenation, lipid elution and hemolysis. The present work attempts to establish the role of acidosis on bilirubin-induced toxicity to human erythrocytes. To this end, pH values ranging from 7.0–8.0 were used to induce a different representation of acid and anionic bilirubin species, respectively. Erythrocytes from healthy donors were incubated with bilirubin and albumin (3:1, molar ratio), during 4 h. Erythrocyte-bound bilirubin was evaluated by albumin or chloroform extraction in an attempt to assess either mono- and dianion bilirubin adsorbed on the cell surface or colloidal aggregates, respectively. Cytotoxicity indicators, such as the morphological index, and the extent of phospholipids and hemoglobin release were also determined. The results showed that as pH drops from 8.0–7.0, less bilirubin is removed by albumin and more become recovered by chloroform. The data corroborate the predominance of anionic and non-aggregated bilirubin species at pH 8.0 with dimers and precipitates occurring at 7.0. In accordance, crenation and cell lysis were four times increased at acidic pH. In contrast, elution of phospholipids was 1.5 times less evident at the same pH, thus suggesting that formation of bilirubin complexes with membrane phospholipids may have contributed to prevent their release. In conclusion, both anionic and acid bilirubin species interact with human erythrocytes leading to cytotoxic alterations that may determine definitive lesions. Nevertheless, increased vulnerability to crenation and hemolysis are more likely to occur in acidic conditions pointing to the bilirubin precipitates as the main candidates of bilirubin-induced toxicity to erythrocytes.  相似文献   

2.
Gangliosides seem to play an important role in the interaction of the neurotoxic pigment bilirubin with the synaptosomal plasma membrane (Vázquez et al. [1988] J. Biol. Chem. 263, 1255-1265). In this report, a further characterization of the bilirubin-ganglioside interaction is presented. The interaction is fast, and it is observed at any pH in the range 7.0-9.0. The characteristics of the interaction are different from those observed with other membrane lipids, including sphingomyelin. A model of binding to a single population of sites is able to adequately fit the experimental data. This model predicts a decrease in the tendency of bilirubin to interact with gangliosides and an increase in the binding capacity as the pH is decreased from 8.0 to 7.0. Our data would suggest a role for gangliosides in explaining the preferential accumulation of bilirubin in some areas of the brain and the toxic effect of this pigment in neuronal membrane-related functions.  相似文献   

3.
Mechanism of hepatocellular uptake of albumin-bound bilirubin   总被引:1,自引:0,他引:1  
We previously demonstrated that unconjugated bilirubin spontaneously diffuses through phospholipid bilayers at a rate which exceeds albumin dissociation, suggesting that solvation from albumin represents the rate-limiting step in hepatic bilirubin clearance. To further examine this hypothesis, we studied the uptake of bovine serum albumin (BSA)-bound bilirubin by cultured hepatoblastoma (HepG2) cells. Uptake of bilirubin was saturable, with a K(m) and V(max) of 4.2+/-0.5 microM (+/-S.E.M.) and 469+/-41 pmol min(-1) mg(-1) at 25 degrees C. Substantial bilirubin uptake also was observed at 4 degrees C (K(m)=7.0+/-0.8 microM, V(max)=282+/-26 pmol min(-1) mg(-1)), supporting a diffusional transport mechanism. Consistent with reported solvation rates, the cellular uptake of bilirubin bound to human serum albumin was more rapid than for BSA-bound bilirubin, indicative of dissociation-limited uptake. Counterintuitively, an inverse correlation between pH and the rate of bilirubin flip-flop was observed, due to pH effects on the rate of dissociation of bilirubin from albumin and from the membrane bilayer. The identification of an inflection point at pH 8.1 is indicative of a pK(a) value for bilirubin in this range. Taken together, our data suggest that hepatocellular uptake of bilirubin is dissociation-limited and occurs principally by a mechanism involving spontaneous transmembrane diffusion.  相似文献   

