首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Activation of AKT/protein kinase B promotes a variety of biological activities important in tumorigenesis, such as cell survival and cell cycle progression. We previously demonstrated amplification and overexpression of the AKT2 gene in a subset of human pancreatic carcinomas. In this investigation, we assessed AKT2 catalytic activity in 50 frozen pancreatic tissues (37 carcinomas, four benign tumors and nine normal pancreata) by in vitro kinase assay. Twelve of 37 (32%) pancreatic carcinomas showed markedly elevated levels of AKT2 activity compared to normal pancreata and begin pancreatic tumors. To delineate mechanisms contributing to AKT2 activation in malignant pancreatic tumors, we examined the status of upstream components of the phosphatilydlinositol 3-kinase (PI3K)/AKT pathway. Western blot analysis revealed loss of PTEN protein expression in two of the 12 pancreatic carcinomas with activated AKT2. In vitro PI3K assays demonstrated high levels of PI3K activity in seven carcinoma specimens that showed AKT2 activation. Immunohistochemical staining confirmed high levels of phosphorylated (active) AKT in malignant pancreatic tumors compared to normal pancreata. Overall, these data suggest that upstream perturbations of the PI3K/AKT pathway contribute to frequent activation of AKT2 in pancreatic cancer, which may contribute to the pathogenesis of this highly aggressive form of human malignancy.  相似文献   

3.
Lung cancer is the leading cause of cancer-related mortality worldwide due to its early asymptomatic and late metastasis. While cancer stem cells (CSCs) may play a vital role in oncogenesis and development of lung cancer, mechanisms underlying CSCs self‐renewal remain less clear. In the present study, we constructed a clinically relevant CSCs enrichment recognition model and evaluated the potential functions of phosphatidylinositol 3-kinase (PI3K)/AKT pathway (PI3K/AKT) and mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) pathways in lung cancer via bioinformatic analysis, providing the basis for in depth mechanistic inquisition. Experimentally, we confirmed that PI3K/AKT pathway predominantly promotes proliferation through anti-apoptosis in lung adenocarcinoma cells, while MAPK/ERK pathway has an overwhelming superiority in regulating the proliferation in lung CSCs. Further, utilizing stemness score model, LLC-Symmetric Division (LLC-SD) cells and mouse orthotopic lung transplantation model, we elucidated an intricate cross-talk between the oncogenic pathway and the stem cell reprograming pathway that impact stem cell characteristics as well as cancer biology features of lung CSCs both in vitro and in vivo. In summary, our findings uncovered a new insight that PI3K/AKT and MAPK/ERK pathways as oncogenic signaling pathway and/or stem cell signaling pathway act distinctively and synergistically to regulate lung CSCs self-renewal.  相似文献   

4.
We have previously demonstrated that bcl-2 overexpression in tumor cells exposed to hypoxia increases the expression of vascular endothelial growth factor (VEGF) gene through the hypoxia-inducible factor-1 (HIF-1). In this article, we demonstrate that exposure of bcl-2 overexpressing melanoma cells to hypoxia induced phosphorylation of AKT and extracellular signal-regulated kinase (ERK)1/2 proteins. On the contrary, no modulation of these pathways by bcl-2 was observed under normoxic conditions. When HIF-1alpha expression was reduced by RNA interference, AKT and ERK1/2 phosphorylation were still induced by bcl-2. Pharmacological inhibition of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways reduced the induction of VEGF and HIF-1 in response to bcl-2 overexpression in hypoxia. No differences were observed between control and bcl-2-overexpressing cells in normoxia, in terms of VEGF protein secretion and in response to PI3K and MAPK inhibitors. We also demonstrated that RNA interference-mediated down-regulation of bcl-2 expression resulted in a decrease in the ERK1/2 phosphorylation and VEGF secretion only in bcl-2-overexpressing cell exposed to hypoxia but not in control cells. In conclusion, our results indicate, for the first time, that bcl-2 synergizes with hypoxia to promote expression of angiogenesis factors in melanoma cells through both PI3K- and MAPK-dependent pathways.  相似文献   

