首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to evaluate host plant performance relative to different soil arbuscular mycorrhizal fungal (AMF) communities, Andropogon gerardii seedlings were grown with nine different AMF communities. The communities consisted of 0, 10, or 20 spores of Glomus etunicatum and 0, 10, or 20 spores of Glomus intraradices in all possible combinations. Spores were produced by fungal cultures originating on A. gerardii in a serpentine plant community; seeds of A. gerardii were collected at the same site. The experiment was performed in the greenhouse using a mixture of sterilized serpentine soil and sand to which naturally occurring non-mycorrhizal microbes were added. There was no difference in root AMF colonization rates between single species communities of either G. etunicatum or G. intraradices, but G. intraradices enhanced plant growth and G. etunicatum did not. However, plants grew larger with some combinations of G.␣intraradices plus G. etunicatum than with the same quantity of G. intraradices alone. These results suggest the potential for niche complementarity in the mycorrhizal fungi. That G. etunicatum only increased plant growth in the presence of G. intraradices could be illustrative of why AMF that appear to be parasitic or benign when examined in isolation are maintained within multi-species mycorrhizal communities in nature.  相似文献   

2.
Diversity in phosphorus (P) acquisition strategies was assessed among eight isolates of arbuscular mycorrhizal fungi (AMF) belonging to three Glomus species, all obtained from the same field site. Maize (Zea mays L. cv. Corso) was used as a test plant. Compartmented cultivation containers coupled with 33P radioisotope labeling of soil P were employed to estimate (1) the distance from the roots that AMF were able to acquire soil P from, (2) the rate of soil colonization, (3) the efficiency of uptake of soil P by AMF, (4) benefits provided to maize in terms of P acquisition and growth. Glomus mosseae and G. intraradices took up P 10 cm from roots, whereas G. claroideum only up to 6 cm from the roots. G. mosseae most rapidly colonized the available soil volume and transported significant amounts of P to maize from a distance, but provided no net P uptake benefit to the plants. On the other hand, both G. intraradices and three out of four G. claroideum isolates significantly improved net P uptake by maize. These effects seem to be related to variability between and to a limited extent also within AMF species, in mycelium development, efficiency of hyphal P uptake and effects on plant P acquisition via the root pathway. In spite of absence of maize growth responses to inoculation with any of the AMF isolates, this study indicates remarkable functional diversity in the underground component of the studied field site.  相似文献   

3.
Different species of arbuscular mycorrhizal fungi (AMF) can produce different amounts of extraradical mycelium (ERM) with differing architectures. They also have different efficiencies in gathering phosphate from the soil. These differences in phosphate uptake and ERM length or architecture may contribute to differential growth responses of plants and this may be an important contributor to plant species coexistence. The effects of the development of the ERM of AMF on the coexistence of two co-occurring plant species were investigated in root-free hyphal chambers in a rhizobox experimental unit. The dominant shrub (Salix atrocinerea Brot.) and herbaceous (Conyza bilbaoana J. Rémy) plant species found in a highly alkaline anthropogenic sediment were studied in symbiosis with four native AMF species (Glomus intraradices BEG163, Glomus mosseae BEG198, Glomus geosporum BEG199 and Glomus claroideum BEG210) that were the most abundant members of the AMF community found in the sediment. Different AMF species did not influence total plant productivity (sum of the biomass of C. bilbaoana and S. atrocinerea), but had a great impact on the individual biomass of each plant species. The AMF species with greater extracted ERM lengths (G. mosseae BEG198, G. claroideum BEG210 and the four mixed AMF) preferentially benefited the plant species with a high mycorrhizal dependency (C. bilbaoana), while the AMF species with the smallest ERM length (G. geosporum BEG199) benefited the plant species with a low mycorrhizal dependency (S. atrocinerea). Seed production of C. bilbaoana was only observed in plants inoculated with G. mosseae BEG198, G. claroideum BEG210 or the mixture of the four AMF. Our results show that AMF play an important role in the reproduction of C. bilbaoana coexisting with S. atrocinerea in the alkaline sediment and have the potential to stimulate or completely inhibit seed production. The community composition of native AMF and the length of the mycelium they produce spreading from roots into the surrounding soil can be determinant of the coexistence of naturally co-occurring plant species.  相似文献   