4.
When rat hepatocyte monolayers were preincubated for 4 h in Hanks' salt solutions at pH 7.0, 7.4 and 8.0, and the Na+-dependent uptake of 2-(methylamino) isobutyric acid (MeAIB) was measured at the same pH values, a stimulation of transport in the order pH 7.0 less than pH 7.4 less than pH 8.0 was observed. Estimations of the intracellular pH from the distribution of DMO revealed a decrease in the internal pH during the preincubation period. The MeAIB transport velocities appear to parallel with the proton gradients across the cell membrane rather than with external (or internal) pH. Analyses of the lactate/pyruvate concentrations in the media indicated that the fall in the intracellular pH is presumably due to an enhanced glycolysis. Suppressive concentrations of system A-reactive amino acids did not prevent the decrease in the internal pH nor did they alter the metabolic data.  相似文献   

5.
The effects of local anaesthetics lidocaine, benzocaine, carbisocaine and carbisocaine derivatives, KaQ-7 and Ka-O, in perturbing bovine brain lipid membranes or egg lecithin membranes were compared at pH 6.0; 7.0; and 8.0. The electron spin resonance method with stearic acid labeled at carbon position 16 as the spin probe was employed. The perturbation effects of lidocaine and Ka-O were found to increase with increasing pH of the sample, whereas the effect of carbisocaine decreased with increasing pH. The perturbation effects of benzocaine and KaQ-7 were independent of pH. The pH-dependent perturbation effects of the local anaesthetics tested on lipid membrane fairly corresponded with their pH-dependent potency to block nerve action potentials.  相似文献   

6.
Sodium fluoride (NaF) and sodium dichromate (Na2Cr2O7) are two different toxic compounds which are used as a dental caries prophylactic and as an oxidising agent in various industrial areas, respectively. However, accidental fluoride and chromate poisoning is not a rare occurrence, even death may result from cardiac or respiratory failure. In the present work, alterations produced by NaF, Na2Cr2O7 and temperature changes in the molecular dynamics of the human erythrocyte membrane were studied, in vitro, by the spin-labelling ESR technique. Human intact erythrocyte cells spin labelled with 5- and 16-doxyl stearic acids (5-DSA and 16-DSA) and treated with 40 microM NaF and 5 microM Na2Cr2O7 at 37 degrees C were used to quantify membrane fluidity. This was performed by measuring the changes in the order parameter (S), correlation time (tau) and phase transition temperature using recorded electron spin resonance (ESR) spectra. Experimental results show that 5 microM Na2Cr2O7 and 40 microM NaF do not produce any significant effects on the order parameter of 5-DSA spin label while they cause appreciable changes in the correlation time of the same label. As for 16-DSA, while Na2Cr2O7 does not produce any measurable effect on the order parameter of this label, NaF does in a certain extent. Although weak, the effects of both compounds on the correlation time of 16-DSA are found to be well above the experimental error limits. Change in temperature was observed to alter significantly S and tau parameters which show biphasic character in the temperature range of 5-50 degrees C. Activation energies of the hydrocarbon chains above and below transition temperatures were also determined for untreated and NaF or Na2Cr2O7 treated erythrocyte cells and the effect of NaF and Na2Cr2O7 on these energies and transition temperatures were discussed.  相似文献   

7.
In the isolated rat middle cerebral artery (MCA) we investigated the role of nitric oxide (NO)/cGMP in the vasodilatory response to extraluminal acidosis. Acidosis increased vessel diameter from 140 +/- 27 microm (pH 7.4) to 187 +/- 30 microm (pH 7.0, P < 0.01). NO synthase (NOS) inhibition by N(omega)-nitro-L-arginine (L-NNA, 10 microM) reduced baseline diameter (103 +/- 20 microm, P < 0.01) and attenuated response to acidosis (9 +/- 8 microm). Application of the NO-donors 3-morpholinosydnonimine (1 microM) or S-nitroso-N-acetylpenicillamine (1 microM), or of 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP, 100 microM) reestablished pre-L-NNA diameter at pH 7.4 and reversed L-NNA-induced attenuation of the vessel response to acidosis. Restoration of pre-L-NNA diameter (pH 7.4) by papaverine (20 microM) or nimodipine (30 nM) had no effect on the attenuated response to acidosis. Guanylyl cyclase inhibition with 1H-[1,2,4]oxadiazolo[4,3-a]-quinoxalin-1-one (5 microM) or NOS-inhibition with 7-nitroindazole (7-NI, 100 microM) reduced baseline vessel diameter (109 +/- 8 or 127 +/- 11 microm, respectively) and vasodilation to acidosis, and restoration of baseline diameter with 8-BrcGMP (30 microM) completely restored dilation to pH 7.0. Chronic denervation of NOS-containing perivascular nerves in vivo 14 days before artery isolation significantly reduced pH-dependent reactivity in vitro (diameter increase sham: 48 +/- 14 microm, denervated: 14 +/- 8 microm), and 8-BrcGMP (30 microM) restored dilation to pH 7.0 (denervated: 49 +/- 31 microm). Removal of the endothelium did not change vasodilation to acidosis. We conclude that NO, produced by neuronal NOS of perivascular nerves, is a modulator in the pH-dependent vasoreactivity.  相似文献   