5.
Microtubule nucleation is an essential step in the formation of the microtubule cytoskeleton. We recently showed that androgen and Src promote microtubule nucleation and γ-tubulin accumulation at the centrosome. Here, we explore the mechanisms by which androgen and Src regulate these processes and ask whether integrins play a role. We perturb integrin function by a tyrosine-to-alanine substitution in membrane-proximal NPIY motif in the integrin β1 tail and show that this mutant substantially decreases microtubule nucleation and γ-tubulin accumulation at the centrosome. Because androgen stimulation promotes the interaction of the androgen receptor with Src, resulting in PI3K/AKT and MEK/ERK signaling, we asked whether these pathways are inhibited by the mutant integrin and whether they regulate microtubule nucleation. Our results indicate that the formation of the androgen receptor-Src complex and the activation of downstream pathways are significantly suppressed when cells are adhered by the mutant integrin. Inhibitor studies indicate that microtubule nucleation requires MEK/ERK but not PI3K/AKT signaling. Importantly, the expression of activated RAF-1 is sufficient to rescue microtubule nucleation inhibited by the mutant integrin by promoting the centrosomal accumulation of γ-tubulin. Our data define a novel paradigm of integrin signaling, where integrins regulate microtubule nucleation by promoting the formation of androgen receptor-Src signaling complexes to activate the MEK/ERK signaling pathway.  相似文献   

6.
v-Crk, an oncogene product of avian sarcoma virus CT10, efficiently transforms chicken embryo fibroblasts (CEF). We have recently reported that constitutive activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway plays a critical role in the v-Crk-induced transformation of CEF. In the present study we investigated the molecular mechanism by which v-Crk activates the PI3K/AKT pathway. First, we found that v-Crk promotes the association of the p85 regulatory subunit of PI3K with focal adhesion kinase (FAK) by inducing the phosphorylation of the Y397 residue in FAK. This FAK phosphorylation needs activation of the Src family tyrosine kinase(s) for which the v-Crk SH2 domain is responsible. v-Crk was unable to activate the PI3K/AKT pathway in FAK-null cells, indicating the functional importance of FAK. In addition, we found that H-Ras is also required for the activation of the PI3K/AKT pathway. The v-Crk-induced activation of AKT was greatly enhanced by the overexpression of H-Ras or its guanine nucleotide exchange factor mSOS, which binds to the v-Crk SH3 domain, whereas a dominant-negative mutant of H-Ras almost completely suppressed this activation. Furthermore, we showed that v-Crk stimulates the interaction of H-Ras with the Ras binding domain in the PI3K p110 catalytic subunit. Our data indicated that the v-Crk-induced activation of PI3K/AKT pathway was cooperatively achieved by two distinct interactions. One is the interaction of p85 with tyrosine-phosphorylated FAK promoted by the v-Crk SH2 domain, and another is the interaction of p110 with H-Ras dictated by the v-Crk SH3 domain.  相似文献   

7.
Hepatocyte growth factor (HGF) promotes the proliferation of adult myoblasts and inhibits their differentiation, whereas insulin-like growth factor I (IGF-I) enhances both processes. Recent studies indicate that activation of the phosphoinositide 3'-kinase (PI3K) pathway promotes myoblast differentiation, whereas activation of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) promotes proliferation and inhibits their differentiation. This simple model is confounded by the fact that both HGF and IGF-I have been shown to activate both pathways. In this study, we have compared the ability of HGF and IGF-I to activate PI3K and MAPK/ERK in i28 myogenic cells. We find that, although the two stimuli result in comparable recruitment of the p85alpha subunit of PI3K into complexes with tyrosine-phosphorylated proteins, the p85beta regulatory subunit and p110alpha catalytic subunit of PI3K are preferentially recruited into these complexes in response to IGF-I. In agreement with this observation, IGF-I is much more potent than HGF in stimulating phosphorylation of Akt/PKB, a protein kinase downstream of PI3K. In contrast, MAPK/ERK phosphorylation was higher in response to HGF and lasted longer, relative to IGF-I. Moreover, the specific PI3K inhibitor, Wortmannin, abolished MAPK/ERK and Elk-1 phosphorylation in HGF-treated cells, suggesting the requirement of PI3K in mediating the HGF-induced MAPK pathway. UO126, a specific MAPK pathway inhibitor, had no effect on PI3K activity or Akt phosphorylation, implying that at least in muscle cells, the MAPK/ERK pathway is not required for HGF-induced PI3K activation. These results provide a biochemical rationale for the previous observations that HGF and IGF-I have opposite effects on myogenic cells, consistent with studies linking PI3K activation to differentiation and MAPK/ERK activation to proliferation in these cells. Moreover, the finding that PI3K activity is required for HGF-induced MAPK activation suggests its additional role in proliferation, rather than exclusively in the differentiation of adult myoblasts.  相似文献   

