首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study aimed to test the hypothesis that diets containing relatively high amounts of the Delta6 desaturated fatty acids stearidonic acid (STA, 18:4n-3) and gamma-linolenic acid (GLA, 18:3n-6), may be beneficial in salmonid culture. The rationale being that STA and GLA would be better substrates for highly unsaturated fatty acid (HUFA) synthesis as their conversion does not require the activity of the reputed rate-limiting enzyme, fatty acid Delta6 desaturase. Duplicate groups of two Arctic charr (Salvelinus alpinus L.) populations with different feeding habits, that had been reported previously to show differences in HUFA biosynthetic capacity, were fed for 16 weeks on two fish meal based diets containing 47% protein and 21% lipid differing only in the added lipid component, which was either fish oil (FO) or echium oil (EO). Dietary EO had no detrimental effect on growth performance and feed efficiency, mortalities, or liver and flesh lipid contents in either population. The proportions of 18:2n-6, 18:3n-3, 18:3n-6, 18:4n-3, 20:3n-6 and 20:4n-3 in total lipid in both liver and flesh were increased by dietary EO in both populations. However, the percentages of 20:5n-3 and 22:6n-3 were reduced by EO in both liver and flesh in both strains, whereas 20:4n-6 was only significantly reduced in flesh. In fish fed FO, HUFA synthesis from both [1-(14)C]18:3n-3 and [1-(14)C]20:5n-3 was significantly higher in the planktonivorous Coulin charr compared to the demersal, piscivorous Rannoch charr morph. However, HUFA synthesis was increased by EO in Rannoch charr, but not in Coulin charr. In conclusion, dietary EO had differential effects in the two populations of charr, with HUFA synthesis only stimulated by EO in the piscivorous Rannoch morph, which showed lower activities in fish fed FO. However, the hypothesis was not proved as, irrespective of the activity of the HUFA synthesis pathway in either population, feeding EO resulted in decreased tissue levels of n-3HUFA and 20:4n-6. This has been observed previously in salmonids fed vegetable oils, and thus the increased levels of Delta6 desaturated fatty acids in EO did not effectively compensate for the lack of dietary HUFA.  相似文献   

3.
The aim of the present study was to determine the effects of conjugated linoleic acid (CLA) on lipid and fatty acid metabolism in Atlantic salmon. The overall objective being to test the hypotheses that CLA has beneficial effects in salmon including growth enhancement, improved flesh quality through decreased adiposity and lipid deposition thereby minimising detrimental effects of feeding high fat diets, and increased nutritional quality through increased levels of beneficial fatty acids including n-3 highly unsaturated fatty acids (HUFA) and CLA itself. Salmon smolts were fed diets containing two levels of fish oil (low, approximately 18% and high, approximately 34%) containing three levels of CLA (a 1:1 mixture of 9-cis,trans-11 and trans-10,cis-12. at 0, 1 and 2% of diet) for 3 months and the effects on growth performance, liver and muscle (flesh) lipid contents and class compositions, and fatty acid compositions determined. The diets were also specifically formulated to investigate whether the effects of CLA, if any, were more dependent upon absolute content of CLA in the diet (as percentage of total diet) or the relative level of CLA to other fatty acids. Dietary CLA in salmon smolts had no effect on growth parameters or biometric parameters. However, there was a clear trend of increased total lipid and triacylglycerol contents in both liver and flesh in fish fed CLA, particularly in fish fed the high oil diets. Finally, CLA was incorporated into tissue lipids, with levels in flesh being 2-fold higher than in liver, but importantly, incorporation in liver was at the expense of saturated and monounsaturated fatty acids whereas in flesh it was at the expense of n-3HUFA.  相似文献   