8.
Role of anionic lipid in bacterial membranes   总被引:1,自引:0,他引:1  
The major phospholipids of Bacillus stearothermophilus are phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL). Under the growth conditions used in this study the concentration of anionic lipid (PG + CL) was determined by the pH of the culture medium. Cells grown in a complex medium at pH 5.8, 7.0, and 8.0 contained 17, 29 and 36 nmol of anionic (PG + CL) lipid/mg cell (dry weight). The concentration of the zwitterionic lipid phosphatidylethanolamine (PE) was 17-20 nmol/mg cell (dry weight) under all conditions. Analysis of isolated membrane preparations suggested that the amount of anionic lipid per unit area of membrane increased as the pH of the growth medium was increased. Membranes from cells grown at pH 5.8 and 8.0 contained 130 and 320 nmol anionic lipid/mg membrane protein, respectively. Phosphatidylethanolamine appeared to be localized on the inner membrane surface in cells grown under all conditions. Increasing the ionic strength of the culture medium by the addition of NaCl or KCl had little effect on growth at pH 5.8 but inhibited growth at pH 7 and 8. It was concluded that anionic phospholipid plays an important physiological role in maintaining an acidic pH at the outer membrane surface.  相似文献   

9.
Liver microsomes were enriched in liposomal acidic lipids by Ca2+-dependent fusion of liposomes at pH 7.0. The extent of fusion was monitored by the transfer of radioactive cholesteryl oleate. The enrichment of membranes in phosphatidylserine inhibited ethanolamine base-exchange, whereas the fusion with phosphatidylinositol inhibited both ethanolamine and serine base-exchange reactions. In contrast, these two phospholipids had scarce effects on choline base-exchange. Phosphatidic acid did not suppress any of the three base-exchange activities. Possible functional implications are discussed.Abbreviations DTT dithiothreitol - HEPES 4-(2-hydroxyethyl)-1-piperazineethansulfonic acid - SHB suerose-HEPES buffer (0.25M sucrose, 3mM HEPES, pH 7.4)  相似文献   

10.
We studied the effect of pH on visualization of fatty acids as myelin figures in young mouse epididymal adipose tissue. Fatty acid content of the tissue was increased to 12.4 nmol/mg wet weight by treating the tissue with 380 microM isoproterenol at pH 7.4 for 15 min in the absence of glucose and albumin. Myelin figures were found in freeze-fracture replicas of isoproterenol-treated tissue fixed with glutaraldehyde at pH 7.4 and then incubated and glycerinated at pH 8.1. Myelin figures were seen in replicas as concave or convex laminated sheets and long cylindrical multilamellar structures in fat cells and extracellular space. Myelin figures were sometimes seen in cells extending from the surface of intracellular lipid droplets, the site of lipolysis, to the cell surface and extracellular space. Myelin figures were not found in isoproterenol-treated tissue fixed at pH 7.4 and processed at pH 7.0. Smooth-surfaced droplets, instead, were found in these tissues in the extracellular space. Neither myelin figures nor smooth-surfaced droplets were found in tissues treated with insulin and glucose (to reduce fatty acid content to 1.4 nmol/mg), fixed at pH 7.4 and processed at either pH 8.1 or pH 7.0. Lowering pH of the media to 4.5 during processing of tissues treated with isoproterenol at pH 9.0 caused disappearance of myelin figures and appearance of smooth-surfaced droplets in the extracellular space. Myelin figures were found in replicas of tissue treated with isoproterenol for 15 min at pH 7.4, incubated 10 min at pH 8.4, quick-frozen and then freeze-fractured, indicating that formation of myelin figures was not dependent on glutaraldehyde fixation and glycerol infiltration of the tissue. Our findings show that excess fatty acids in adipose tissue can be visualized as myelin figures if the tissue is exposed to pH 8.1-9.0 and maintained at or above pH 7.4, or as smooth-surfaced droplets if the tissue is processed at pH 7.0 or 4.5. We conclude that myelin figures formed under these conditions are composed primarily of partially ionized fatty acids (acid-soaps), and that the smooth-surfaced droplets in the extracellular space are composed of un-ionized (protonated) fatty acids.  相似文献   