8.
PACAP has opposing roles ranging from activation to inhibition of tumor growth and PACAP agonists/antagonists could be used in tumor therapy. In this study, the effect of PACAP stimulation on signaling pathways was investigated in MCF-7 human adenocarcinoma breast cancer cells. Results showed that MCF-7 cells express VPAC1 and VPAC2, but not PAC1, receptors. In addition, PACAP increased the phosphorylation levels of STAT1, Src and Raf within seconds, confirming their involvement in early stages of PACAP signaling whereas maximal phosphorylation of AKT, ERK and p38 was reached 10 to 20 min later. Moreover, selective inhibition of Src or PI3K resulted in a significant decrease in the phosphorylation of ERK and AKT, but not p38, demonstrating that PACAP signaling follows Src/Raf/ERK and PI3K/AKT pathways. On the other hand, selective inhibition of PLC or PKA resulted in a significant decrease in the phosphorylation of p38, but not AKT or ERK, indicating that PACAP signaling also follows the PLC and PKA/cAMP pathways. Furthermore, PACAP induced ROS through H₂O₂ production whereas pretreatment with NAC inhibitor decreased AKT and ERK phosphorylation, but not p38. Selective NOX2 inhibition affected Src/Raf/Erk and PI3K/Akt pathways, without affecting the p38/PLC/PKA pathway whereas other inhibitors (ML171, VAS2870) had no effect on PACAP induced ROS generation. On the other hand, PACAP induced calcium release, which was decreased by pretreatment with PLC inhibitor. Finally, PACAP stimulation promoted apoptosis by increasing Bax and decreasing Bcl2 expression. In conclusion, we demonstrated that PACAP signaling in MCF-7 cells follows the Src/Raf/ERK and PI3K/AKT pathways and is VPAC1 dependent in a ROS dependent manner, whereas it follows PLC and PKA/cAMP pathways and is VPAC2 dependent through p38 MAP kinase activation involving calcium.  相似文献   

9.
Melanocytes are cells of the epidermis that synthesize melanin, which is responsible for skin pigmentation. Transformation of melanocytes leads to melanoma, a highly aggressive neoplasm, which displays resistance to apoptosis. In this report, we demonstrate that TNF-related apoptosis-inducing ligand (TRAIL), which was thought to kill only transformed cells, promotes very efficiently apoptosis of primary human melanocytes, leading to activation of caspases 8, 9 and 3, and the cleavage of vital proteins. Further, we show that stem cell factor (SCF), a physiologic melanocyte growth factor that activates both the phosphatidyl-inositol-3 kinase (PI3K) and the extracellular regulated kinase (ERK) pathways, strongly protects melanocytes from TRAIL and staurosporine killing. Interestingly, inhibition of PI3K or its downstream target AKT completely blocks the antiapoptotic effect of SCF, while inhibition of ERK has only a moderate effect. Our data indicate that protection evoked by SCF/PI3K/AKT cascade is not mediated by an increase in the intracellular level of FLIP. Further, only a sustained PI3K activity can protect melanocytes from apoptosis, thereby indicating that the PI3K/AKT pathway plays a pivotal role in melanocyte survival. The results gathered in this report bring new information on the molecular mechanisms involved in primary melanocyte apoptosis and survival that would help to better understand the process by which melanomas acquire their resistance to apoptosis.  相似文献   