4.
Fish are the only major dietary source for humans of -3 highly unsaturated fatty acids (HUFAs) and with declining fisheries farmed fish such as Atlantic salmon (Salmo salar) constitute an increasing proportion of the fish in the human diet. However, the current high use of fish oils, derived from wild capture marine fisheries, in aquaculture feeds is not sustainable in the longer term and will constrain continuing growth of aquaculture activities. Greater understanding of how fish metabolize and biosynthesize HUFA may lead to more sustainable aquaculture diets. The study described here contributes to an effort to determine the molecular genetics of the HUFA biosynthetic pathway in salmon, with the overall aim being to determine mechanisms for optimizing the use of vegetable oils in Atlantic salmon culture. In this paper we describe the cloning and functional characterization of 2 genes from salmon involved in the biosynthesis of HUFA. A salmon desaturase complementary DNA, SalDes, was isolated that include an open reading frame of 1362 bp specifying a protein of 454 amino acids. The protein sequence includes all the characteristics of microsomal fatty acid desaturases, including 3 histidine boxes, 2 transmembrane regions, and an N-terminal cytochrome b5 domain containing a heme-binding motif similar to that of other fatty acid desaturases. Functional expression in the yeast Saccharomyces cerevisiae showed SalDes is predominantly an -3 5 desaturase, a key enzyme in the synthesis of eicosapentaenoic acid (20:5n-3) from -linolenic acid (18:3n-3). The desaturase showed only low levels of 6 activity toward C18 polyunsaturated fatty acids. In addition, a fatty acid elongase cDNA, SalElo, was isolated that included an open reading frame of 888 bp, specifying a protein of 295 amino acids. The protein sequence of SalElo included characteristics of microsomal fatty acid elongases, including a histidine box and a transmembrane region. Upon expression in yeast SalElo showed broad substrate specificity for polyunsaturated fatty acids with a range of chain lengths, with the rank order being C18 > C20 > C22. Thus this one polypeptide product displays all fatty acid elongase activities required for the biosynthesis of docosahexaenoic acid (22:6n-3) from 18:3n-3.  相似文献   

5.
Highly unsaturated fatty acid (HUFA) synthesis in Atlantic salmon (Salmo salar) was known to be influenced by both nutritional and environmental factors. Here we aimed to test the hypothesis that both these effectors involved similar molecular mechanisms. Thus, HUFA biosynthetic activity and the expression of fatty acyl desaturase and elongase genes were determined at various points during an entire 2 year production cycle in salmon fed diets containing either 100% fish oil or diets in which a high proportion (75% and 100%) of fish oil was replaced by C18 polyunsaturated fatty acid-rich vegetable oil. The results showed that HUFA biosynthesis in Atlantic salmon varied during the growth cycle with peak activity around seawater transfer and subsequent low activities in seawater. Consistent with this, the gene expression of Delta6 desaturase, the rate-limiting step in the HUFA biosynthetic pathway, was highest around the point of seawater transfer and lowest during the seawater phase. In addition, the expression of both Delta6 and Delta5 desaturase genes was generally higher in fish fed the vegetable oil-substituted diets compared to fish fed fish oil, particularly in the seawater phase. Again, generally consistent with this, the activity of the HUFA biosynthetic pathway was invariably higher in fish fed diets in which fish oil was substituted by vegetable oil compared to fish fed only fish oil. In conclusion, these studies showed that both nutritional and environmental modulation of HUFA biosynthesis in Atlantic salmon involved the regulation of fatty acid desaturase gene expression.  相似文献   

6.
Repeated critical swimming performance trials (Ucrit) were performed on Atlantic salmon (Salmo salar) to test the null hypothesis that the source of dietary lipids (fish-based, poultry-based, and plant-based) does not influence exercise and recovery performance. Four diets were prepared by extensively replacing supplemental lipid from anchovy oil (AO; 100% AO at 150 g/kg) with cold pressed flaxseed oil (FO; 25% AO, 75% FO), sunflower oil (SO; 25% AO, 75% SO), or poultry fat (PF; 25% AO, 75% PF). These diets had equivalent protein and energy concentrations, but due to the different supplemental lipid sources, varied widely in their fatty acid composition. Fish fed AO had a significantly higher (P<0.05) first Ucrit (2.62+/-0.07 body lenght s(-1)) than those fed PF (2.22+/-0.12 body lenght s(-1)) that had low muscle ratios of n-3 highly unsaturated fatty acids (n-3 HUFA) to saturated fatty acids (SFA) and arachidonic acid (AA), and high levels of oleic acid. Fish in the FO and SO diet groups swam as well as AO-fed fish in both swimming trials. The performance of fish fed AO decreased significantly (P<0.05) during the second swimming trial (i.e. Ucrit2/Ucrit1=0.92+/-0.02). No significant differences occurred between diet groups for the second swim trial. There was a positive correlation between both n-3 HUFA/SFA and n-3 HUFA/AA ratios, and Ucrit1. A negative correlation was found between dietary AA and oleic acids, and Ucrit1. The present study suggests that low dietary n-3 HUFA/ SFA and n-3 HUFA/AA ratios may negatively affect swimming performance. The former possibly can be offset by increasing linoleic acid in the presence of nutritionally adequate n-3 HUFA (e.g. SO diet). Lipid supplements consisting largely of vegetable oils did not compromise fish cardiorespiratory physiology under the conditions of this study.  相似文献   