4.
Three arbuscular mycorrhizal (AM) fungi (Glomus mosseae, Glomus claroideum, and Glomus intraradices) were compared for their root colonizing ability and activity in the root of Astragalus sinicus L. under salt-stressed soil conditions. Mycorrhizal formation, activity of fungal succinate dehydrogenase, and alkaline phosphatase, as well as plant biomass, were evaluated after 7 weeks of plant growth. Increasing the concentration of NaCl in soil generally decreased the dry weight of shoots and roots. Inoculation with AM fungi significantly alleviated inhibitory effect of salt stress. G. intraradices was the most efficient AM fungus compared with the other two fungi in terms of root colonization and enzyme activity. Nested PCR revealed that in root system of plants inoculated with a mix of the three AM fungi and grown under salt stress, the majority of mycorrhizal root fragments were colonized by one or two AM fungi, and some roots were colonized by all the three. Compared to inoculation alone, the frequency of G. mosseae in roots increased in the presence of the other two fungal species and highest level of NaCl, suggesting a synergistic interaction between these fungi under salt stress.  相似文献   

5.
Many studies have scrutinized the nutritional benefits of arbuscular mycorrhizal associations to their host plants, while the carbon (C) balance of the symbiosis has often been neglected. Here, we present quantification of both the C costs and the phosphorus (P) uptake benefits of mycorrhizal association between barrel medic (Medicago truncatula) and three arbuscular mycorrhizal fungal species, namely Glomus intraradices, Glomus claroideum, and Gigaspora margarita. Plant growth, P uptake and C allocation were assessed 7 weeks after sowing by comparing inoculated plants with their non-mycorrhizal counterparts, supplemented with different amounts of P. Isotope tracing (33P and 13C) was used to quantify both the mycorrhizal benefits and the costs, respectively. G. intraradices supported greatest plant P acquisition and incurred high C costs, which lead to similar plant growth benefits as inoculation with G. claroideum, which was less efficient in supporting plant P acquisition, but also required less C. G. margarita imposed large C requirement on the host plant and provided negligible P uptake benefits. However, it did not significantly reduce plant growth due to sink strength stimulation of plant photosynthesis. A simple experimental system such as the one established here should allow quantification of mycorrhizal costs and benefits routinely on a large number of experimental units. This is necessary for rapid progress in assessment of C fluxes between the plants and different mycorrhizal fungi or fungal communities, and for understanding the dynamics between mutualism and parasitism in mycorrhizal symbioses.  相似文献   

6.
In the present study, the effects of the arbuscular mycorrhizal fungus (AMF) Glomus intraradices Schenck & Smith and four rhizobacteria (RB; 58/1 and D/2: Pseudomonas fluorescens biovar II; 17: P. putida; 21: Enterobacter cloacae), which are the important members of the rhizosphere microflora and biological control agents against plant diseases, were examined in the pathosystem of Fusarium oxysporum f. sp. lycopersici [(Sacc) Syd. et Hans] (FOL) and tomato with respect to morphological parameters (fresh and dry root weight) and phosphorous (P) concentration in the roots. Treatments with single and dual inoculation with G. intraradices and RB strains reduced disease severity by 8.6–58.6%. Individual bacteria inoculations were more effective than both the single AMF and dual (G. intraradices + RB) inoculations. In addition, the RB and G. intraradices enhanced dry root weight effectively. Significant increases in root weights were recorded particularly in the triple inoculations compared with single or dual inoculations. Compared with the non‐treated controls all biological control agents increased P‐content of treated roots of plants. Colonization with RB increased especially in triple (FOL + G. intraradices + RB) inoculations whereas colonization of G. intraradices was significantly decreased in treatment of FOL + G. intraradices compared with triple inoculations. The results suggest that suitable combinations of these biocontrol agents may ameliorate plant growth and health.  相似文献   

7.
Zinnia (Zinnia elegans) was inoculated with four arbuscular mycorrhizal fungi (AMF) i.e. Gigaspora margarita, Gigaspora rosea, Glomus intraradices, and Glomus mosseae, either singly or mixture of two species of Gigaspora and Glomus. Results indicated that Glomus significantly enhanced the leaf size and the shoot biomass. G. mosseae was more effective than G. intraradices. Only G. mosseae increased number and size of flowers. Mixed inoculations were not much effective in the growth-promotion than the corresponding singly inoculation with Glomus. Comparison of colonization percent demonstrated that the highest colonization by G. mosseae, and followed by G. intraradices and Gigaspora species. In semi-quantitative PCR amplifications, Glomus was dominant in the roots. Our results suggest that G. mosseae is good for inoculation to zinnia and the interaction between different AMF species should be given full consideration in the application.  相似文献   