10.
We have examined highly purified osteoclasts that were generated in vitro from murine co-culture of marrow precursors with stromal support cells and have found evidence of activation of the MEK/ERK and AKT/NFkappaB survival pathways. Many mature marrow-derived osteoclasts survived for at least 48 h in culture whether or not they are maintained with stromal cells. Moreover, supplementing purified osteoclasts with RANKL and/or M-CSF had no impact on their survival pattern. In addition, spleen-derived osteoclasts generated with RANKL and M-CSF treatment exhibited a similar survival pattern. Blocking MEK, AKT, or NFkappaB activity resulted in apoptosis of many, but not all, of the osteoclasts in purified marrow-derived osteoclasts, marrow-derived osteoclasts co-cultured with stromal cells, and spleen-derived osteoclasts maintained with RANKL and M-CSF. These data support that both the MEK/ERK and AKT/NFkappaB pathways contribute to osteoclast survival. Since PI3K has been shown to activate either of these pathways, we have examined its role in osteoclast survival. PI3K inhibition caused apoptosis of nearly all osteoclasts in purified and co-cultured marrow-derived osteoclasts and spleen-derived osteoclasts maintained with RANKL and M-CSF. Interestingly, in marrow-derived co-cultures, the apoptotic response was restricted to osteoclasts as there was no evidence of stromal support cell apoptosis. PI3K inhibition also blocked MEK1/2, ERK1/2, and AKT phosphorylation and NFkappaB activation in purified osteoclasts. Simultaneous blockage of both AKT and MEK1/2 caused rapid apoptosis of nearly all osteoclasts, mimicking the response to PI3K inhibition. These data reveal that PI3K coordinately activates two distinct survival pathways that are both important in osteoclast survival.  相似文献   

11.
Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignant tumor and is refractory to conventional chemotherapy. The aim of this study is therefore to elucidate the mechanism of chemoresistance in ICC which is not fully understood. We generated cisplatin resistant ICC cells via long term exposure to cisplatin and found that these cells are also resistant to 5-fluorouracil (5-FU) and gemcitabine. The chemoresistant cells showed enhanced Bcl-2 expression and reduced Bax expression compared to parental ICC cells. In addition, the resistant cells showed enhanced activation of AKT and extracellular signal-regulated kinase (ERK) 1/2. Inhibition of AKT activation by phosphoinocitide 3-kinase (PI3K) inhibitor LY294002 resulted in reduced Bcl-2 expression and enhanced Bax expression and thus induced apoptosis in the resistant cells, whereas inhibition of ERK1/2 activation by mitogen-activated protein kinase (MEK) inhibitor U0126 did not induce apoptosis without affecting the expression of Bcl-2 and Bax but decreased cell growth. Moreover, the inhibition of AKT or ERK1/2 sensitized the resistant cells to cisplatin and therefore resulted in greatly enhanced cisplatin-induced apoptosis and growth inhibition in the cells. The results indicate that AKT and ERK1/2 signaling mediate chemoresistance in the cells and could be important therapeutic targets for overcoming chemoresistance in ICC.  相似文献   

12.
We reported previously in HepG2 cells that estradiol induces cell cycle progression throughout the G1-S transition by the parallel stimulation of both PKC-alpha and ERK signaling molecules. The analysis of the cyclin D1 gene expression showed that only the MAP kinase pathway was involved. Here, the presence of rapid/nongenomic, estradiol-regulated, PI3K/AKT signal transduction pathway, its modulation by the levels of the tumor suppressor PTEN, its cross-talk with the ERK pathway, and its involvement in DNA synthesis and cyclin D1 gene promoter activity have all been studied in HepG2 cells. 17beta-Estradiol induced the rapid and biphasic phosphorylation of AKT. These phosphorylations were independent of each other, being the first wave of activation independent of the estrogen receptor (ER), whereas the second was dependent on ER. Both activations were dependent on PI3K activity; furthermore, the ERK pathway modulated AKT phosphorylation by acting on the PTEN levels. The results showed that the PI3K pathway, as well as ER, were strongly involved in both G1-S progression and cyclin D1 promoter activity by acting on its proximal region (-254 base pairs). These data indicate that in HepG2 cells, different rapid/nongenomic estradiol-induced signal transduction pathways modulate the multiple steps of G1-S phase transition.  相似文献   