7.
In animals, the composition of fatty acids (FAs) in body pools reflects dietary intake. This paper reviews evidence that the manipulation of tissue lipids of farmed fish, by feeding them different natural oils, can have significant effects on their respiratory and cardiovascular physiology. Sturgeon and eels with tissue lipids rich in highly unsaturated FAs of the n-3 series (n-3HUFAs, accumulated from dietary menhaden oil) had significantly lower metabolic rates than fish with tissues rich in saturated FAs (SFAs, from coconut oil), although they grew equally well. In sturgeon, the difference in metabolism influenced tolerance of hypoxia. Degrees of hypoxia that depressed oxygen uptake and spontaneous activity in fish rich in SFAs had no such effects on fish rich in n-3HUFAs. In the isolated sturgeon heart working in vitro, reduced oxygen supply depressed the performance of hearts with lipids rich in SFAs but not that of hearts rich in n-3HUFAs. In salmon fed diets with graded mixtures of menhaden and canola oils, there was no relationship between tissue n-3HUFA content (from menhaden oil) and any measured aspect of swimming performance, but a linear relationship between maximum sustainable swimming speed and muscle oleic acid levels (from canola oil). Such exploratory studies indicate that an animal's responses to its environment may be profoundly affected by the oils and FAs it consumes in its diet.  相似文献   

8.
为研究植物油替代鱼油对瓦氏黄颡鱼(Pelteobagrus vachelli)生长及肌肉脂肪组成的影响及重投喂鱼油对瓦氏黄颡鱼肌肉脂肪酸组成的影响,实验以大豆油分别替代饲料中的0(FO)、50(S1)、75(S2)和100%(SO)的鱼油配制等氮、等能的颗粒饲料,每组设置3个平行,养殖80d后,再投喂鱼油30d。结果表明,饲料中添加豆油不会显著影响瓦氏黄颡鱼的增重率、肝体指数和体成分(P>0.05)。随着饲料中大豆油含量的增加,S2和SO组肌肉中C18:1n-9、C18:2n-6和单不饱和脂肪酸比例显著增加(P < 0.05),而C20:5n-3,C22:5n-3及n-3/n-6比例显著下降(P < 0.05)。再投喂鱼油30d后,SO组肌肉中C18:3n-6、C20:4n-6、Σ n-9、Σ n-6和S2组中C18:1n-9、Σ n-6比例显著下降(P < 0.05),而S2和SO组肌肉中Σn-3多不饱和脂肪酸、C20:5n-3和C22:5n-3比例显著增加(P < 0.05)。在生产中,可采用先植物油饲料、后鱼油饲料的养殖方式提高瓦氏黄颡鱼肌肉品质(增加有益人类健康的多不饱和脂肪酸)。  相似文献   