8.
Phytoremediation is the use of selected plants to decontaminate polluted environments. Arbuscular mycorrhizal fungi (AMF) may potentially be useful for phytoremediation, but it is not known how petroleum hydrocarbons influence AMF spore germination and hyphal growth. To address this question, germination of spores and germ tube growth of Glomus intraradices Schenck and Smith and Glomus aggregatum Schenck and Smith were assessed in soil contaminated with up to 3% (w/v) of F2 diesel oil or HAGO reference oil. Hyphal growth, colonization and progeny spore production were assessed in vitro using transformed root cultures of Daucus carota and G. intraradices spores in a F2 diesel contaminated medium. In addition, extraradical hyphal growth of G. intraradices colonizing Daucus carota in the presence of F2 diesel was studied. Neither F2 diesel nor HAGO reference oil affected spore germination or germ tube growth in soil. However, in the presence of plant roots, germ tube growth of G. intraradices was reduced and delayed in the presence of F2 diesel and root colonization was not detected. Hyphal growth of pre-colonized carrot roots by G. intraradices was reduced and delayed in F2 contaminated medium compared to controls. F2 diesel did not inhibit spore germination of these AMF species but did reduce colonization, germ tube and hyphal growth. These results suggest that AMF inoculum can be established in petroleum-contaminated sites. However, it may prove beneficial to plant pre-colonized plants to increase the probability of sufficient AMF colonization and growth. The likely mechanism(s) of petroleum toxicity in this plant-microbe system was discussed.  相似文献   

9.
Arbuscular mycorrhizal (AM) symbiosis and plant-growth-promoting rhizobacterium (PGPR) can alleviate the effects of water stress in plants, but it is unknown whether these benefits can be maintained at elevated CO2. Therefore, we carried out a study where seedlings of Lactuca sativa were inoculated with the AM fungus (AMF) Glomus intraradices N.C. Schenk & G.S. Sm. or the PGPR Pseudomonas mendocina Palleroni and subjected to two levels of watering and two levels of atmospheric CO2 to ascertain their effects on plant physiological parameters and gene expression of one PIP aquaporin in roots. The inoculation with PGPR produced the greatest growth in lettuce plants under all assayed treatments as well as the highest foliar potassium concentration and leaf relative water content under elevated [CO2] and drought. However, under such conditions, the PIP2 gene expression remained almost unchanged. G. intraradices increased significantly the AMF colonization, foliar phosphorus concentration and leaf relative water content in plants grown under drought and elevated [CO2]. Under drought and elevated [CO2], the plants inoculated with G. intraradices showed enhanced expression of the PIP2 gene as compared to P. mendocina or control plants. Our results suggest that both microbial inoculation treatments could help to alleviate drought at elevated [CO2]. However, the PIP2 gene expression was increased only by the AMF but not by the PGPR under these conditions.  相似文献   

10.
Arbuscular mycorrhizal (AM) symbiosis, established between AM fungi (AMF) and roots of higher plants, occurs in most terrestrial ecosystems. It has been well demonstrated that AM symbiosis can improve plant performance under various environmental stresses, including drought stress. However, the molecular basis for the direct involvement of AMF in plant drought tolerance has not yet been established. Most recently, we cloned two functional aquaporin genes, GintAQPF1 and GintAQPF2, from AM fungus Glomus intraradices. By heterologous gene expression in yeast, aquaporin localization, activities and water permeability were examined. Gene expressions during symbiosis in expose to drought stress were also analyzed. Our data strongly supported potential water transport via AMF to host plants. As a complement, here we adopted the monoxenic culture system for AMF, in which carrot roots transformed by Ri-T DNA were cultured with Glomus intraradices in two-compartment Petri dishes, to verify the aquaporin gene functions in assisting AMF survival under polyethylene glycol (PEG) treatment. Our results showed that 25% PEG significantly upregulated the expression of two aquaporin genes, which was in line with the gene functions examined in yeast. We therefore concluded that the aquaporins function similarly in AMF as in yeast subjected to osmotic stress. The study provided further evidence to the direct involvement of AMF in improving plant water relations under drought stresses.  相似文献   

11.

Aims and Background

Many plants preferentially grow roots into P-enriched soil patches, but little is known about how the presence of arbuscular mycorrhizal fungi (AMF) affects this response.