13.
We previously reported that the 3,5,3'-triiodo-L-thyronine (T3)-induced increase of Na-K-ATPase activity in rat alveolar epithelial cells (AECs) required activation of Src kinase, PI3K, and MAPK/ERK1/2. In the present study, we assessed the role of Akt in Na-K-ATPase activity and the interaction between the PI3K and MAPK in response to T3 by using MP48 cells, inhibitors, and constitutively active mutants in the MP48 (alveolar type II-like) cell line. The Akt inhibitor VIII blocked T3-induced increases in Na-K-ATPase activity and amount of plasma membrane Na-K-ATPase protein. The Akt inhibitor VIII also abolished the increase in Na-K-ATPase activity induced by constitutively active mutants of either Src kinase or PI3K. Moreover, constitutively active mutants of Akt increased Na-K-ATPase activity in the absence of T3. Thus activation of Akt was required for T3-induced Na-K-ATPase activity in AECs and is sufficient in the absence of T3. Inhibitors of Src kinase (PP1), PI3K (wortmannin), and ERK1/2 (U0126) all blocked the T3-induced Na-K-ATPase activity. PP1 blocked the activation of PI3K and also ERK1/2 by T3, whereas U0126 did not prevent T3 activation of Src kinase or PI3K activity. Wortmannin did not significantly alter T3-increased MAPK/ERK1/2 activity, suggesting that T3-activated PI3K/Akt and MAPK/ERK1/2 pathways acted downstream of the Src kinase. Furthermore, in the absence of T3, a constitutively active mutant of Src kinase increased activities of Na-K-ATPase, PI3K, and MAPK/ERK1/2. A constitutively active mutant of PI3K enhanced Na-K-ATPase activity but did not alter the MAPK/ERK1/2 activity significantly. In summary, in adult rat AECs T3-stimulated Src kinase activity can activate both PI3K/Akt and MAPK/ERK1/2, and activation of Akt is necessary for T3-induced Na-K-ATPase activity.  相似文献   

14.
Hepatocyte growth factor (HGF) is a potent mitogen for a variety of cells including hepatocytes. While rat oval cells are supposed to be one of hepatic stem cells, biological effects of HGF on oval cells and their relevant signal transduction pathways remain to be determined. We sought to investigate them on OC/CDE22 rat oval cells, which are established from the liver of rats fed a choline-deficient/DL-ethionine-supplemented diet. The oval cells were cultured on fibronectin-coated dishes and stimulated with recombinant HGF, transforming growth factor-alpha (TGF-alpha), and thrombopoietin (TPO) under the serum-free medium condition. HGF treatment enhanced [3H]thymidine incorporation into oval cells in a dose-dependent manner. On the contrary, treatment with TGF-alpha or TPO had no significant effects on [3H]thymidine incorporation into the oval cells. c-Met protein was phosphorylated at the tyrosine residues after the HGF treatment. AKT, extracellular signal-regulated kinase 1/2 (ERK1/2), and p70(s6k) were simultaneously activated after the HGF stimulation, peaking at 30min after the treatment. The activation of AKT, p70(s6k), and ERK1/2 induced by HGF was abolished by pre-treatment with LY294002, a phosphoinositide 3-OH kinase (PI3K) inhibitor, and U0126, a mitogen-activated protein kinase/ERK kinase (MEK) inhibitor, respectively. When the cells were pre-treated with LY294002 prior to the HGF stimulation, the proliferative action of HGF was completely abrogated, implying that the PI3K/AKT signaling pathway is responsible for the biological effect of HGF. These in vitro data indicate that HGF exerts a proliferative action on hepatic oval cells via activation of the PI3K/AKT signaling pathway.  相似文献   

15.
Although the significance of vascular endothelial growth factor (VEGF) and its receptors in angiogenesis is well established, the signal transduction cascades activated by VEGF and their involvement in mediating the mitogenic response of endothelial cells to VEGF are incompletely characterized. Here we demonstrate that VEGF activates mitogen-activated protein (MAP) kinases, including the extracellular signal-regulated protein kinase (ERK) and p38 MAP kinase, phosphatidylinositol 3-kinase (PI 3-kinase), and p70 S6 kinase in human umbilical vein endothelial cells (HUVEC). The activation of these enzymes was assayed by kinase phosphorylation and by kinase activity towards substrates. Studies with PI 3-kinase inhibitors revealed that activation of p70 S6 kinase was mediated by PI 3-kinase. Selective inhibition of ERK, PI 3-kinase, and p70 S6 kinase with the inhibitors PD098059, LY294002, and rapamycin, respectively, inhibited VEGF-stimulated HUVEC proliferation. In marked contrast, the p38 MAP kinase inhibitor SB203580 not only failed to inhibit but actually enhanced HUVEC proliferation; this effect was associated with the phosphorylation of Rb protein. Rb phosphorylation resulted from a decrease in the level of the cdk inhibitor p27KiP1. These results indicate that the activities of ERK, PI 3-kinase, and p70 S6 kinase are essential for VEGF-induced HUVEC proliferation. p38 MAP kinase suppresses endothelial cell proliferation by regulating cell-cycle progression.  相似文献   