11.
The substrate 16-methylene estra-1,3,5(10)-triene-3,17 beta-diol (16-methylene estradiol-17 beta) and its enzyme-generated alkylating product, 3-hydroxy-16-methylene estra-1,3,5(10)-triene-17-one (16-methylene estrone), were synthesized to study the 17 beta- and 20 alpha-hydroxysteroid dehydrogenase activities which coexist in homogeneous enzyme purified from human placental cytosol. 16-Methylene estradiol, an excellent substrate (Km = 8.0 microM; Vmax = 2.8 mumol/mg/min) when enzymatically oxidized to 16-methylene estrone in the presence of NAD+ (256 microM), inactivates simultaneously the 17 beta- and 20 alpha-activities in a time-dependent and irreversible manner following pseudo-first order kinetics (t1/2 = 1.0 h, 100 microM, pH 9.2). 16-Methylene estradiol does not inactivate the enzyme in the absence of NAD+. 16-Methylene estrone (Km = 2.7 microM; Vmax = 2.9 mumol/mg/min) is an affinity alkylator (biomolecular rate constant k'3 = 63.3 liters/mol-s, pH 9.2; KI = 261 microM; k3 = 8.0 X 10(-4) S-1, pH 7.0) which also simultaneously inhibits both activities in an irreversible time-dependent manner (at 25 microM; t1/2 = 7.2 min, pH 9.2; t1/2 = 2.7 h, pH 7.0). Substrates (estradiol-17 beta, estrone, and progesterone) protect against inhibition of enzyme activity by 16-methylene estrone and 16-methylene estradiol. Affinity radioalkylation studies using 16-methylene [6,7-3H]estrone demonstrate that 1 mol of alkylator binds per mol of inactivated enzyme dimer. Thus, 16-methylene estradiol functions as a unique substrate for the enzymatic generation of a powerful affinity alkylator of 17 beta,20 alpha-hydroxysteroid dehydrogenase and should be a useful pharmacological tool.  相似文献   

12.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min-1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min-1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min-1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 microM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3-. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

13.
Unconjugated bilirubin increasingly binds to erythrocytes as the bilirubin-to-albumin molar ratio exceeds unity, leading to toxic manifestations that can culminate in cell lysis. Our previous studies showed that bilirubin induces the release of lipids from erythrocyte membranes. In the present work, those studies were extended in order to characterize the alterations of membrane lipid composition and evaluate whether bilirubin leads to a loss of phospholipid asymmetry. To this end, human erythrocytes were incubated with several bilirubin-to-albumin molar ratios (0.5 to 5), and cholesterol as well as the total and the individual classes of phospholipids were determined. To detect erythrocytes with phosphatidylserine at the outer surface, the number of annexin V-positive cells was determined following incubation with bilirubin, fixing its molar ratio to albumin at 3. The results demonstrate profound changes in erythrocyte membrane composition, including modified cholesterol and phospholipid content. The release of membrane cholesterol, as well as of total and individual classes of phospholipids at molar ratios ≥1, indicates that damage of erythrocytes may occur in severely ill jaundiced neonates. The loss of the inner-located phospholipids, phosphatidylethanolamine and phosphatidylserine, points to a redistribution of phospholipids in the membrane bilayer. This was confirmed by the exposure of phosphatidylserine at the outer cell surface. In conclusion, this study demonstrates that bilirubin induces loss of membrane lipids and externalization of phosphatidylserine in human erythrocytes. These features may facilitate hemolysis and erythrophagocytosis, thus contributing to enhanced bilirubin production and anemia during severe neonatal hyperbilirubinemia. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
We are using fluorescent endogenous phospholipids in virus membranes to study the factors that promote fusion on interaction with receptor membranes. To this end, vesicular stomatitis virus (VSV) grown in baby hamster kidney (BHK-21) cells was biologically labeled with fluorescent lipids, primarily phosphatidylcholine and phosphatidylethanolamine, derived from pyrene fatty acids. The pyrene lipids present in the virions showed a fluorescence spectrum typical of pyrene with an intense monomer and a broad excimer. Interaction of pyrene lipid labeled VSV with serum lipoproteins led to a spontaneous fast transfer of the small amount of pyrene fatty acids present in the envelope (t1/2 less than or equal to 7 min), followed by a considerably slower transfer of pyrene phospholipids from the membrane of the virions (t1/2 greater than or equal to 12 h). Incubation of pyrene phospholipid labeled VSV with phosphatidylserine small unilamellar vesicles resulted in fusion at low pH (pH 5.0) as measured by the change in the excimer/monomer fluorescence intensity ratio. Fusion kinetics was rapid, reaching a plateau after 4 min at pH 5.0 and 37 degrees C. Only negligible fusion was noted at neutral pH or at 4 degrees C. Fully infectious virions labeled biologically with fluorescent lipids provide a useful tool for studying mechanisms of cell-virus interactions and neutralization of viral infectivity by specific monoclonal antibodies reactive with viral membrane glycoprotein.  相似文献   