Methods

Lotus japonicus (L.) was grown in a low-P soil with (a) no additional P, (b) homogeneous P (28 mg pot?1), (c) low heterogeneous P (9.3 mg pot?1), and (d) high heterogeneous P (28 mg pot?1). Each P treatment was combined with one of three mycorrhiza treatments: no mycorrhizae, Glomus intraradices, indigenous AMF. Real-time PCR was used to assess the abundance of G. intraradices and the indigeneous AMF G. mosseae and G. claroideum.

Results

Mycorrhization and P fertilization strongly increased plant growth. Homogeneous P supply enhanced growth in both mycorrhizal treatments, while heterogeneous P fertilization increased biomass production only in treatments with indigenous AMF inoculation. Preferential root allocation into P-enriched soil was significant only in absence of AMF. The abundance of AMF species was similar in P-enriched and unfertilized soil patches.

Conclusion

Mycorrhization may completely override preferential root growth responses of plants to P- patchiness in soil. The advantage of this effect for the plants is to give roots more freedom to forage for other resources in demand for growth and to adapt to variable soil conditions.  相似文献   

12.
接种AMF对菌根植物和非菌根植物竞争的影响   总被引:4,自引:0,他引:4  
张宇亭  王文华  申鸿  郭涛 《生态学报》2012,32(5):1428-1435
为了研究丛枝菌根真菌(arbuscular mycorrhizal fungus, AMF)对菌根植物与非菌根植物种间竞争的影响,以玉米(菌根植物)和油菜(非菌根植物)作为供试植物,分别进行间作、尼龙网分隔和单作,模拟这两种植物之间不同的竞争状态,接种丛枝菌根真菌Glomus intraradicesGlomus mosseae,比较菌根植物和非菌根植物的生长和磷营养状况,分析AMF侵染对植物种间竞争作用的影响。结果显示,与单作相比,间作模式下玉米的生物量及磷营养状况有所降低,但其菌根依赖性却有所提高。与不接种相比,接种处理显著降低了间作体系油菜根系的磷含量和磷吸收量,但趋于改善菌根植物玉米的磷营养状况。因此,接种AMF可以降低非菌根植物的磷营养状况及生物量,使得菌根植物的相对竞争能力明显提高,说明AMF在维持物种多样性方面有着重要的作用。  相似文献   

13.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth and reduce plant uptake of heavy metals. Phosphorus (P) fertilization can affect this relationship. We investigated maize (Zea mays L.) uptake of heavy metals after soil AMF inoculation and P fertilization. Maize biomass, glomaline and chlorophyll contents and uptake of Fe, Mn, Zn, Cu, Cd and Pb have been determined in a soil inoculated with AMF (Glomus aggregatum, or Glomus intraradices) and treated with 30 or 60 µg P-K2HPO4 g?1 soil. Consistent variations were found between the two mycorrhizal species with respect to the colonization and glomalin content. Shoot dry weight and chlorophyll content were higher with G. intraradices than with G. aggregatum inoculation. The biomass was highest with 30 µg P g?1 soil. Shoot concentrations of Cd, Pb and Zn decreased with G. aggregatum inoculation, but that of Cd and Pb increased with G. intraradices inoculation. Addition of P fertilizers decreased Cd and Zn concentrations in the shoot. AMF with P fertilization greatly reduced maize content of heavy metals. The results provide that native AMF with a moderate application rate of P fertilizers can be exploited in polluted soils to minimize the heavy metals uptake and to increase maize growth.  相似文献   

14.
The aim of this field study was to examine how the development of arbuscular mycorrhizal fungi (AMF) on coal mine spoil banks is affected by the presence of plants with different mycorrhizal status. A 3-year trial was conducted on the freshly created spoil bank Vršany, North-Bohemian coal basin, the Czech Republic. Three plant species – non-mycotrophic annual Atriplex sagittata, highly mycotrophic annual Tripleurospermum inodorum (both dominants of early stages of succession) and facultatively mycotrophic Arrhenatherum elatius (a perennial grass species of the later stage of succession) – were planted on 1 m2 plots over 3 years in different sequences that simulated the progress of succession on spoil banks. The development of AMF populations was monitored by evaluation of mycorrhizal colonization of plant roots and by measurement of the mycorrhizal inoculation potential (MIP) of soil. These two parameters were compared between plots inoculated with the mixture of three AMF isolates – Glomus mosseae BEG95, G. claroideum BEG96 and G. intraradices BEG140 – (“inoculated plots”) and plots exposed only to natural dispersal of AMF propagules (“uninoculated plots”). Highly colonized roots of plants together with a high MIP of soil in uninoculated plots were already found at the end of the first season, indicating rapid natural dispersal of AMF propagules. Root colonization of facultatively mycotrophic and non-mycotrophic plants in later years was affected by the mycorrhizal status of the previous plant species. The MIP of soil continuously increased throughout the experiment; in uninoculated plots, the MIP was temporarily decreased if plant species of higher mycotrophy were replaced by species of lower mycotrophy. The results lead to the conclusion that AMF colonize freshly formed sites very quickly and reproduce or accumulate in the soil, which leads to increasing MIP values. However, this infective potential can be decreased if non-mycotrophic plants predominate on the site.  相似文献   