16.
Bone morphogenetic proteins (BMPs) have been implicated in tumorigenesis and metastatic progression in various types of cancer cells, but the role and cellular mechanism in the invasive phenotype of gastric cancer cells is not known. Herein, we determined the roles of phosphoinositide 3-kinase (PI3K)/AKT, extracellular signal-regulated protein kinase (ERK), nuclear factor (NF)-κB, and matrix metalloproteinase (MMP) expression in BMP-2-mediated metastatic function in gastric cancer. We found that stimulation of BMP-2 in gastric cancer cells enhanced the phosphorylation of AKT and ERK. Accompanying activation of AKT and ERK kinase, BMP-2 also enhanced phosphorylation/degradation of IκBα and the nuclear translocation/activation of NF-κB. Interestingly, blockade of PI3K/AKT and ERK signaling using LY294002 and PD98059, respectively, significantly inhibited BMP-2-induced motility and invasiveness in association with the activation of NF-κB. Furthermore, BMP-2-induced MMP-9 expression and enzymatic activity was also significantly blocked by treatment with PI3K/AKT, ERK, or NF-κB inhibitors. Immunohistochemistry staining of 178 gastric tumor biopsies indicated that expression of BMP-2 and MMP-9 had a significant positive correlation with lymph node metastasis and a poor prognosis. These results indicate that the BMP-2 signaling pathway enhances tumor metastasis in gastric cancer by sequential activation of the PI3K/AKT or MAPK pathway followed by the induction of NF-κB and MMP-9 activity, indicating that BMP-2 has the potential to be a therapeutic molecular target to decrease metastasis.  相似文献   

17.
Thrombopoietin (TPO) stimulates a network of intracellular signaling pathways that displays extensive cross-talk. We have demonstrated previously that the ERK/mitogen-activated protein kinase pathway is important for TPO-induced endomitosis in primary megakaryocytes (MKs). One known pathway by which TPO induces ERK activation is through the association of Shc with the penultimate phosphotyrosine within the TPO receptor, Mpl. However, several investigators found that the membrane-proximal half of the cytoplasmic domain of Mpl is sufficient to activate ERK in vitro and support base-line megakaryopoiesis in vivo. Using BaF3 cells expressing a truncated Mpl (T69Mpl) as a tool to identify non-Shc/Ras-dependent signaling pathways, we describe here novel mechanisms of TPO-induced ERK activation mediated, in part, by phosphoinositide 3-kinase (PI3K). Similar to cells expressing full-length receptor, PI3K was activated by its incorporation into a complex with IRS2 or Gab2. Furthermore, the MEK-phosphorylating activity of protein kinase Czeta (PKCzeta) was also enhanced after TPO stimulation of T69Mpl, contributing to ERK activity. PKCzeta and PI3K also contribute to TPO-induced ERK activation in MKs, confirming their physiological relevance. Like in BaF3 cells, a TPO-induced signaling complex containing p85PI3K is detectable in MKs expressing T61Mpl and is probably responsible for PI3K activation. These data demonstrate a novel role of PI3K and PKCzeta in steady-state megakaryopoiesis.  相似文献   