15.
Diacylglycerol kinase (EC 2.7.1.-) was purified 1,650-fold from pig brain cytosol. The purified enzyme showed a single protein band on polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The molecular weight of the kinase was estimated to be 78,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A similar value (76,000) was obtained by Sephadex G-150 gel filtration. The activity of the purified enzyme was markedly enhanced by either deoxycholate or phospholipids. The extent of activation by phospholipids was in the order of phosphatidylcholine greater than lysophosphatidylcholine greater than phosphatidylethanolamine approximately equal to phosphatidylserine greater than sphingomyelin. Other phospholipids and unsaturated fatty acids were ineffective. Phosphatidylcholines from egg yolk and pig brain, and dioleoyl phosphatidylcholine were similarly effective. Saturated phosphatidylcholines with acyl chain lengths shorter than palmitate also gave a considerable activation. The activity with phosphatidylcholine was from 1.5- to 2.5-fold higher than that measured with deoxycholate. A very small amount of phosphatidylinositol or phosphatidylglycerol potently inhibited the phosphatidylcholine-dependent (but not deoxycholate-dependent) kinase activity. The inhibition by phosphatidylinositol was varied according to its molar ratio to phosphatidylcholine. As little as about 2.5 mol per cent of phosphatidylinositol resulted in 50% inhibition of the phosphatidylcholine-dependent kinase activity. The deoxycholate- and phosphatidylcholine-dependent kinase activities showed almost the same Km values for the substrates. In both cases, the apparent Km values for ATP and diacylglycerol were 300 microM and about 60 microM, respectively. The kinase required Mg2+ for its activity. When compared to deoxycholate, phosphatidylcholine was more effective at higher Mg2+ concentrations. The deoxycholate-dependent activity showed a broad pH optimum at around 8.0, whereas the phosphatidylcholine-dependent activity formed a clear peak at pH 7.4.  相似文献   

16.
To study the structural change of diphtheria toxin (DT) induced by low pH and its influence on the interaction with membrane lipids, protein and lipid monolayers were formed and characterized. DT at neutral and acidic pH forms stable monolayers, whose surface-pressure-increase curves allow an estimation of the apparent molecular area of 29.5 nm2/molecule at pH 7.4 (corresponding to a radius of 3.06 nm) and 34.5 nm2/molecule at pH 5.0 (corresponding to a radius of 3.32 nm). DT at pH 7.4 does not insert into phospholipid monolayers, while at pH 5.0 it penetrates into the lipid layer with a portion of apparent molecular area of 21.0 nm2/molecule (corresponding to a radius of 2.6 nm). The low-pH driven lipid interaction of the toxin is favoured by the presence of acidic phospholipids, without an apparent requirement for a particular class of negative lipids. The DT mutants crm 45 and crm 197 are capable of hydrophobic interaction already at neutral pH and cause an increase of surface pressure with a further increase upon acidification.  相似文献   