9.
Food grade fisheries have reached their sustainable limits while aquaculture production has increased to meet consumer demands. However, for growth in aquaculture to continue and utilise sustainable, feeding ingredients, alternatives to fish oil (FO), the predominant lipid component of fish diets, must be developed. Therefore, there is currently considerable interest in the regulation of fatty acid metabolism in fish in order to determine strategies for the best use of plant oils in diets for commercially important cultured fish species. Plant oils are characteristically rich in C18 polyunsaturated fatty acids (PUFA) but devoid of C20 and C22 highly unsaturated fatty acids (HUFA) found in FO. The fatty acyl desaturase enzyme activities involved in the biosynthesis of HUFA from PUFA are known to be under nutritional regulation and can be increased in fish fed diets rich in plant oils. However, fatty acid desaturase activity is also known to be modulated by water temperature in fish. The present study aimed to investigate the interaction between water temperature and diet in the regulation of fatty acid metabolism in rainbow trout. Trout, acclimatized to 7, 11 or 15 degrees C, were fed for 4 weeks on diets in which the FO was replaced in a graded manner by palm oil. At the end of the trial, fatty acyl desaturation/elongation and beta-oxidation activities were determined in isolated hepatocytes and intestinal enterocytes using [1-14C]18:3n-3 as substrate, and samples of liver were collected for analysis of lipid and fatty acid composition. The most obvious effect of temperature was that fatty acid desaturation/elongation and beta-oxidation were reduced in both hepatocytes and intestinal enterocytes from fish maintained at the highest water temperature (15 degrees C). There were differences between the two tissues with the highest desaturation/elongation and beta-oxidation activities tending to be in fish held at 11 degrees C in the case of hepatocytes, but 7 degrees C in enterocytes. Correlations between fatty acid metabolism and dietary palm oil were most clearly observed in desaturation/elongation activities in both hepatocytes and enterocytes at 11 degrees C. The highest beta-oxidation activities were generally observed in fish fed FO alone in both hepatocytes and enterocytes with palm oil having differential effects in the two cell types.  相似文献   

10.
11.
The fatty acid profile of vegetable oils (VOs), together with the poor ability of marine fish to convert polyunsaturated fatty acids (PUFA) to highly unsaturated fatty acids (HUFA), lead to important changes in the nutritional value of farmed fish fed VO, which include increased fat and 18:2n-6 and reduced n-3 HUFA. Echium oil (EO) has a good n-3/n-6 balance as well as an interesting profile with its high content of unusual fatty acids (SDA, 18:4n-3 and GLA, 18:3n-6) that are of increasing pharmacological interest. The effects of substituting 50 % of dietary fish oil (FO) by EO on gilthead seabream (Sparus aurata L.) enterocyte and hepatocyte lipid metabolism were studied. After 4 months of feeding, cell viability, total lipid contents and lipid class compositions were not affected by EO. The cells clearly reflected the fatty acid profile of the EO showing increased SDA, GLA and its elongation product 20:3n-6, and only minorly decreased n-3 HUFA compared to other VO. Metabolism of [1-14C]18:2n-6 and [1-14C]18:3n-3 was also unaffected by EO in terms of total uptake, incorporation, β-oxidation and elongation–desaturation activities.  相似文献   

12.
Triplicate groups of European sea bass (Dicentrarchus labrax L.), of initial mass 5 g, were fed one of three practical type diets for 64 weeks. The three diets differed only in the added oil and were 100% fish oil (FO; diet A), 40% FO/60% vegetable oil blend (VO; diet B) where the VO blend was rapeseed oil, linseed oil and palm oil in the ratio 10/35/15 by weight and 40% FO/60% VO blend (diet C) where the ratio was 24/24/12 by weight. After final sample collection the remaining fish were switched to a 100% FO finishing diet for a further 20 weeks. After 64 weeks fish fed 60% VO diet B had significantly lower live mass and liver mass than fish fed diets A and C although SGR, FCR and length were not different between groups. There were no differences in any of the above parameters after either 14 or 20 weeks on the FO finishing diet. Fatty acid compositions of flesh were correlated to dietary fatty acids although there was selective retention of docosahexaenoic acid (22:6n-3; DHA) regardless of dietary input. Inclusion of dietary VO resulted in significantly reduced flesh levels of DHA and eicosapentaenoic acid (20:5n-3; EPA) while 18:1n-9, 18:2n-6 and 18:3n-3 were all significantly increased in fish fed the 60% VO diets. Fatty acid compositions of liver showed broadly similar changes, as a result of dietary fatty acid composition, as was seen in flesh. However, the response of flesh and liver to feeding a FO finishing diet was different. In flesh, DHA and EPA values were not restored after 14 or 20 weeks of feeding a FO finishing diet with the values in fish fed the two 60% VO diets being around 70% of the values seen in fish fed FO throughout. Conversely, and despite liver DHA and EPA levels being reduced to only 40% of the value seen in fish fed 100% FO after 64 weeks, the levels of liver DHA and EPA were not significantly different between treatments after feeding the FO finishing diet for 14 weeks. However, a 200 g portion of sea bass flesh, after feeding the experimental diets for 64 weeks followed by a FO diet for 14 weeks, contained 1.22 and 0.95 g of EPA + DHA for fish fed FO or 60% VO, respectively. Therefore, sea bass grown for most of the production cycle using diets containing 60% VO can still contribute a significant quantity of healthy n-3 HUFA to the human consumer.  相似文献   