18.
Dedifferentiation, a process by which differentiated cells become mesenchymal‐like proliferating cells, is the first step in renal epithelium repair and occurs in vivo after acute kidney injury and in vitro in primary culture. However, the underlying mechanism remains poorly understood. In this report, we studied the signaling events that mediate dedifferentiation of proximal renal tubular cells (RPTC) in primary culture. RPTC dedifferentiation characterized by increased expression of vimentin concurrent with decreased expression of cytokeratin‐18 was observed at 24 h after the initial plating of freshly isolated proximal tubules and persisted for 72 h. At 96 h, RPTC started to redifferentiate as revealed by reciprocal expression of cytokeratin‐18 and vimentin and completed at 120 h. Phosphorylation levels of Src, epidermal growth factor receptor (EGFR), AKT (a target of phosphoinositide‐3‐kinase (PI3K)), and ERK1/2 were increased in the early time course of culture (<72 h). Inhibition of Src family kinases (SFKs) with PP1 blocked EGFR, AKT, and ERK1/2 phosphorylation, as well as RPTC dedifferentiation. Inhibition of EGFR with AG1478 also blocked AKT and ERK1/2 phosphorylation and RPTC dedifferentiation. Although inactivation of the PI3K/AKT pathway with LY294002 inhibited RPTC dedifferentiation, blocking the ERK1/2 pathway with U0126 did not show such an effect. Moreover, inhibition of SFKs, EGFR, PI3K/AKT, but not ERK1/2 pathways abrogated RPTC outgrowth and SFK inhibition decreased RPTC proliferation and migration. These findings demonstrate a critical role of SFKs in mediating RPTC dedifferentiation through activation of the EGFR/PI3K signaling pathway. J. Cell. Physiol. 227: 2138–2144, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
During glucose deprivation (GD)-induced cellular stress, the molecular chaperone glucose-regulated protein 75 (Grp75)/Mortalin/PBP74/mtHSP70 (hereafter termed “Grp75”) plays an important role in the suppression of apoptosis by inhibiting the Bax conformational change that delays the release of cytochrome c. The molecular pathways by which it carries out these functions are still unclear. We hypothesize that the anti-apoptotic effect by the overexpression of Grp75 was through the signal of AKT activated by classic phosphoinositide 3-kinase (PI3K) and also involved PI3K-independent pathways. Using the PC12 cell GD model, we demonstrated a novel mechanism of Grp75 activating AKT, which may be PI3K independent and associated with Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK signaling. The PI3K inhibitor LY294002 did not influence the activation of AKT by the Grp75 overexpression under GD; however, the MEK inhibitor U0126 dramatically inhibited AKT phosphorylation in the same assay. In addition to the PI3K/AKT signal pathway, Grp75 overexpression also inhibited the Bax conformational change through the Raf/MEK/ERK signal pathway. In conclusion, Grp75 overexpression in activating AKT can be PI3K independent and associated with Raf/MEK/ERK signaling under GD. At the same time, PI3K may also crosstalk with Raf-1, in which the prosurvival signal of PI3K maintains the expression of Raf-1. The activated AKT and extracellular signal-regulated protein kinases 1 and 2 by Grp75 inhibited the Bax conformational change and subsequent apoptosis.  相似文献   

20.
Endothelium of the cerebral blood microvessels, which constitutes the major component of the blood-brain barrier, controls leukocyte and metastatic cancer cell adhesion and trafficking into the brain parenchyma. In this study, using rat primary brain microvascular endothelial cells (BMEC), we demonstrate that the vascular endothelial growth factor (VEGF), a potent promoter of angiogenesis, up-regulates the expression of the intracellular adhesion molecule-1 (ICAM-1) through a novel pathway that includes phosphatidylinositol 3 OH-kinase (PI3K), AKT, and nitric oxide (NO), resulting in the migration of BMEC. Upon VEGF treatment, AKT is phosphorylated in a PI3K-dependent manner. AKT activation leads to NO production and release and activation-deficient AKT attenuates NO production stimulated by VEGF. Transfection of the constitutive myr-AKT construct significantly increased basal NO release in BMEC. In these cells, VEGF and the endothelium-derived NO synergistically up-regulated the expression of ICAM-1, which was mediated by the PI3K pathway. This activity was blocked by the PI3K-specific inhibitor, wortmannin. Furthermore, VEGF and NO significantly increased BMEC migration, which was mediated by the up-regulation of ICAM-1 expression and was dependent on the integrity of the PI3K/AKT/NO pathway. This effect was abolished by wortmannin, by the specific ICAM-1 antibody, by the specific inhibitor of NO synthase, N(G)-l-monomethyl-arginine (l-NMMA) or by a combination of wortmannin, ICAM-1 antibody, and l-NMMA. These findings demonstrate that the angiogenic factor VEGF up-regulates ICAM-1 expression and signals to ICAM-1 as an effector molecule through the PI3K/AKT/NO pathway, which leads to brain microvessel endothelial cell migration. These observations may contribute to a better understanding of BMEC angiogenesis and the physiological as well as pathophysiological function of the blood-brain barrier, whose integrity is crucial for normal brain function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号