17.
18.
Rabbit hepatic microsomal 12 alpha-steroid hydroxylase which is stable to storage at -70 degrees C in the pellet form was assayed for activity with [5 alpha,6 alpha-3H2]cholestane-3 alpha,7 alpha-diol solubilized with Tween 80 since methanol was incapable of maintaining the sterol in aqueous solution. Under optimized conditions in phosphate buffer, pH 7.4, containing nicotinamide, magnesium chloride, and NADPH, the enzyme conversion appeared linear for the initial 10 min. The rate of hydroxylation was proportional to protein concentration up to 4 mg/ml. Apparent Km and Vmax were 71 microM and 323 pmol of product/mg of protein/min. Based on the known structural requirements of the enzyme system, competitive inhibitors were prepared with the C-12 position derivatized as an alkene, hydroxyl, or oxo functional group. A Dixon plot revealed that 5 alpha-cholest-11-ene-3 alpha,7 alpha,26-triol was the best inhibitor with an apparent Ki of 26 microM.  相似文献   

19.
Epinephrine is known to be rapidly oxidized during sepsis. Ischemia and acidosis, which often accompany sepsis, are associated with the release of weakly bound cupric ions from plasma proteins. We investigated whether copper promotes oxidation of epinephrine at both physiological and acidic pH and whether D-Asp-D-Ala-D-His-D-Lys (D-DAHK), a human albumin (HSA) N-terminus synthetic peptide with a high affinity for cupric ions, attenuates this oxidation. Epinephrine alone [100 microM] or with CuCl(2) [10 microM], and with CuCl(2) [10 microM] and D-DAHK [20 microM] at pH 7.4, 7.0, 6.5, and 6.0 were incubated for 1h at 37 degrees C. Epinephrine oxidation was measured by the spectrophotometric quantification of its oxidation product, adrenochrome. We found that adrenochrome increased, suggesting copper-induced oxidation of epinephrine. At pH 7.4, 7.0, 6.5, and 6.0, adrenochrome increased by 47%, 53%, 24%, and 6% above baseline, respectively. D-DAHK attenuated the copper-induced oxidation of epinephrine to baseline levels. These in vitro results indicate that copper-induced epinephrine oxidation is greatest at the physiological pH 7.4 as well as in severe acidosis, pH 7.0, and that D-DAHK completely inhibits this oxidation.  相似文献   

20.
HCO3- exit across the basolateral membrane of the kidney proximal tubule cell is mediated via an electrogenic Na+:HCO3- cotransporter. We have studied the effect of pH on the activity of this cotransport system in basolateral membrane vesicles isolated from rabbit renal cortex. At constant internal pH 6.0, increasing the external pH and [HCO3-] increased the rate of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive 22Na+ influx into the vesicles. To determine the role of internal pH on the activity of the Na+:HCO3- cotransport system, the influx of 22Na+ via HCO3-dependent Na(+)-Na+ exchange was measured in the absence of an initial pH and [HCO3-] gradient (pH(i) = pH(o), 5% CO2). Increasing the pH from 6.8 to 7.2 increased whereas, increasing the pH from 7.4 to 8.0 decreased the rate of 22Na+ influx via this exchange. Increasing pH at constant [HCO3-] (pH(i) = pH(o) = 8.0, 1.5% CO2 versus pH(i) = pH(o) = 7.2, 10% CO2) reduced the influx of 22Na+ via HCO3-dependent Na(+)-Na+ exchange. Increasing pH at constant [CO3(2-)](pH(i) = pH(o) = 8.0, 1.5% CO2 versus pH(i) = pH(o) = 7.2, 60% CO2) was associated with reduced 22Na+ uptake. Decreasing the pH (pH(i) = pH(o) = 6.3, 60% CO2 versus pH(i) = pH(o) = 7.2, 5% CO2) was associated with a reduced rate of HCO3(-)-dependent Na(+)-Na+ exchange. We conclude that the Na+:HCO3- cotransporter displays a significant pH sensitivity profile with the cotransporter being more functional at pH 7.0-7.4 and less active at more acid or alkaline pH. In addition, the results suggest that the pH sensitivity arises at the inner surface of the basolateral membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号