15.
Arbuscular mycorrhizal fungal (AMF) spore communities were surveyed in a long-term field fertilization experiment in Switzerland, where different amounts of phosphorus (P) were applied to soil. Plots receiving no P as well as plots systematically fertilized in excess to plant needs for 31 years were used to test the hypothesis that application of P fertilizer changes the composition and diversity of AMF communities. AMF spores were isolated from the field soil, identified, and counted so as to quantify the effect of P fertilization on AMF spore density, composition, and diversity. Trap cultures were established from field soil with four host plants (sunflower, leek, maize, and Crotalaria grahamiana), and the spore communities were then analyzed in substrate samples from the pots. Altogether, nine AMF species were detected in the soil. No evidence has been acquired for effect of P fertilization on spore density, composition, and diversity of AMF in both the field soil and in trap cultures. On the other hand, we observed strong effect of crop plant species on spore densities in the soil, the values being lowest under rapeseed and highest under Phacelia tanacetifolia covercrop. The identity of plant species in trap pots also significantly affected composition and diversity of associated AMF communities, probably due to preferential establishment of symbiosis between certain plant and AMF species. AMF spore communities under mycorrhizal host plants (wheat and Phacelia in the fields and four host plant species in trap pots) were dominated by a single AMF species, Glomus intraradices. This resulted in exceptionally low AMF spore diversity that seems to be linked to high clay content of the soil.Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users.  相似文献   

16.
Interaction of plant roots with arbuscular mycorrhizal fungi (AMF) is a complex trait resulting in cooperative interactions among the two symbionts including bidirectional exchange of resources. To study arbuscular mycorrhizal symbiosis (AMS) trait variation in the model plant Lotus japonicus, we performed an integrated multi‐omics analysis with a focus on plant and fungal phospholipid (PL) metabolism and biological significance of lysophosphatidylcholine (LPC). Our results support the role of LPC as a bioactive compound eliciting cellular and molecular response mechanisms in Lotus. Evidence is provided for large interspecific chemical diversity of LPC species among mycorrhizae with related AMF species. Lipid, gene expression and elemental profiling emphasize the Lotus–Glomus intraradices interaction as distinct from other arbuscular mycorrhizal (AM) interactions. In G. intraradices, genes involved in fatty acid (FA) elongation and biosynthesis of unsaturated FAs were enhanced, while in Lotus, FA synthesis genes were up‐regulated during AMS. Furthermore, FAS protein localization to mitochondria suggests FA biosynthesis and elongation may also occur in AMF. Our results suggest the existence of interspecific partitioning of PL resources for generation of LPC and novel candidate bioactive PLs in the Lotus–G. intraradices symbiosis. Moreover, the data advocate research with phylogenetically diverse Glomeromycota species for a broader understanding of the molecular underpinnings of AMS.  相似文献   

17.
Individuals of Inula ensifolia L. (Asteraceae), a valuable xerothermic plant species with potential therapeutic value, were inoculated under laboratory conditions with different strains of arbuscular mycorrhizal fungi (AMF): (1) Glomus intraradices UNIJAG PL-Bot, (2) G. intraradices UNIJAG PL-Kap, (3) Glomus clarum UNIJAG PL13-2, and (4) AMF crude inoculum from natural stands of I. ensifolia. We found AMF species specificity in the stimulation of thymol derivative production in the roots of I. ensifolia. There was an increase in thymol derivative contents in roots after G. clarum inoculation and at the same time the decreased production of these metabolites in the G. intraradices treatments. Moreover, no correlation between the extent of AMF colonization and the effects of the fungal symbionts on the plant was observed. A multilevel analysis of chlorophyll a fluorescence transients (JIP test) permitted an evaluation of plant vitality, expressed in photosynthetic performance index, influenced by the applied AMF strains, which was found to be in good agreement with the results concerning thymol derivative production. The mechanisms by which AMF trigger changes in phytochemical concentration in plant tissues and their consequences for practice are discussed.  相似文献   