13.
Juvenile soft-shelled turtles (Pelodiscus sinensis) were fed 7 diets containing 8% of lard, soybean oil, olive oil, menhaden fish oil, or mixtures of 1 to 1 ratio of fish oil and lard, soybean oil, olive oil for 10 weeks. Growth and muscle proximate compositions of the turtles were not affected by different dietary treatments (p>0.05). Fatty acid profiles in muscle polar lipids, muscle non-polar lipids, and liver polar lipids reflected the fatty acid composition of dietary lipid source. Turtles fed diets containing fish oil generally contained significantly higher (p<0.05) proportion of highly unsaturated fatty acids (HUFA) in both polar and non-polar lipids of muscle and polar fraction of liver lipids than those fed other oils. Non-polar fraction of liver lipids from all groups of turtles contained less than 1% of HUFA. All turtles contained relatively high proportions of oleic acid in their lipids regardless of the dietary lipid source. Further, lipid peroxidation in both muscle tissue and liver microsomes of turtles fed fish oil as the sole lipid source was greater (p<0.05) than those fed fish oil-free diets. Turtles fed olive oil as the sole lipid source had the lowest lipid peroxidation rate among all dietary groups. The results indicate that dietary n-3 HUFA may not be crucial for optimal growth of soft-shelled turtles although they may be used for metabolic purpose. Further, high level of dietary HUFA not only increases the HUFA content in turtle tissues, but also enhances the susceptibility of these tissues to lipid peroxidation.  相似文献   

14.
Recent studies suggest that the use of vegetable oils at expense of fish oil in aquaculture feeds might have potential negative effects on fish redox homeostasis and adiposity. Resveratrol (RESV) is a lipid-soluble phytoalexin present in fruits and vegetables with proven in vivo antioxidant function in animals. The present study aims to assess the potential use of RESV in Atlantic salmon feeds. To this end, post-smolt salmons with an initial BW of 148±3 g were fed four experimental diets for 15 weeks. A diet low in fish oil served as a control and was supplemented with 0, 0.5, 1.5 and 2.5 g/kg of RESV, respectively. The effect of the experimental diets on animal performance, tissue fatty acid composition, and the expression of genes encoding proteins involved in antioxidant signalling, lipid peroxidation, and metabolism were studied. Resveratrol significantly reduced feed intake and final BW of the salmon. Feeding RESV did not affect the sum of saturated and monounsaturated fatty acids or total lipids in the fillet. While the content of total polyunsaturated fatty acids was not affected, the percentages of some fatty acids in the liver and fillet were changed by RESV. Furthermore, in liver, the relative expression of glutathione peroxidase 4b, nuclear factor-like 2, and arachidonate 5-lipoxygenase remained unchanged across treatment groups. In conclusion, the negative impact of dietary RESV on FI and hence reduction of the BW discourages its inclusion in low fish oil diets for Atlantic salmon.  相似文献   

15.
This study was designed to examine the effects of dietary vitamin E (VE) on modulation of immune responses when supplied with two levels of n-3 highly unsaturated fatty acids (n-3 HUFA) in rainbow trout, Oncorhynchus mykiss. Six semipurified diets were prepared containing three levels of dietary VE (0, 100 or 1000 mg alpha-tocopheryl acetate kg(-1) diet) and n-3 HUFA either at 20 or 48% of dietary lipid provided from fish oil or docosahexaenoic acid (DHA) concentrated fish oil respectively. The diets were fed to rainbow trout (100 g initial mean weight) for 15 weeks. The VE, vitamin C (VC) content in plasma and tissues and the nonspecific immune responses, both humoral (alternative complement activity, total immunoglobulin) and cellular (phagocytosis, nonspecific cytotoxicity) were examined. VE contents in the kidney reflected the dietary input but were lower in fish fed 48% n-3 HUFA diets, and could have impaired some of immune responses compared to fish fed 20% n-3 HUFA. VC contents in kidney followed the same pattern as VE. Both humoral and cellular immune functions deteriorated in fish fed VE deficient diets whereas improvement in most of the parameters corresponded to its supplementation. However, the higher dose of dietary VE did not substantially enhance the responses assayed compared to the 100 mg dose. Besides clearly indicating the role of VE in maintaining the immune functions in fish in relation to dietary n-3 HUFA, this study has revealed that optimum health benefits could be achieved when VE is maintained slightly above the levels generally recommended for normal growth.  相似文献   