18.
Rabbit polyclonal antibodies were produced against a soluble protein fraction from a vesicle and spore mixture of the arbuscular mycorrhizal fungus (AMF) Glomus intraradices. The protocol for isolation of vesicles and spores from plant roots was optimized to minimize debris contamination. Protein extract purification and preparation for immunization was adapted to increase protein content and immunogenicity. Active antisera were produced starting from the second boost immunization. Antibodies obtained were specific for surface antigens of AMF and revealed different patterns of soluble protein antigens in G. intraradices, G. constrictum and an unidentified Glomus species. Accepted: 6 December 2000  相似文献   

19.
Even though the positive interactions between arbuscular mycorrhizal (AM) fungi and rhizobial bacteria in legume plants are well documented, their interactions under drought conditions could be negative in some species. In the present study, we examined six different strains of Rhizobiun in combination with two AM fungi (Glomus mosseae and Glomus intraradices) on the responses of Phaseolus vulgaris plants to moderate drought conditions. Moreover, to discriminate between direct competition for carbon resources from direct inhibition processes, a non-legume plant (Zea mays) was also used. Although all inoculants (single or double) increased P. vulgaris growth, only one double combination further increased total or pod dry weights. On the other hand, three double combinations decreased pod dry weight compared to plants inoculated with a single AM fungus. In Z. mays plants, one double inoculation treatment further increased shoot dry weight, but another double inoculation treatment decreased root dry weight in plants inoculated with G. mosseae. In addition, in both plant species, a higher percentage of decrease in AM root colonization by some rhizobial strains was observed. This was most likely caused by a direct inhibition of AM fungal growth by the rhizobial strains and also depended on the host plant involved. Further research is needed to elucidate on the mechanisms behind this inhibition.  相似文献   

20.
Development and heavy metal tolerance of two cultivation lineages of the indigenous isolate of arbuscular mycorrhizal fungus (AMF)Glomus intraradices PH5 were compared in a pot experiment in soil from lead (Pb) smelter waste deposits. One lineage was sub-cultured in original Pb-contaminated soil; the second one was maintained for 13 months in an inert substrate (river sand) without Pb stress. The contribution of these cultivation lineages to the Pb uptake and accumulation by the host plantAgrostis capillaris was investigated. The experiment was conducted in a compartmented system where the lateral compartments withAgrostis seedlings were separated from the central pot containing 4-week olderAgrostis plants by a nylon mesh for allowing out-growing of extraradical mycelium (ERM) from the pot. No differences in mycorrhizal colonization, ERM length and viability were observed between the two lineages ofG. intraradices PH5 in the soil of the isolate origin. However, the ability to support plant growth and Pb uptake differed between the lineages and also between the plants in the central pots and the lateral compartments. The growth of the plants in the central pots was positively affected by AMF inoculation. The plants inoculated with the lineage maintained in original soil showed larger shoot biomass and higher shoot P content as compared to the other inoculation treatments. The shoot Pb concentration of these plants was lower when compared to the plants inoculated with the lineage sub-cultured in the inert substrate. However the concentration did not differ from non-mycorrhizal control or from the reference isolateG. intraradices BEG75 from non-contaminated soil. Also shoot Pb contents were similar for all inoculation treatments. The development ofG. intraradices BEG75 in the contaminated soil was very poor; this isolate was not able to initiate colonization of seedlings in lateral compartments. In lateral compartments, growth of seedlings in contaminated soil was inhibited by theG. intraradices PH5 lineage maintained in the inert substrate. Pb translocation from the seedling roots to shoots was increased for plants inoculated with either lineage as compared to the non-mycorrhizal control; however, the increase for the lineage cultivated in the inert substrate was significantly higher in comparison with that maintained in the original soil. After 13 months of cultivation in a metal free substrate, theG. intraradices isolate from Pb contaminated soil did not lose its tolerance to Pb as regards colonization of plant roots and growth of ERM in the soil of its origin. However, its ability to support plant growth and to prevent Pb translocation from the roots to the shoots was decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号