16.
Fish oil (FO) has traditionally been used as the dominating lipid component in fish feed. However, FO is a limited resource and the price varies considerably, which has led to an interest in using alternative oils, such as vegetable oils (VOs), in fish diets. It is far from clear how these VOs affect liver lipid secretion and fish health. The polyunsaturated fatty acids (PUFAs), eicosapentanoic acid (EPA) and docosahexanioc acid (DHA), reduce the secretion of lipoproteins rich in triacylglycerols (TAGs) in Atlantic salmon, as they do in humans. The mechanism by which n-3 fatty acids (FAs) in the diet reduce TAG secretion is not known. We have therefore investigated the effects of rapeseed oil (RO) and n-3 rich diets on the accumulation and secretion of (3)H-glycerolipids by salmon hepatocytes. Salmon, of approximately 90 g were fed for 17 weeks on one of four diets supplemented with either 13.5% FO, RO, EPA-enriched oil or DHA-enriched oil until a final average weight of 310 g. Our results show that the dietary FA composition markedly influences the endogenous FA composition and lipid content of the hepatocytes. The intracellular lipid level in hepatocytes from fish fed RO diet and DHA diet were higher, and the expressions of the genes for microsomal transfer protein (MTP) and apolipoprotein A1 (Apo A1) were lower, than those in fish fed the two other diets. Secretion of hepatocyte glycerolipids was lower in fish fed the EPA diet and DHA diet than it was in fish fed the RO diet. Our results indicate that EPA and DHA possess different hypolipidemic properties. Both EPA and DHA inhibit TAG synthesis and secretion, but only EPA induces mitochondrial proliferation and reduce intracellular lipid. Expression of the gene for peroxisome proliferator-activated receptor alpha (PPARalpha) was higher in the DHA dietary group than it was in the other groups.  相似文献   

17.
18.
19.
For aquaculture of marine species to continue to expand, dietary fish oil (FO) must be replaced with more sustainable vegetable oil (VO) alternatives. Most VO are rich in n-6 polyunsaturated fatty acids (PUFA) and few are rich in n-3 PUFA but Camelina oil (CO) is unique in that, besides high 18:3n-3 and n-3/n-6 PUFA ratio, it also contains substantial long-chain monoenes, commonly found in FO. Cod (initial mass ~ 1.4 g) were fed for 12 weeks diets in which FO was replaced with CO. Growth performance, feed efficiency and biometric indices were not affected but lipid levels in liver and intestine tended to increase and those of flesh, decrease, with increasing dietary CO although only significantly for intestine. Reflecting diet, tissue n-3 long-chain PUFA levels decreased whereas 18:3n-3 and 18:2n-6 increased with inclusion of dietary CO. Dietary replacement of FO by CO did not induce major metabolic changes in intestine, but affected genes with potential to alter cellular proliferation and death as well as change structural properties of intestinal muscle. Although the biological effects of these changes are unclear, given the important role of intestine in nutrient absorption and health, further attention should be given to this organ in future.  相似文献   

20.
There is evidence that n-3 highly unsaturated fatty acids (n-3 HUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for human health, especially for the cardiovascular system. The sources of n-3 HUFA, including EPA and DHA, are scarce in diet consumed by the Czech population. Thus, it would be beneficial to generally increase fish consumption and also to increase the content of the beneficial fatty acids (FA) in locally produced fish and other products. Therefore the overall aim of this paper was to review factors influencing lipid content and composition in common carp, which is the major cultured fish in the Czech Republic, and to identify long term sustainable ways for increasing the beneficial fatty acids in the carp flesh. We conclude that there are several ways to improve the FA composition of common carp in the traditional pond production. High amount of natural food, good supplemental diet containing high level of alpha-linolenic acid (ALA) and suitable processing and cooking were identified as the most important ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号